Integral Homotopy Theory Seminar - Week 4

Martin Speirs

May 26, 2020

Outline

Recall on Sp_{G}
Functoriality
Spans
Borel spectra
Tate construction and diagonal in Sp_{G}
Proper Tate construction
Redoing Tate diagonal in Sp_{G}
E_{∞}-Frobenius
Nikolaus-Scholze Frobenius
Examples
Generalized Frobenius
Frobenius action on CAlg
Category \mathcal{Q}
$\mathcal{Q} \circlearrowright \mathrm{CAlg}$

Part 0: Recollections on Sp_{G}.

Recall on Sp_{G}.

Gpd the 2-category of finite groupoids. Finite means $\pi_{0} X$ and $\pi_{1} X$ are finite for $X \in G p d$. Basically $X \simeq \coprod B G_{i}$ for some finite collection of finite groups G_{i}.
Language
Spectra with G-action $=\operatorname{Fun}(B G, S p)$. a.k.a. "Borel"
G-equivariant spectra $=S p_{G}$. a.k.a. "genuine"

Functoriality of $G \mapsto \mathrm{Sp}_{G}$

- Contravariant f^{*} :

1. Restriction: $H \subset G$ gives

$$
\operatorname{res}_{H}^{G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}_{H} .
$$

2. "Trivial" action: $G \rightarrow G / N$ gives

$$
\operatorname{triv}_{G / N}^{G}: \mathrm{Sp}_{G / N} \rightarrow \mathrm{Sp}_{G}
$$

- Covariant g_{\otimes} :

3. Norm: $H \subset G$ gives

$$
N_{H}^{G}: \mathrm{Sp}_{H} \rightarrow \mathrm{Sp}_{G}
$$

4. Geometric fixed points: $G \rightarrow G / N$ gives

$$
\Phi^{N}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}_{G / N}
$$

Three fixed points

Geometric $\phi^{G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}$
Preserves all colimits. And

$$
\Phi^{G}\left(\Sigma^{\infty} S\right)=\Sigma^{\infty}\left(S^{G}\right) \quad \text { "geometry" }
$$

Categorical $(-)^{G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}$
Right adjoint to triv ${ }^{G}$, in particular preserves all limits.
Homotopy $(-)^{h G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}$
$X^{h G}=\lim _{B G} X$. Where $X \in \operatorname{Fun}(B G, S p)$. Only depends on underlying spectrum with G-action.

Spans

Theorem
There is a functor

$$
\psi: \operatorname{Span}(G p d) \rightarrow \text { Cat }_{\infty}
$$

sending a finite groupoid X to Sp^{X}. For $X=B G$ have $S_{p}{ }^{B G}=S p_{G}$. A span

is sent to the functor $g_{\otimes} f^{*}: \mathrm{Sp}^{X} \rightarrow \mathrm{Sp}^{Y}$.

Refinement

Refinement

The category Glo^{+}: objects are still finite groupoids. Morphisms from X to Y are finite covering maps $M \rightarrow X \times Y$. Composition with $N \rightarrow Y \times Z$, given by factorization

$$
M \times_{Y} N \rightarrow T \rightarrow X \times Z
$$

where first map has connected fibers and second is finite covering. Have factorization

$$
\mathrm{Span}(\mathrm{Gpd}) \xrightarrow{\pi} \mathrm{Glo}^{+} \xrightarrow{\psi^{+}} \mathrm{Cat}_{\infty}
$$

Spans - Examples

Restriction
For $H \subset G$ the span

induces the functor $f^{*}=\operatorname{res}_{H}^{G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}_{H}$.
Geometric fixed points
For $G \rightarrow G / N$ the span

induces the functor $g_{\otimes}=\Phi^{N}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}_{G / N}$.

Spans - Examples 2

Composition of spans lead to relations between functors.

The composite

encodes the relation

$$
\operatorname{res}_{e}^{C_{p}} \circ N_{e}^{C_{p}}=(-)^{\otimes p}
$$

Spans - Examples 3

The composite in Glo^{+}

encodes the relation

$$
\Phi^{C_{P}} \circ \operatorname{triv}^{C_{P}}=i d
$$

Note than in Span(Gpd) this would give the span $* \leftarrow B C_{p} \rightarrow *$ instead. But in Glo^{+}we use the factorization

$$
B C_{p} \rightarrow * \rightarrow * \times *=*
$$

of connected fibers followed by finite cover ("finite cover" means potentially non-surjective).

Spans - Examples 4

Let $H \subset G$. The composite

encodes the relation

$$
\Phi^{G} \circ N_{H}^{G}=\Phi^{G}
$$

In particular

$$
\Phi^{G} \circ N^{G}=i d .
$$

Example: Genuine C_{p}-spectra

Genuine C_{p}-spectra
Giving $E \in S p_{C_{p}}$ is equivalent to giving a triple (E_{0}, E_{1}, f) where:

1. $E_{0} \in \operatorname{Fun}\left(B C_{p}, S p\right)$ "is" the underlying spectrum with C_{p}-action.
2. $E_{1} \in S p$ "is" the geometric fixed points $\phi^{C_{p}} E$.
3. $f: E_{1} \rightarrow E_{0}^{t C_{p}}$ is a map of spectra.

Recovring fixed points

The categorical fixed points $E^{C_{p}} \in \operatorname{Sp}$ of $E=\left(E_{0}, E_{1}, f\right)$ may be recovered as the following pullback

Borel and Borelification

Proposition

Have a forgetful-cofree adjunction

$$
U: \mathrm{Sp}_{G} \rightleftharpoons \operatorname{Fun}(B G, \mathrm{Sp}): r_{G}
$$

Where the right adjoint is fully faithful.

Definitions

- The essential image $S p_{G}^{B o r e l} \subset S p_{G}$ of r_{G} is (by definition) the subcategory of Borel G-spectra.
- The composite

$$
\beta=\beta_{G}: \operatorname{Sp}_{G} \rightarrow \operatorname{Fun}(B G, S p) \rightarrow \operatorname{Sp}_{G}
$$

is called the Borelification. The unit gives a natural transformation id $\rightarrow \beta$.

Borel and Borelification, proof

Proposition

Have a forgetful/cofree adjunction

$$
U: S_{p_{G}} \rightleftharpoons \operatorname{Fun}(B G, S p): r_{G}
$$

Where the right adjoint is fully faithful.

Proof sketch

Choose point-set model $\widetilde{\mathrm{Sp}_{G}}$ for Sp_{G} and choose free contractible G-space $E G$. Define

$$
\widetilde{\beta}: \widetilde{\mathrm{Sp}_{G}} \rightarrow \widetilde{\mathrm{Sp}_{G}} \quad X \mapsto \operatorname{Map}(E G, X)
$$

Check that this factors through subcategory of Borel G-spectra (i.e. spectra where $(-)^{H}=(-)^{h H}$ for all subgroups H). Also have natural transformation id $\rightarrow \tilde{\beta}$ given by const : $X \rightarrow \operatorname{Map}(E G, X)$. Check that this descends to ∞-categories, to give $\beta: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}_{G}$ which is "idempotent". Now Lurie [5.2.7.4] tells us this is a localization (with fully faithful right adjoint).

Part 1: Tate diagonal in Sp_{G}.

Recall: Tate construction and diagonal

- G finite group, and $X \in \operatorname{Fun}(B G, S p)$. Have norm map

$$
N m: X_{h G} \rightarrow X^{h G}
$$

and define $X^{t G}$ as the cofiber. So have cofiber sequence

$$
X_{h G} \rightarrow X^{h G} \rightarrow X^{t G}
$$

- For $G=C_{p}$, have "Tate diagonal"

$$
\Delta_{p}: X \rightarrow\left(X^{\otimes p}\right)^{t C_{p}}
$$

Defined using "Yoneda trick". Used that

$$
X \mapsto\left(X^{\otimes p}\right)^{t C_{p}}
$$

is exact (by binomial formula).

- This is special feature of spectra. There is no such (lax sym. mon.) non-zero map in $D(\mathbb{Z})$.

Geometric fixed points and Tate construction

Proposition

Let $E \in \operatorname{Sp}_{C_{P}}$. Then $E^{t C_{p}} \simeq \Phi^{C_{p}}(\beta E)$.
Proof sketch: Using isotropy separation sequence and Adam's isomorphism one always has a fiber sequence:

$$
X_{h C_{p}} \rightarrow X^{C_{p}} \rightarrow \Phi^{C_{p}} X
$$

Now apply this to $X=\beta E$ and compare with the fiber sequence defining $E^{t G}$. Use that $(\beta E)^{C_{p}} \simeq(\beta E)^{h C_{p}}$.

Definition

Let $E \in \mathrm{Sp}_{G}$. The proper Tate construction $E^{\tau G}$ is defined as $\Phi^{G}(\beta E)$.

$$
(-)^{\tau G}: \mathrm{Sp}_{G} \rightarrow \mathrm{Sp}
$$

admits lax symmetric monoidal structure, since both Φ^{G} and β do.

Norm and Tate diagonal

G finite, $E \in \operatorname{Sp}_{G}$. Have norm $N^{G}: S p \rightarrow \operatorname{Sp}_{G}$ and unit $E \rightarrow \beta E$ in $S p_{G}$. Get

$$
N^{G}(-) \rightarrow \beta N^{G}(-) .
$$

Applying Φ^{G}, get the composite

$$
\Delta^{G}: X \simeq \Phi^{G} N^{G}(X) \rightarrow \Phi^{G}\left(\beta N^{G}(X)\right) \simeq\left(X^{\otimes G}\right)^{\tau G}
$$

This agrees with the Tate diagonal $X \rightarrow\left(X^{\otimes p}\right)^{t C_{p}}$ when $G=C_{p}$.
Definition
The above composition defines the Tate diagonal for G

$$
\Delta^{G}:(-) \rightarrow\left((-)^{\otimes G}\right)^{\tau G}: S p \rightarrow S p .
$$

Part 2: The \mathbb{E}_{∞}-Frobenius

Frobenius

Fix prime p.
For discrete ring R have two maps

$$
\operatorname{can}: R \rightarrow R / p \quad x \mapsto x \quad(\bmod p)
$$

and

$$
\phi: R \rightarrow R / p \quad x \rightarrow x^{p} \quad(\bmod p)
$$

which is also ring homomorphism:

$$
(x+y)^{p}=x^{p}+y^{p} \quad(\bmod p)
$$

using the binomial formula.

\mathbb{E}_{∞}-Frobenius

Likewise for $A \in$ CAlg...
Definition
Let $A \in \mathrm{CAlg}$. The \mathbb{E}_{∞}-Frobenius on A, is the ring-map ϕ_{p} defined as the composition

$$
\phi_{p}: A \xrightarrow{\Delta_{p}}\left(A^{\otimes p}\right)^{t C_{p}} \xrightarrow{m u l t_{A}} A^{t C_{p}}
$$

of Tate diagonal with multiplication in A.
Also have a canonical map

$$
\text { can : } A \longrightarrow A^{h C_{p}} \longrightarrow A^{t C_{p}}
$$

Both maps are rings maps.

Frobenius on Eilenberg-Mac Lane

Discrete rings
Let $A=H R \in$ CAlg for discrete ring R and $\phi_{p}: H R \rightarrow(H R)^{t C_{p}}$ be the \mathbb{E}_{∞}-Frobenius. Then

$$
\pi_{0}\left(\phi_{p}\right): R \simeq \pi_{0}(H R) \rightarrow \pi_{0}\left(H R^{t C_{p}}\right) \simeq R / p
$$

is the ordinary Frobenius $x \mapsto x^{p}(\bmod p)$.

Frobenius and Steenrod squares

The \mathbb{E}_{∞}-Frobenius ϕ does induce the ordinary Frobenius on π_{0}. But converse is not true: Consider $\mathbb{F}_{2}=H \mathbb{F}_{2}$ with trivial C_{2}-action. Then

$$
\pi_{*}\left(\mathbb{F}_{2}^{t C_{2}}\right) \simeq \hat{H}^{*}\left(C_{2}, \mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}((s)) \quad s \in \pi_{1}
$$

Get spectrum level splitting:

$$
\mathbb{F}_{2}^{t C_{2}} \simeq \prod_{n \in \mathbb{Z}} \Sigma^{n} \mathbb{F}_{2}
$$

Theorem (Nikolaus-Scholze)
The \mathbb{E}_{∞}-Frobenius $\phi: \mathbb{F}_{2} \rightarrow\left(\mathbb{F}_{2}\right)^{t C_{2}}$ is the product of all non-negative Steenrod squares $s q^{n}: \mathbb{F}_{2} \rightarrow \Sigma^{n} \mathbb{F}_{2}$ for $n \geq 0$.

Frobenius and Segal conjecture

Segal's conjecture for C_{p} may be phrased as the following theorem.
Theorem (Gunawardena, Lin)
For $A=\mathbb{S}$ both maps can, $\phi_{p}: \mathbb{S} \rightarrow \mathbb{S}^{t C_{p}}$ exhibit $\mathbb{S}^{t C_{p}}$ as the p-completion of \mathbb{S}.

Remark
Once one has the theorem for can then it follows for ϕ_{p}, by multiplicativity. Indeed both can and ϕ_{p} are \mathbb{S}-algebra maps, hence can $=\phi_{p}$.

Frobenius and Adams op's

Consider $A=\mathrm{KU}$ the periodic complex K-theory spectrum, equipped with trivial C_{2}-action. Recall that $\pi_{*} K U \simeq \mathbb{Z}\left[\beta^{ \pm 1}\right]$. Can show

$$
\pi_{*}\left(\mathrm{KU}^{t C_{p}}\right) \simeq \pi_{*}(\mathrm{KU})((t)) /\left((t+1)^{p}-1\right) \simeq \pi_{*} \mathrm{KU} \otimes \mathbb{Q}_{p}\left(\zeta_{p}\right)
$$

Theorem (Nikolaus-Scholze)
Suppose X a retract of finite CW-complex. Then Frobenius $\phi_{p}: \mathrm{KU} \rightarrow \mathrm{KU}^{t C_{p}}$ induces the map

$$
\mathrm{KU}^{0}(X) \rightarrow \mathrm{KU}^{0}(X) \otimes \mathbb{Q}_{p} \quad V \mapsto \psi^{p}(V)
$$

where $\psi^{p}=p$-th Adams operation.

Complements on Frobenius and Power operations

Nikolaus and Scholze use similar strategy to identify both $\phi_{2}: \mathbb{F}_{2} \rightarrow\left(\mathbb{F}_{2}\right)^{t C_{2}}$ and $\phi_{p}: \mathrm{KU} \rightarrow \mathrm{KU}^{t C_{p}}$. Let $A \in \mathrm{CAlg}$. Their strategy is to reduce to identifying action of ϕ_{p} on associated cohomology theory $A^{*}(X)=\left[\Sigma^{-*} X, A\right]$ in terms of power operations. Power operations are stable operations on multiplicative cohomology which are constructed from the space level diagonal.

Proposition

For $X=\Sigma_{+}^{\infty} Y$ there is a unique (lax sym. mon.) factorization

$$
X \xrightarrow{\Sigma_{+}^{\infty} \Delta}(X \otimes \cdots \otimes X)^{t C_{p}}
$$

Frobenius and Power operations, 2

Proposition

For $X=\Sigma_{+}^{\infty} Y$ there is a unique (lax sym. mon.) factorization

$$
X \xrightarrow{\Sigma_{+}^{\infty} \Delta}(X \otimes \cdots \otimes X)^{t C_{p}}
$$

Proof: By a theorem of Nikolaus, $\Sigma_{+}^{\infty}: S p c \rightarrow S p$ is initial lax sym. mon. functor between the two categories. Since all three functors are lax. sym. mon. it follows that the diagram commutes.

Frobenius and Power operations, 3

Corollary

For an \mathbb{E}_{∞}-ring A, the map

$$
\Omega^{\infty} \phi_{p}: \Omega^{\infty} A \rightarrow\left(\Omega^{\infty} A^{t C_{p}}\right)^{h \mathbb{F}_{p}^{\times}}
$$

factors as

$$
\Omega^{\infty} A \xrightarrow{\Delta}\left(\left(\Omega^{\infty} A\right)^{\times p}\right)^{h \Sigma_{p}} \xrightarrow{\text { mult }}\left(\Omega^{\infty} A\right)^{h \Sigma_{p} \xrightarrow{c a n}}\left(\Omega^{\infty} A^{t C_{p}}\right)^{h \mathbb{F}_{p}^{\times}}
$$

Here the composite

$$
P_{p}: \Omega^{\infty} A \xrightarrow{\Delta}\left(\left(\Omega^{\infty} A\right)^{\times p}\right)^{h \Sigma_{p} \xrightarrow{m u l t}}\left(\Omega^{\infty} A\right)^{h \Sigma_{p}}
$$

is the power operation.
(For more details, see Nikolaus-Scholze section IV.1)

Part 3: The generalized \mathbb{E}_{∞}-Frobenius

Generalized Frobenius - the idea

Let $A \in \mathrm{CAlg}$ be an \mathbb{E}_{∞}-algebra, and G a finite group. The \mathbb{E}_{∞}-multiplication on A gives a map

$$
A^{\otimes G} \rightarrow A
$$

of spectra with G-action. Where $A^{\otimes G}$ is the underlying spectrum of $N^{G} A$. Since βA is cofree on A (as a spectrum with trivial G-action) we get an induced map

$$
N^{G} A \rightarrow \beta A .
$$

Applying Φ^{G} gives a map

$$
\phi^{G}: A \simeq \Phi^{G} N^{G} A \rightarrow \Phi^{G} \beta A \simeq A^{\tau G}
$$

Which is called the generalized Frobenius map.

Generalized Frobenius - more detail

The underlying spectrum of $N^{G} A$ is just $A^{\otimes G}$ (the G-indexed tensor product). The \mathbb{E}_{∞}-multiplication on A then gives a map

$$
A^{\otimes G} \rightarrow A
$$

of spectra with G-action. I.e. it is a map

$$
U_{G} N^{G} A \rightarrow U_{G} \operatorname{triv}^{G} A
$$

Now, β triv ${ }^{G} A=r_{G}\left(U_{G} \operatorname{triv}^{G} A\right)$ is the cofree genuine G-spectrum on $U_{G} \operatorname{triv}^{G} A$. So the above map (from the underlying spectrum of a genuine G-spectrum) induces a map

$$
N^{G} A \rightarrow \beta \operatorname{triv}^{G} A
$$

Applying Φ^{G} gives a map

$$
\phi^{G}: A \simeq \Phi^{G} N^{G} A \rightarrow \Phi^{G} \beta \text { triv }{ }^{G} A \simeq A^{\tau G}
$$

Which is called the generalized Frobenius map.

Even more generalized Frobenius

As before, but now given $H \subset G$ a subgroup. The \mathbb{E}_{∞}-multiplication on A gives a map

$$
A^{\otimes G / H} \rightarrow A
$$

of spectra with G-action. Where $A^{\otimes G / H}$ is the underlying spectrum of $N_{H}^{G} \beta_{H}$ triv $^{H} A$. Since $\beta_{G} A$ is cofree on A (as a spectrum with trivial G-action) we get an induced map

$$
N_{H}^{G} \beta_{H} \text { triv }^{H} A \rightarrow \beta_{G} A
$$

Applying Φ^{G} gives a map

$$
\phi_{H}^{G}: A^{\tau H} \simeq \Phi^{H} \beta_{H} \text { triv }^{H} A \simeq \Phi^{G} N_{H}^{G} \beta_{H} \text { triv }^{H} A \rightarrow \Phi^{G} \beta_{G} A \simeq A^{\tau G}
$$

Which is called the generalized Frobenius map.

Generalized canonical map

Let A be any spectrum (e.g an \mathbb{E}_{∞}-ring). Let $G \rightarrow K$ surjection of finite groups. Have

$$
\operatorname{triv}_{K}^{G} \beta_{K} \text { triv }^{K} A \rightarrow \beta_{G} \operatorname{triv}^{G} A
$$

applying Φ^{G} get

$$
A^{\tau K} \simeq \Phi^{K} \beta_{K} \operatorname{triv}^{K} A \simeq \Phi^{G} \operatorname{triv}_{K}^{G} \beta_{K} \operatorname{triv}^{K} A \rightarrow \Phi^{G} \beta_{G} \operatorname{triv}^{G} A \simeq A^{\tau G}
$$

i.e. a map

$$
\operatorname{can}_{K}^{G}: A^{\tau K} \rightarrow A^{\tau G}
$$

called the generalized canonical map.
Remark
When A is an \mathbb{E}_{∞}-ring, can $_{K}^{G}$ is multiplicative.

Special case

When $H=e \subset G$ is trivial subgroup, $\phi_{H}^{G}=\phi^{G}$ is the composite of Tate diagonal with multiplication

$$
\phi^{G}: A \rightarrow\left(A^{\otimes G}\right)^{\tau G} \rightarrow A^{\tau G}
$$

In particular for $G=C_{p}$ recover the Nikolaus-Scholze Frobenius.

Part 4: The Frobenius action on CAlg

The category \mathcal{Q}

FinGrp $\stackrel{\text { def }}{=}$ category of finite groups. Then,

$$
\mathcal{Q} \stackrel{\text { def }}{=} \text { Quillen's Q-construction on FinGrp }
$$

except, FinGrp is not an exact category...
Official definition
The symmetric monoidal 1 -category \mathcal{Q} has

- Objects: finite groups
- Morphism: from H to G : (surjection,injection)-spans $H \longleftarrow K \hookrightarrow G$
- Composition: usual composition of spans
- Symmetric monoidal structue: Cartesian product

Integral Forbenius action

Theorem A^{\sharp} (Yuan)
There is an oplax monoidal functor

$$
\mathcal{Q} \rightarrow \text { Fun(CAlg, CAlg) }
$$

such that

1. $G \in \mathcal{Q}$ acts by the proper Tate construction $(-)^{\tau G}$.
2. A surjection $(K \longleftarrow G=G)$ is sent to the canonical transformation

$$
\operatorname{can}_{K}^{G}:(-)^{\tau K} \longrightarrow(-)^{\tau G} .
$$

3. An injection $(H=H \hookrightarrow G)$ is sent to the Frobenius

$$
\phi_{H}^{G}:(-)^{\tau H} \longrightarrow(-)^{\tau G} .
$$

Oplax monoidal?

Giving a $F: C \rightarrow D$ between monoidal an oplax structure means giving suitably compatible maps

$$
F\left(c \otimes_{c} c^{\prime}\right) \rightarrow F(c) \otimes_{D} F\left(c^{\prime}\right)
$$

In particular the oplax'ness of

$$
\mathcal{Q} \rightarrow \operatorname{Fun}(\mathrm{CAlg}, \mathrm{CAlg})
$$

means we have suitably compatible transformations

$$
(-)^{\tau(G \times H)} \longrightarrow\left((-)^{\tau H}\right)^{\tau G}
$$

for all finite groups G, H.
See Remark 3.14 for explicit construction.

Baby application

Suppose $A \in$ CAlg is p-complete and that

$$
\begin{align*}
\operatorname{can}^{C_{p}} & : A \rightarrow A^{\tau C_{p}} \tag{3}\\
\operatorname{can}_{p} \times C_{p} & : A \rightarrow A^{\tau C_{p} \times C_{p}} \tag{4}\\
\phi_{p} & : A \rightarrow A^{\tau C_{p}} \tag{5}
\end{align*}
$$

are equivalences. Then may conclude that also

$$
\phi^{C_{p} \times C_{p}}: A \rightarrow A^{\tau C_{p} \times C_{p}}
$$

is an equivalence.
Proof: Have a commutative diagram

Easy to show that iterated ϕ_{p} and can are equivalences. Thus all outer arrows, except $\phi^{C_{p} \times C_{p}}$, are equivalences, hence it is too.

