Integral Homotopy Theory Seminar - Week 4

Martin Speirs

May 26, 2020

Outline

Recall on Sp_G

Functoriality Spans Borel spectra

Tate construction and diagonal in Sp_{G}

Proper Tate construction Redoing Tate diagonal in Sp_G

E_{∞} -Frobenius

Nikolaus-Scholze Frobenius Examples Generalized Frobenius

Frobenius action on CAlg

 $\begin{array}{c} \mathsf{Category} \ \mathcal{Q} \\ \mathcal{Q} \circlearrowright \mathsf{CAlg} \end{array}$

Part 0: Recollections on Sp_G .

Recall on Sp_G .

Gpd the 2-category of finite groupoids. Finite means $\pi_0 X$ and $\pi_1 X$ are finite for $X \in$ Gpd. Basically $X \simeq \coprod BG_i$ for some finite collection of finite groups G_i .

Language

Spectra with G-action = Fun(BG, Sp). a.k.a. "Borel" G-equivariant spectra = Sp_G. a.k.a. "genuine"

Functoriality of $G \mapsto Sp_G$

Contravariant f*:
 1. Restriction: H ⊂ G gives

$$\operatorname{res}_H^G : \operatorname{Sp}_G \to \operatorname{Sp}_H$$
.

2. "Trivial" action: $G \rightarrow G/N$ gives

$$triv_{G/N}^G: \operatorname{Sp}_{G/N} o \operatorname{Sp}_G.$$

• Covariant g_{\otimes} :

3. Norm: $H \subset G$ gives

$$N_H^G : \operatorname{Sp}_H \to \operatorname{Sp}_G$$
.

4. Geometric fixed points: $G \twoheadrightarrow G/N$ gives

$$\Phi^N : \operatorname{Sp}_G \to \operatorname{Sp}_{G/N}$$

Three fixed points

Geometric $\Phi^G : \operatorname{Sp}_G \to \operatorname{Sp}$

Preserves all colimits. And

$$\Phi^G(\Sigma^\infty S) = \Sigma^\infty(S^G)$$
 "geometry"

Categorical $(-)^{G} : Sp_{G} \rightarrow Sp$

Right adjoint to *triv^G*, in particular preserves all limits.

Homotopy $(-)^{hG}: \operatorname{Sp}_G \to \operatorname{Sp}$

 $X^{hG} = \lim_{BG} X$. Where $X \in Fun(BG, Sp)$. Only depends on underlying spectrum with *G*-action.

Spans

Theorem There is a functor

$$\Psi$$
 : Span(Gpd) \rightarrow Cat _{∞}
sending a finite groupoid X to Sp^X. For $X = BG$ have
Sp^{BG} = Sp_G. A span

is sent to the functor $g_{\otimes}f^*: \operatorname{Sp}^X \to \operatorname{Sp}^Y$.

Refinement

Refinement

The category Glo⁺: objects are still finite groupoids. Morphisms from X to Y are finite covering maps $M \rightarrow X \times Y$. Composition with $N \rightarrow Y \times Z$, given by factorization

$$M \times_Y N \to T \to X \times Z$$

where first map has connected fibers and second is finite covering. Have factorization

$$\mathsf{Span}(\mathsf{Gpd}) \xrightarrow{\pi} \mathsf{Glo}^+ \xrightarrow{\Psi^+} \mathsf{Cat}_{\infty}$$

Restriction For $H \subset G$ the span

induces the functor $f^* = \operatorname{res}_H^G : \operatorname{Sp}_G \to \operatorname{Sp}_H$.

Geometric fixed points For $G \rightarrow G/N$ the span

induces the functor $g_{\otimes} = \Phi^N : \operatorname{Sp}_G \to \operatorname{Sp}_{G/N}$.

Composition of spans lead to relations between functors.

The composite

encodes the relation

$$\mathit{res}_e^{\mathcal{C}_p} \circ \mathcal{N}_e^{\mathcal{C}_p} = (-)^{\otimes p}$$

The composite in Glo^+

encodes the relation

$$\Phi^{C_p} \circ triv^{C_p} = id$$

Note than in Span(Gpd) this would give the span $* \leftarrow BC_p \rightarrow *$ instead. But in Glo⁺ we use the factorization

$$BC_p \to * \to * \times * = *$$

of connected fibers followed by finite cover ("finite cover" means potentially non-surjective).

Let $H \subset G$. The composite

encodes the relation

$$\Phi^G \circ N_H^G = \Phi^G$$

In particular

 $\Phi^G \circ N^G = id$

Example: Genuine C_p -spectra

Genuine C_p -spectra

Giving $E \in \operatorname{Sp}_{C_p}$ is equivalent to giving a triple (E_0, E_1, f) where:

- 1. $E_0 \in Fun(BC_p, Sp)$ "is" the underlying spectrum with C_p -action.
- 2. $E_1 \in Sp$ "is" the geometric fixed points $\Phi^{C_p}E$.
- 3. $f: E_1 \to E_0^{tC_p}$ is a map of spectra.

Recovring fixed points

The categorical fixed points $E^{C_p} \in \text{Sp of } E = (E_0, E_1, f)$ may be recovered as the following pullback

Borel and Borelification

Proposition

Have a forgetful-cofree adjunction

```
U: \operatorname{Sp}_G \rightleftharpoons \operatorname{Fun}(BG, \operatorname{Sp}): r_G
```

Where the right adjoint is fully faithful.

Definitions

- The essential image Sp^{Borel}_G ⊂ Sp_G of r_G is (by definition) the subcategory of Borel G-spectra.
- The composite

$$\beta = \beta_{G} : \operatorname{Sp}_{G} \to \operatorname{Fun}(BG, \operatorname{Sp}) \to \operatorname{Sp}_{G}$$

is called the *Borelification*. The unit gives a natural transformation $id \rightarrow \beta$.

Borel and Borelification, proof

Proposition

Have a forgetful/cofree adjunction

 $U: \operatorname{Sp}_G \rightleftharpoons \operatorname{Fun}(BG, \operatorname{Sp}): r_G$

Where the right adjoint is fully faithful.

Proof sketch

Choose point-set model \widetilde{Sp}_G for Sp_G and choose free contractible *G*-space *EG*. Define

$$\widetilde{\beta}: \widetilde{\operatorname{Sp}_{G}} \to \widetilde{\operatorname{Sp}_{G}} \quad X \mapsto \operatorname{Map}(EG, X)$$

Check that this factors through subcategory of Borel *G*-spectra (i.e. spectra where $(-)^H = (-)^{hH}$ for all subgroups *H*). Also have natural transformation $id \rightarrow \tilde{\beta}$ given by $const : X \rightarrow Map(EG, X)$. Check that this descends to ∞ -categories, to give $\beta : Sp_G \rightarrow Sp_G$ which is "idempotent". Now Lurie [5.2.7.4] tells us this is a localization (with fully faithful right adjoint).

Part 1: Tate diagonal in Sp_G .

Recall: Tate construction and diagonal

• G finite group, and $X \in Fun(BG, Sp)$. Have norm map

 $Nm: X_{hG} \rightarrow X^{hG}$

and define X^{tG} as the cofiber. So have cofiber sequence

$$X_{hG} \to X^{hG} \to X^{tG}.$$

For $G = C_p$, have "Tate diagonal"

 $\Delta_p:X\to (X^{\otimes p})^{tC_p}$

Defined using "Yoneda trick". Used that

 $X\mapsto (X^{\otimes p})^{tC_p}$

is exact (by binomial formula).

► This is special feature of spectra. There is no such (lax sym. mon.) non-zero map in D(Z).

Geometric fixed points and Tate construction

Proposition

Let
$$E \in \operatorname{Sp}_{C_p}$$
. Then $E^{tC_p} \simeq \Phi^{C_p}(\beta E)$.

Proof sketch: Using isotropy separation sequence and Adam's isomorphism one always has a fiber sequence:

$$X_{hC_p} \to X^{C_p} \to \Phi^{C_p} X$$

Now apply this to $X = \beta E$ and compare with the fiber sequence defining E^{tG} . Use that $(\beta E)^{C_p} \simeq (\beta E)^{hC_p}$.

Definition

Let $E \in \text{Sp}_G$. The proper Tate construction $E^{\tau G}$ is defined as $\Phi^G(\beta E)$.

$$(-)^{\tau G} : \operatorname{Sp}_G \to \operatorname{Sp}$$

admits lax symmetric monoidal structure, since both Φ^{G} and β do.

Norm and Tate diagonal

G finite, $E \in \text{Sp}_G$. Have norm $N^G : \text{Sp} \to \text{Sp}_G$ and unit $E \to \beta E$ in Sp_G . Get

$$N^{G}(-) \rightarrow \beta N^{G}(-).$$

Applying Φ^{G} , get the composite

$$\Delta^G: X \simeq \Phi^G N^G(X) \to \Phi^G(\beta N^G(X)) \simeq (X^{\otimes G})^{\tau G}$$

This agrees with the Tate diagonal $X \to (X^{\otimes p})^{tC_p}$ when $G = C_p$. Definition

The above composition defines the Tate diagonal for G

$$\Delta^{\mathcal{G}}: (-)
ightarrow ((-)^{\otimes \mathcal{G}})^{ au \mathcal{G}}: \mathsf{Sp}
ightarrow \mathsf{Sp}$$
 .

Part 2: The \mathbb{E}_{∞} -Frobenius

Frobenius

Fix prime p. For discrete ring R have two maps

$$\operatorname{can}: R \to R/p \qquad x \mapsto x \pmod{p}$$

and

$$\phi: R \to R/p \qquad x \to x^p \pmod{p}$$

which is also ring homomorphism:

$$(x+y)^p = x^p + y^p \pmod{p}$$

using the binomial formula.

$\mathbb{E}_\infty\text{-}\mathsf{Frobenius}$

Likewise for $A \in CAlg...$

Definition

Let $A \in CAlg$. The \mathbb{E}_{∞} -Frobenius on A, is the ring-map ϕ_p defined as the composition

$$\phi_{p}: A \stackrel{\Delta_{p}}{\longrightarrow} (A^{\otimes p})^{tC_{p}} \stackrel{mult_{A}}{\longrightarrow} A^{tC_{p}}$$

of Tate diagonal with multiplication in *A*. Also have a canonical map

$$\mathsf{can}: A \longrightarrow A^{hC_p} \longrightarrow A^{tC_p}$$

Both maps are rings maps.

Frobenius on Eilenberg-Mac Lane

Discrete rings

Let $A = HR \in CAlg$ for discrete ring R and $\phi_p : HR \to (HR)^{tC_p}$ be the \mathbb{E}_{∞} -Frobenius. Then

$$\pi_0(\phi_p): R \simeq \pi_0(HR) \to \pi_0(HR^{tC_p}) \simeq R/p$$

is the ordinary Frobenius $x \mapsto x^p \pmod{p}$.

Frobenius and Steenrod squares

The \mathbb{E}_{∞} -Frobenius ϕ does induce the ordinary Frobenius on π_0 . But converse is not true: Consider $\mathbb{F}_2 = H\mathbb{F}_2$ with trivial C_2 -action. Then

$$\pi_*(\mathbb{F}_2^{t\mathcal{C}_2})\simeq \hat{H}^*(\mathcal{C}_2,\mathbb{F}_2)\simeq \mathbb{F}_2((s)) \qquad \quad s\in\pi_1$$

Get spectrum level splitting:

$$\mathbb{F}_2^{tC_2} \simeq \prod_{n \in \mathbb{Z}} \Sigma^n \mathbb{F}_2$$

Theorem (Nikolaus-Scholze)

The \mathbb{E}_{∞} -Frobenius $\phi : \mathbb{F}_2 \to (\mathbb{F}_2)^{tC_2}$ is the product of all non-negative Steenrod squares $sq^n : \mathbb{F}_2 \to \Sigma^n \mathbb{F}_2$ for $n \ge 0$.

Frobenius and Segal conjecture

Segal's conjecture for C_p may be phrased as the following theorem.

Theorem (Gunawardena, Lin)

For $A = \mathbb{S}$ both maps can, $\phi_p : \mathbb{S} \to \mathbb{S}^{tC_p}$ exhibit \mathbb{S}^{tC_p} as the *p*-completion of \mathbb{S} .

Remark

Once one has the theorem for can then it follows for ϕ_p , by multiplicativity. Indeed both can and ϕ_p are S-algebra maps, hence can = ϕ_p .

Frobenius and Adams op's

Consider A = KU the periodic complex K-theory spectrum, equipped with trivial C_2 -action. Recall that $\pi_* KU \simeq \mathbb{Z}[\beta^{\pm 1}]$. Can show

$$\pi_*(\mathsf{KU}^{t\mathcal{C}_p})\simeq \pi_*(\mathsf{KU})((t))/((t+1)^p-1)\simeq \pi_*\operatorname{KU}\otimes \mathbb{Q}_p(\zeta_p).$$

Theorem (Nikolaus-Scholze)

Suppose X a retract of finite CW-complex. Then Frobenius $\phi_p: \mathrm{KU} \to \mathrm{KU}^{tC_p}$ induces the map

$$\mathsf{KU}^0(X) \to \mathsf{KU}^0(X) \otimes \mathbb{Q}_p \qquad V \mapsto \psi^p(V)$$

where $\psi^{p} = p$ -th Adams operation.

Complements on Frobenius and Power operations

Nikolaus and Scholze use similar strategy to identify both $\phi_2 : \mathbb{F}_2 \to (\mathbb{F}_2)^{tC_2}$ and $\phi_p : \mathsf{KU} \to \mathsf{KU}^{tC_p}$. Let $A \in \mathsf{CAlg}$. Their strategy is to reduce to identifying action of ϕ_p on associated cohomology theory $A^*(X) = [\Sigma^{-*}X, A]$ in terms of *power operations*. Power operations are stable operations on multiplicative cohomology which are constructed from the *space level* diagonal.

Proposition

For $X = \Sigma^{\infty}_{+} Y$ there is a unique (lax sym. mon.) factorization

Frobenius and Power operations, 2

Proposition

For $X = \Sigma^{\infty}_{+} Y$ there is a unique (lax sym. mon.) factorization

Proof: By a theorem of Nikolaus, Σ^{∞}_+ : Spc \rightarrow Sp is initial lax sym. mon. functor between the two categories. Since all three functors are lax. sym. mon. it follows that the diagram commutes.

Frobenius and Power operations, 3

Corollary For an \mathbb{E}_{∞} -ring A, the map

$$\Omega^{\infty}\phi_{p}:\Omega^{\infty}A\to (\Omega^{\infty}A^{tC_{p}})^{h\mathbb{F}_{p}^{\times}}$$

factors as

$$\Omega^{\infty}A \xrightarrow{\Delta} ((\Omega^{\infty}A)^{\times p})^{h\Sigma_{p}} \xrightarrow{mult} (\Omega^{\infty}A)^{h\Sigma_{p}} \xrightarrow{can} (\Omega^{\infty}A^{tC_{p}})^{h\mathbb{F}_{p}^{\times}}$$

Here the composite

$$P_{p}: \Omega^{\infty}A \xrightarrow{\Delta} ((\Omega^{\infty}A)^{\times p})^{h\Sigma_{p}} \xrightarrow{mult} (\Omega^{\infty}A)^{h\Sigma_{p}}$$

is the power operation. (For more details, see Nikolaus-Scholze section IV.1)

Part 3: The generalized \mathbb{E}_{∞} -Frobenius

Generalized Frobenius - the idea

Let $A \in CAlg$ be an \mathbb{E}_{∞} -algebra, and G a finite group. The \mathbb{E}_{∞} -multiplication on A gives a map

$$A^{\otimes G} \to A$$

of spectra with *G*-action. Where $A^{\otimes G}$ is the underlying spectrum of $N^G A$. Since βA is cofree on *A* (as a spectrum with trivial *G*-action) we get an induced map

$$N^{G}A \rightarrow \beta A.$$

Applying Φ^G gives a map

$$\phi^{G}: A \simeq \Phi^{G} N^{G} A \to \Phi^{G} \beta A \simeq A^{\tau G}$$

Which is called the generalized Frobenius map.

Generalized Frobenius - more detail

The underlying spectrum of $N^G A$ is just $A^{\otimes G}$ (the *G*-indexed tensor product). The \mathbb{E}_{∞} -multiplication on *A* then gives a map

 $A^{\otimes G} \to A$

of spectra with G-action. I.e. it is a map

$$U_G N^G A o U_G triv^G A$$

Now, $\beta triv^G A = r_G(U_G triv^G A)$ is the cofree genuine *G*-spectrum on $U_G triv^G A$. So the above map (from the underlying spectrum of a genuine *G*-spectrum) induces a map

$$N^{G}A \rightarrow \beta triv^{G}A.$$

Applying Φ^G gives a map

$$\phi^{\sf G}: {\sf A} \simeq \Phi^{\sf G} {\sf N}^{\sf G} {\sf A} \rightarrow \Phi^{\sf G} \beta {\it triv}^{\sf G} {\sf A} \simeq {\sf A}^{\tau {\sf G}}$$

Which is called the generalized Frobenius map.

Even more generalized Frobenius

As before, but now given $H \subset G$ a subgroup. The \mathbb{E}_{∞} -multiplication on A gives a map

$$A^{\otimes G/H} \to A$$

of spectra with *G*-action. Where $A^{\otimes G/H}$ is the underlying spectrum of $N_H^G \beta_H triv^H A$. Since $\beta_G A$ is cofree on *A* (as a spectrum with trivial *G*-action) we get an induced map

$$N_H^G \beta_H triv^H A \to \beta_G A.$$

Applying Φ^G gives a map

$$\phi_{H}^{G}: A^{\tau H} \simeq \Phi^{H} \beta_{H} triv^{H} A \simeq \Phi^{G} N_{H}^{G} \beta_{H} triv^{H} A \rightarrow \Phi^{G} \beta_{G} A \simeq A^{\tau G}$$

Which is called the generalized Frobenius map.

Generalized canonical map

Let A be any spectrum (e.g an \mathbb{E}_{∞} -ring). Let $G \twoheadrightarrow K$ surjection of finite groups. Have

$$triv_{K}^{G}\beta_{K}triv^{K}A \rightarrow \beta_{G}triv^{G}A$$

applying Φ^G get

$$\mathcal{A}^{\tau K} \simeq \Phi^{K} \beta_{K} \textit{triv}^{K} \mathcal{A} \simeq \Phi^{G} \textit{triv}_{K}^{G} \beta_{K} \textit{triv}^{K} \mathcal{A} \rightarrow \Phi^{G} \beta_{G} \textit{triv}^{G} \mathcal{A} \simeq \mathcal{A}^{\tau G}$$

i.e. a map

$$\mathsf{can}_K^{\mathsf{G}}: {\mathsf{A}^ au}^K o {\mathsf{A}^ au}^{\mathsf{G}}$$

called the generalized canonical map.

Remark

When A is an \mathbb{E}_{∞} -ring, can^G_K is multiplicative.

Special case

When $H = e \subset G$ is trivial subgroup, $\phi_H^G = \phi^G$ is the composite of Tate diagonal with multiplication

$$\phi^{G}: A \to (A^{\otimes G})^{\tau G} \to A^{\tau G}$$

In particular for $G = C_p$ recover the Nikolaus-Scholze Frobenius.

Part 4: The Frobenius action on CAlg

The category ${\cal Q}$

FinGrp $\stackrel{def}{=}$ category of finite groups. Then,

 $\mathcal{Q} \stackrel{\textit{def}}{=} \mathsf{Quillen's} \ \mathsf{Q}\text{-construction on FinGrp}$

except, FinGrp is not an exact category...

Official definition

The symmetric monoidal 1-category ${\mathcal Q}$ has

- Objects: finite groups
- Morphism: from H to G: (surjection, injection)-spans H ← K ← G
- Composition: usual composition of spans
- Symmetric monoidal structue: Cartesian product

Integral Forbenius action

Theorem A^{\sharp} (Yuan)

There is an oplax monoidal functor

$$\mathcal{Q} \rightarrow \mathsf{Fun}(\mathsf{CAlg},\mathsf{CAlg})$$

such that

- 1. $G \in \mathcal{Q}$ acts by the proper Tate construction $(-)^{\tau G}$.
- A surjection (K ← G = G) is sent to the canonical transformation

$$\operatorname{can}_{K}^{G}: (-)^{\tau K} \longrightarrow (-)^{\tau G}.$$

3. An injection $(H = H \hookrightarrow G)$ is sent to the Frobenius

$$\phi_H^G: (-)^{\tau H} \longrightarrow (-)^{\tau G}.$$

Oplax monoidal?

Giving a $F : C \rightarrow D$ between monoidal an oplax structure means giving suitably compatible maps

$$F(c \otimes_C c') \to F(c) \otimes_D F(c').$$

In particular the oplax'ness of

 $\mathcal{Q} \to \mathsf{Fun}(\mathsf{CAlg},\mathsf{CAlg})$

means we have suitably compatible transformations

$$(-)^{\tau(G \times H)} \longrightarrow ((-)^{\tau H})^{\tau G}$$

for all finite groups G, H. See Remark 3.14 for explicit construction.

Baby application

Suppose $A \in CAlg$ is *p*-complete and that

$$\operatorname{can}^{\mathcal{C}_p} : A \to A^{\tau \mathcal{C}_p} \tag{3}$$

$$\operatorname{can}^{C_p \times C_p} : A \to A^{\tau C_p \times C_p}$$
(4)

$$\phi_{p} \quad : \quad A \to A^{\tau C_{p}} \tag{5}$$

are equivalences. Then may conclude that also

$$\phi^{C_p \times C_p} : A \to A^{\tau C_p \times C_p}$$

is an equivalence.

Proof: Have a commutative diagram

Easy to show that iterated ϕ_p and *can* are equivalences. Thus all outer arrows, except $\phi^{C_p \times C_p}$, are equivalences, hence it is too.