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Part I

Norm Maps and Ambidexterity
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Integrals of families of maps

Definition
Let X be an ∞-groupoid, C an ∞-category with X-indexed limits and colimits. Then an
X-measure on C is a natural transformation µ : ∆∗ → ∆!, where ∆∗ : C → Fun(X, C) is
the diagonal functor sending an object c to the constant diagram at c and ∆! and ∆∗
denote its left and right adjoint respectively.

Construction
Let f : X → C(c, d) be a family of maps. Then this corresponds under adjunction to a map
f : ∆∗c → ∆∗d in Fun(X, C). Let µ be an X-measure on C. Then we define the integral of
f with respect to µ to be∫

X
f dµ : c η−→ ∆∗∆

∗c ∆∗f−−→ ∆∗∆
∗d µ−→ ∆!∆

∗d ε−→ d
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The norm Nmµ for a parametric measure

Definition
A parametric X-measure µ on C is a functorial family of X(x, y)-measures µxy on C.

Construction
Let L : X → C be a functor and let µ be a parametric X-measure on C. Then for each pair
x, y ∈ X, we have an associated map Lxy : X(x, y) → C(Lx,Ly). Taking integrals
pointwise, we obtain a natural family of maps

∫
X(x,y) Lxy dµx,y : Lx → Ly. Then we obtain

a map functorial in L:
Nmµ : colim

x∈X
Lx → lim

xinX
Lx.

called the norm map relative to µ.
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Recursive Norm Maps

Definition
Let C be an ∞-category admitting enough limits and colimits. Then the map
∆∗ : C → Fun(∗, C) is an equivalence, and the identity natural transformation ∆∗ → ∆!

defines a ∗-measure on C called the HL measure.

Recursion
Let X be an n-truncated ∞-groupoid. Suppose that the HL measure on C has been
constructed and is functorial for all path spaces X(x, y) with x, y ∈ X. Then these
measures give a parametric X-measure µHL on C, and therefore a norm map

NmHL : ∆X! → ∆X∗.

If NmHL is invertible, define the HL X-measure µHL on C to be Nm−1
HL .
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Ambidexterity

Theorem (Hopkins-Lurie, Ambidexterity)
The above can all be made coherently functorial and natural using the theory of
ambidexterity in Beck-Chevalley fibrations. In particular, as long as we assume C is
tensored and cotensored over S, there is a biCartesian fibration HC → S satisfying the
Beck-Chevalley condition and such that the fibre over a space X is HC

X = Fun(X, C). There
are two classes of maps defined by mutual induction in S called weakly C-ambidextrous
and C-ambidextrous maps, and a map of spaces is (weakly) C-ambidextrous if and only if
all of its fibres are. Whenever a map f is weakly ambidextrous, there is a norm map

Nmf : f! → f∗,

and f is ambidextrous if and only if this map is an equivalence.
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Ambidexterity

Remark
In the language of integrals and measures, the parametric X-measure µHL on C (and
therefore the norm map NmHL) is defined precisely when the map X → ∗ is weakly
ambidextrous, and it is an equivalence precisely when X → ∗ is ambidextrous.
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Examples

If X is empty, then the norm map is the map from the initial object to the terminal
object. It follows that X is C-ambidextrous if and only if C is pointed.
If X is a set, then the norm map

NmX :
⨿
x∈X

F(x) →
∏
x∈X

F(x)

exists if C is pointed and is given by the diagonal matrix with the identity down the
diagonal. Note that C is preadditive if and only if every finite set X is C-ambidextrous.
For G a finite group, the norm of a complex G-representation V is the map VG → VG

sending an orbit to the sum of its elements divided by the order of G.
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The Tate construction

Definition
Given a weakly C-ambidextrous ∞-groupoid X, we define the Tate Construction to be the
functor (−)tX : Fun(X, C) → C defined by the rule F 7→ FtX where

FtX := cofib(colim
X

F NmX−−−→ lim
X

F).

More generally, given a weakly C-ambidextrous map f : X → Y of ∞-groupoids, there is
also a relative Tate construction obtained by taking the cofibre of the relative norm map
map

Ftf = cofib(f!
Nmf−−→ f∗)

When X = BG, by abuse of notation, we denote FtBG by FtG.
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Part II

Multiplicativity of the Tate Construction
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Multiplicativity of Tate

Theorem (Nikolaus-Scholze)

Let G be a finite group, and consider the category SpBG of representations of G in spectra.
Then the Tate construction SpBG → Sp is lax symmetric monoidal and equipped with a
lax symmetric monoidal refinement of the natural transformation •hG → •tG. Moreover,
these data are unique up to a contractible space of choices.

Corollary
Given an ∞-operad O, homotopy G-invariants and the Tate construction extend to
functors AlgO(SpBG) → AlgO(Sp), and the natural transformation connecting them
extends to a natural transformation between the extensions.
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Proof Strategy

Carefully re-prove the existence of Verdier quotients by exhibiting explicit
constructions. This helps to understand the localization map C → C/D for D ⊂ C
stable.
Demonstrate further that when C is a stably symmetric monoidal stable ∞-category
and D is a ⊗ ideal, the category C/D has an induced stably symmetric monoidal
structure, and the functor C → C/D is exact symmetric-monoidal.
Moreover, show that this functor is universal among exact lax symmetric monoidal
functors killing D. This universality property gives a way to approximate a lax
symmetric monoidal functor C → E to one killing D when taking maps into a
presentably symmetric monoidal stable ∞-category E .
When G is a finite group, show that the category of spectral G-representations killed
by •tG is a ⊗-ideal.
Exhibit •tG as the image of •hG under the adjunction noted before and the natural
transformation •hg → •tG as the unit of the adjunction.
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Verdier Quotients

Theorem
Let D ⊂ C be a full stable subcategory of a small stable category C. Then the Verdier
quotient C/D is stable and can be constructed as an explicit localization of C at the set of
arrows W in C whose cofibre lies in D. Moreover, by the universal property of
localizations, we have a fully faithful functor C/D → Psh(C), and it follows by an explicit
calculation that this functor factors through an exact functor C/D → Ind(C).
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Proof Sketch

Proof.
The calculation of the spaces C[W−1](x, y) can be performed by appealing to the Yoneda
lemma together with the adjoint functor theorem. By universal property,
C[W−1](x,−) = L(C(x,−), where L is the localization functor left adjoint to the fully
faithful inclusion

ι : Fun(C[W−1],S) ⊆ Fun(C,S).

So we would like to compute the localization functor L. It is a straightforward exercise to
verify that we can take L to be the functor

F 7→ colim
α∈D/x

F(cofib(α)).

Note that D/x is filtered because D is stable, so ι factors through Ind(Cop) (mutatis
mutandis for the opposites). We leave it as an exercise to check that C[W−1] is stable.
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Verdier Quotients, Presentable Desiderata

Corollary
Let E be a presentable stable ∞-category. Then in the situation above, the fully faithful
inclusion functor Funex(C/D, E) ⊆ Funex(C, E) admits a left adjoint obtained by the
composite

Funex(C, E) ' PrL(Ind(C), E) → PrL(Ind(C/D), E) ' Funex(C/D, E),

where the middle functor Ind(C) → Ind(C/D) is induced by the exact functor
C/D → Ind(C).

Proof.
Use the explicit description from the proof of the theorem to demonstrate the
adjunction.
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Verdier Quotients by ⊗-Ideals

Theorem
Let C be a small stably symmetric monoidal stable ∞-category, and let D be a ⊗-ideal.
Then the Verdier quotient map π : C → C/D admits a symmetric monoidal refinement
that equips C/D with a compatible stably symmetric monoidal structure. Moreover, this
functor has the following universal property:
If E is any other stably symmetric monoidal stable ∞-category, then precomposition with
the symmetric monoidal Verdier projection π above induces a fully faithful functor

Funex
lax(C/D, E) ⊆ Funex

lax(C, E)

with essential image given by those lax symmetric monoidal exact functors that kill D.

Proof.
This result is a direct application of a theorem of Hinich combined with the universal
property of Verdier quotients.
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Symmetric Monoidal Verdier Quotients, Presentable Desiderata

Corollary
If E is presentably symmetric monoidal stable, then the fully faithful inclusion

Funex
lax(C/D, E) ⊆ Funex

lax(C, E)

admits a left adjoint reflector given by

Funex
lax(C, E) → Funpres

lax (Ind(C), E) → Funpres
lax (Ind(C/D), E) → Funex

lax(C/D, E).

Proof.
It suffices to check that the induced functor Ind(C/D) → Ind(C) is lax symmetric
monoidal, but this is the case as it is right adjoint to the presentable symmetric monoidal
projection functor Ind(π) : Ind(C) → Ind(C/D). The result now follows by the previous
corollary.
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First Lemma

Lemma
Let G be a finite group, and let SpBG

ind ⊂ SpBG denote the full stable subcategory
generated by the induced G-representations. Then this subcategory is a ⊗-ideal on which
the Tate construction vanishes.
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Proof Sketch

Proof.
Consider the map from the terminal category to BG. Then the induced and coinduced
representations are given by left and right Kan extensions along this map. Using the
conical formula for left and right Kan extensions, we see that the Norm map induced by
this map is an equivalence. By naturality of the norm map, we see that the norm map
xhG → xhG is an equivalence for all induced representations x of G, so the Tate
construction vanishes on them. But the kernel of the Tate construction is stable, so it also
vanishes on the full stable subcategory generated by them.
To see that SpBG

ind is a ⊗-ideal, notice that for any G-representation x, the category of
y ∈ SpBG

ind such that x ⊗ y ∈ SpBG
ind is stable, so we can check on induced representations.

But in this case, we can take a non-equivariant inclusion of a summand z → y and give a
non-equivariant map x ⊗ z → x ⊗ y that extends by adjunction to an equivalence. But this
is a induced G-representation and therefore induced.
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Second Lemma

Lemma
The subcategory SpBG

ind ⊂ SpBG under canonically filtered colimits, that is, the canonical
map

colim
d→x∈SpBG

ind/x

d → x

is an equivalence for all G-representations x.
Finally, for any G-representation x, the canonical map

colim
α∈SpBG

ind/x

(cofib(α)hG → colim
α∈SpBG

ind/x

(cofib(α)tG

is an equivalence.
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Proof Sketch

Proof.
The first claim is proved by an appeal to homotopy groups, since the slice category is
filtered. By taking shifts, it is enough to prove it in the case of π0, so we can check
injectivity and surjectivity. This is left as an exercise.
The second claim follows from the first using the fibre sequence for the Tate construction
pointwise. The coinvariants term vanishes because coinvariants commute with all
colimits.
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Proof of Main Theorem

Proof.
Let C = SpBG and D = SpBG

ind. Then the homotopy invariants functor is a lax symmetric
monoidal exact functor C → Sp. Denote it by F. Since Sp is presentable symmetric
monoidal stable, there exists a universal lax symmetric monoidal functor H : C/D → Sp
such that the restriction to C receives a lax symmetric monoidal transformation
η : F → H|C . Then we must show that H is the Tate construction and η is the cofibre of
the norm map. By the compatibility of the localizations, it suffices to check this without
taking into account monoidal structures. Since the Tate construction is exact, and
vanishes on D, and receives the cofibre of the norm map from F, there exists a universal
map η : H → ·tG. But the explicit computations of the second lemma above together with
the formula for the localization tell us precisely that η is an equivalence.
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The Cp-Tate Tensor Power

Definition
For every prime p, we have a functor ζp : Sp → SpBCp sending a spectrum to its p tensor
power with Cp-action given by cyclic permutation of the factors. Composing this functor
with the Tate construction, we obtain a functor Tp : Sp → Sp.

Lemma
The functor Tp is exact.

Proof.
It suffices to show that Tp preserves extensions. Nikolaus and Scholze first prove it
preserves sums, then for general fibre sequences, they appeal to the associated filtration of
the middle term.
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What filtration?
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Spectral Yoneda Trick

Lemma
If F : Sp → Sp is any exact functor, then a natural transformation idSp → F is determined
up to contractible ambiguity by a choice of map S → F(S).

Proof.
We have

Funex(Sp,Sp) ' Funlex(Sp,S) ⊆ Fun(Sp,S),

with the first map being an equivalence by composition with Ω∞, and the second map
being a full inclusion. But the sphere spectrum corepresents the functor Ω∞, so by
Yoneda, we have that the space of natural transformations

Map(idSp,F) ' Ω∞F(S) ' Sp(S,F(S)).
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The Tate Diagonal

Definition
We define the Tate diagonal to be the natural transformation idSp → Tp corresponding to
the map of spectra.

S → ShCp → Tp(S).
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Note
It can be shown that Tp is a lax symmetric monoidal exact functor. We showed already
that the Tate construction is exact lax symmetric monoidal, but it would remain to show
that the functor C → CBCp sending x 7→ x⊗p with the action given by cyclic permutations
is lax symmetric monoidal. This is not proven in the paper (in fact the construction of this
functor is not given!). It then follows by a theorem of Nikolaus that the identity functor is
the initial exact lax symmetric monoiodal functor Sp → Sp, and the universal lax
symmetric monoidal transformation to Tp is exactly the Tate diagonal.
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