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Part 0: Recollections on SpG .



Recall on SpG .

Gpd the 2-category of finite groupoids. Finite means π0X and π1X
are finite for X ∈ Gpd. Basically X '

∐
BGi for some finite

collection of finite groups Gi .

Language

Spectra with G -action = Fun(BG ,Sp). a.k.a. “Borel”
G -equivariant spectra = SpG . a.k.a. “genuine”



Functoriality of G 7→ SpG

I Contravariant f ∗:

1. Restriction: H ⊂ G gives

resGH : SpG → SpH .

2. “Trivial” action: G � G/N gives

trivG
G/N : SpG/N → SpG .

I Covariant g⊗:

3. Norm: H ⊂ G gives

NG
H : SpH → SpG .

4. Geometric fixed points: G � G/N gives

ΦN : SpG → SpG/N .



Three fixed points

Geometric ΦG : SpG → Sp

Preserves all colimits. And

ΦG (Σ∞S) = Σ∞(SG ) “geometry”

Categorical (−)G : SpG → Sp

Right adjoint to trivG , in particular preserves all limits.

Homotopy (−)hG : SpG → Sp

X hG = limBG X . Where X ∈ Fun(BG , Sp). Only depends on
underlying spectrum with G -action.



Spans

Theorem
There is a functor

Ψ : Span(Gpd)→ Cat∞

sending a finite groupoid X to SpX . For X = BG have
SpBG = SpG . A span

M

X Y

f g

is sent to the functor g⊗f
∗ : SpX → SpY .



Refinement

Refinement
The category Glo+: objects are still finite groupoids. Morphisms
from X to Y are finite covering maps M → X × Y . Composition
with N → Y × Z , given by factorization

M ×Y N → T → X × Z

where first map has connected fibers and second is finite covering.

Have factorization

Span(Gpd)
π−→ Glo+ Ψ+

−→ Cat∞



Spans - Examples

Restriction
For H ⊂ G the span

BH

BG BH

f id

induces the functor f ∗ = resGH : SpG → SpH .

Geometric fixed points

For G → G/N the span

BG

BG B(G/N)

id g

induces the functor g⊗ = ΦN : SpG → SpG/N .



Spans - Examples 2

Composition of spans lead to relations between functors.

The composite

∗

BCp ∗
◦

∗

∗ BCp

=
Cp

∗ ∗

encodes the relation

res
Cp
e ◦ NCp

e = (−)⊗p



Spans - Examples 3

The composite in Glo+

BCp

BCp ∗
◦

BCp

∗ BCp

=
∗

∗ ∗

encodes the relation
ΦCp ◦ trivCp = id

Note than in Span(Gpd) this would give the span ∗ ← BCp → ∗
instead. But in Glo+ we use the factorization

BCp → ∗ → ∗ × ∗ = ∗

of connected fibers followed by finite cover (“finite cover” means
potentially non-surjective).



Spans - Examples 4

Let H ⊂ G . The composite

BG

BG ∗
◦

BH

BH BG

=
BH

BH BG

encodes the relation
ΦG ◦ NG

H = ΦG

In particular
ΦG ◦ NG = id .



Example: Genuine Cp-spectra

Genuine Cp-spectra

Giving E ∈ SpCp
is equivalent to giving a triple (E0,E1, f ) where:

1. E0 ∈ Fun(BCp, Sp) “is” the underlying spectrum with
Cp-action.

2. E1 ∈ Sp “is” the geometric fixed points ΦCpE .

3. f : E1 → E
tCp

0 is a map of spectra.

Recovring fixed points

The categorical fixed points ECp ∈ Sp of E = (E0,E1, f ) may be
recovered as the following pullback

ECp E1

E
hCp

0 E
tCp

0

f

can



Borel and Borelification

Proposition

Have a forgetful-cofree adjunction

U : SpG 
 Fun(BG , Sp) : rG

Where the right adjoint is fully faithful.

Definitions

I The essential image SpBorel
G ⊂ SpG of rG is (by definition) the

subcategory of Borel G-spectra.

I The composite

β = βG : SpG → Fun(BG ,Sp)→ SpG

is called the Borelification. The unit gives a natural
transformation id → β.



Borel and Borelification, proof

Proposition

Have a forgetful/cofree adjunction

U : SpG 
 Fun(BG , Sp) : rG

Where the right adjoint is fully faithful.

Proof sketch
Choose point-set model S̃pG for SpG and choose free contractible
G -space EG . Define

β̃ : S̃pG → S̃pG X 7→ Map(EG ,X )

Check that this factors through subcategory of Borel G -spectra
(i.e. spectra where (−)H = (−)hH for all subgroups H). Also have
natural transformation id → β̃ given by const : X → Map(EG ,X ).
Check that this descends to ∞-categories, to give β : SpG → SpG

which is ”idempotent”. Now Lurie [5.2.7.4] tells us this is a
localization (with fully faithful right adjoint).



Part 1: Tate diagonal in SpG .



Recall: Tate construction and diagonal

I G finite group, and X ∈ Fun(BG , Sp). Have norm map

Nm : XhG → X hG

and define X tG as the cofiber. So have cofiber sequence

XhG → X hG → X tG .

I For G = Cp, have “Tate diagonal”

∆p : X → (X⊗p)tCp

Defined using “Yoneda trick”. Used that

X 7→ (X⊗p)tCp

is exact (by binomial formula).

I This is special feature of spectra. There is no such (lax sym.
mon.) non-zero map in D(Z).



Geometric fixed points and Tate construction

Proposition

Let E ∈ SpCp
. Then E tCp ' ΦCp(βE ).

Proof sketch: Using isotropy separation sequence and Adam’s
isomorphism one always has a fiber sequence:

XhCp → XCp → ΦCpX

Now apply this to X = βE and compare with the fiber sequence
defining E tG . Use that (βE )Cp ' (βE )hCp .

Definition
Let E ∈ SpG . The proper Tate construction E τG is defined as
ΦG (βE ).

(−)τG : SpG → Sp

admits lax symmetric monoidal structure, since both ΦG and β do.



Norm and Tate diagonal

G finite, E ∈ SpG . Have norm NG : Sp→ SpG and unit E → βE
in SpG . Get

NG (−)→ βNG (−).

Applying ΦG , get the composite

∆G : X ' ΦGNG (X )→ ΦG (βNG (X )) ' (X⊗G )τG

This agrees with the Tate diagonal X → (X⊗p)tCp when G = Cp.

Definition
The above composition defines the Tate diagonal for G

∆G : (−)→ ((−)⊗G )τG : Sp→ Sp .



Part 2: The E∞-Frobenius



Frobenius

Fix prime p.
For discrete ring R have two maps

can : R → R/p x 7→ x (mod p)

and
φ : R → R/p x → xp (mod p)

which is also ring homomorphism:

(x + y)p = xp + yp (mod p)

using the binomial formula.



E∞-Frobenius

Likewise for A ∈ CAlg...

Definition
Let A ∈ CAlg. The E∞-Frobenius on A, is the ring-map φp defined
as the composition

φp : A
∆p−→ (A⊗p)tCp

multA−→ AtCp

of Tate diagonal with multiplication in A.

Also have a canonical map

can : A −→ AhCp −→ AtCp

Both maps are rings maps.



Frobenius on Eilenberg-Mac Lane

Discrete rings

Let A = HR ∈ CAlg for discrete ring R and φp : HR → (HR)tCp be
the E∞-Frobenius. Then

π0(φp) : R ' π0(HR)→ π0(HRtCp) ' R/p

is the ordinary Frobenius x 7→ xp (mod p).



Frobenius and Steenrod squares

The E∞-Frobenius φ does induce the ordinary Frobenius on π0.
But converse is not true: Consider F2 = HF2 with trivial
C2-action. Then

π∗(FtC2
2 ) ' Ĥ∗(C2,F2) ' F2((s)) s ∈ π1

Get spectrum level splitting:

FtC2
2 '

∏
n∈Z

ΣnF2

Theorem (Nikolaus-Scholze)

The E∞-Frobenius φ : F2 → (F2)tC2 is the product of all
non-negative Steenrod squares sqn : F2 → ΣnF2 for n ≥ 0.



Frobenius and Segal conjecture

Segal’s conjecture for Cp may be phrased as the following theorem.

Theorem (Gunawardena, Lin)

For A = S both maps can, φp : S→ StCp exhibit StCp as the
p-completion of S.

Remark
Once one has the theorem for can then it follows for φp, by
multiplicativity. Indeed both can and φp are S-algebra maps, hence
can = φp.



Frobenius and Adams op’s

Consider A = KU the periodic complex K -theory spectrum,
equipped with trivial C2-action. Recall that π∗KU ' Z[β±1]. Can
show

π∗(KUtCp) ' π∗(KU)((t))/((t + 1)p − 1) ' π∗ KU⊗Qp(ζp).

Theorem (Nikolaus-Scholze)

Suppose X a retract of finite CW-complex. Then Frobenius
φp : KU→ KUtCp induces the map

KU0(X )→ KU0(X )⊗Qp V 7→ ψp(V )

where ψp = p-th Adams operation.



Complements on Frobenius and Power operations

Nikolaus and Scholze use similar strategy to identify both
φ2 : F2 → (F2)tC2 and φp : KU→ KUtCp . Let A ∈ CAlg. Their
strategy is to reduce to identifying action of φp on associated
cohomology theory A∗(X ) = [Σ−∗X ,A] in terms of power
operations. Power operations are stable operations on
multiplicative cohomology which are constructed from the space
level diagonal.

Proposition

For X = Σ∞+ Y there is a unique (lax sym. mon.) factorization

(Σ∞+ (Y × · · · × Y ))hΣp

X (X ⊗ · · · ⊗ X )tCp

Σ∞+ ∆

∆p

(1)



Frobenius and Power operations, 2

Proposition

For X = Σ∞+ Y there is a unique (lax sym. mon.) factorization

(Σ∞+ (Y × · · · × Y ))hΣp

X (X ⊗ · · · ⊗ X )tCp

Σ∞+ ∆

∆p

(2)

Proof: By a theorem of Nikolaus, Σ∞+ : Spc→ Sp is initial lax
sym. mon. functor between the two categories. Since all three
functors are lax. sym. mon. it follows that the diagram commutes.



Frobenius and Power operations, 3

Corollary

For an E∞-ring A, the map

Ω∞φp : Ω∞A→ (Ω∞AtCp)hF
×
p

factors as

Ω∞A
∆→ ((Ω∞A)×p)hΣp mult→ (Ω∞A)hΣp can→ (Ω∞AtCp)hF

×
p

Here the composite

Pp : Ω∞A
∆→ ((Ω∞A)×p)hΣp mult→ (Ω∞A)hΣp

is the power operation.
(For more details, see Nikolaus-Scholze section IV.1)



Part 3: The generalized
E∞-Frobenius



Generalized Frobenius - the idea

Let A ∈ CAlg be an E∞-algebra, and G a finite group.
The E∞-multiplication on A gives a map

A⊗G → A

of spectra with G -action. Where A⊗G is the underlying spectrum
of NGA. Since βA is cofree on A (as a spectrum with trivial
G -action) we get an induced map

NGA→ βA.

Applying ΦG gives a map

φG : A ' ΦGNGA→ ΦGβA ' AτG

Which is called the generalized Frobenius map.



Generalized Frobenius - more detail
The underlying spectrum of NGA is just A⊗G (the G -indexed
tensor product). The E∞-multiplication on A then gives a map

A⊗G → A

of spectra with G -action. I.e. it is a map

UGN
GA→ UG triv

GA

Now, βtrivGA = rG (UG triv
GA) is the cofree genuine G -spectrum

on UG triv
GA. So the above map (from the underlying spectrum of

a genuine G -spectrum) induces a map

NGA→ βtrivGA.

Applying ΦG gives a map

φG : A ' ΦGNGA→ ΦGβtrivGA ' AτG

Which is called the generalized Frobenius map.



Even more generalized Frobenius

As before, but now given H ⊂ G a subgroup. The
E∞-multiplication on A gives a map

A⊗G/H → A

of spectra with G -action. Where A⊗G/H is the underlying
spectrum of NG

H βHtriv
HA. Since βGA is cofree on A (as a

spectrum with trivial G -action) we get an induced map

NG
H βHtriv

HA→ βGA.

Applying ΦG gives a map

φGH : AτH ' ΦHβHtriv
HA ' ΦGNG

H βHtriv
HA→ ΦGβGA ' AτG

Which is called the generalized Frobenius map.



Generalized canonical map

Let A be any spectrum (e.g an E∞-ring). Let G � K surjection of
finite groups. Have

trivGK βK triv
KA→ βG triv

GA

applying ΦG get

AτK ' ΦKβK triv
KA ' ΦG trivGK βK triv

KA→ ΦGβG triv
GA ' AτG

i.e. a map
canG

K : AτK → AτG

called the generalized canonical map.

Remark
When A is an E∞-ring, canG

K is multiplicative.



Special case

When H = e ⊂ G is trivial subgroup, φGH = φG is the composite of
Tate diagonal with multiplication

φG : A→ (A⊗G )τG → AτG

In particular for G = Cp recover the Nikolaus-Scholze Frobenius.



Part 4: The Frobenius action on CAlg



The category Q

FinGrp
def
= category of finite groups. Then,

Q def
= Quillen’s Q-construction on FinGrp

except, FinGrp is not an exact category...

Official definition
The symmetric monoidal 1-category Q has

I Objects: finite groups

I Morphism: from H to G : (surjection,injection)-spans
H � K ↪→ G

I Composition: usual composition of spans

I Symmetric monoidal structue: Cartesian product



Integral Forbenius action

Theorem A] (Yuan)

There is an oplax monoidal functor

Q → Fun(CAlg,CAlg)

such that

1. G ∈ Q acts by the proper Tate construction (−)τG .

2. A surjection (K � G = G ) is sent to the canonical
transformation

canG
K : (−)τK −→ (−)τG .

3. An injection (H = H ↪→ G ) is sent to the Frobenius

φGH : (−)τH −→ (−)τG .



Oplax monoidal?

Giving a F : C → D between monoidal an oplax structure means
giving suitably compatible maps

F (c ⊗C c ′)→ F (c)⊗D F (c ′).

In particular the oplax’ness of

Q → Fun(CAlg,CAlg)

means we have suitably compatible transformations

(−)τ(G×H) −→ ((−)τH)τG

for all finite groups G ,H.
See Remark 3.14 for explicit construction.



Baby application
Suppose A ∈ CAlg is p-complete and that

canCp : A→ AτCp (3)

canCp×Cp : A→ AτCp×Cp (4)

φp : A→ AτCp (5)

are equivalences. Then may conclude that also

φCp×Cp : A→ AτCp×Cp

is an equivalence.
Proof: Have a commutative diagram

(AτCp)τCp

A AτCp×Cp A
φCp×Cp

φ◦2
p oplax

canCp×Cp

can◦2

Easy to show that iterated φp and can are equivalences. Thus all
outer arrows, except φCp×Cp , are equivalences, hence it is too.
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