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Part 0: Recollections on Spg.



Recall on Sp¢.

Gpd the 2-category of finite groupoids. Finite means mpX and w1 X
are finite for X € Gpd. Basically X ~ [ [ BG; for some finite
collection of finite groups G;.

Language

Spectra with G-action = Fun(BG, Sp). a.k.a. “Borel”
G-equivariant spectra = Sp¢. a.k.a. “genuine”



Functoriality of G — Sp¢

» Contravariant f*:
1. Restriction: H C G gives

resS; : Spe — Spy -

2. "Trivial” action: G — G/N gives
trivg/,\, :Spe/n — SPg -

» Covariant gg:
3. Norm: H C G gives

Nﬁ:SpH%SpG.

4. Geometric fixed points: G — G/N gives

q)N . SpG — SpG/N'



Three fixed points

Geometric ¢ : Sp. — Sp

Preserves all colimits. And

®C(X®S) = £°(5°) “geometry”

Categorical (—)¢ : Spg — Sp

Right adjoint to triv®, in particular preserves all limits.

Homotopy (—)"© : Spg; — Sp

X"C = limpg X. Where X € Fun(BG,Sp). Only depends on
underlying spectrum with G-action.



Spans

Theorem
There is a functor

V¥ : Span(Gpd) — Cato

sending a finite groupoid X to SpX. For X = BG have
SpB¢ = Spc. A span

M
v N
X Y

is sent to the functor g f* : Sp* — SpY.



Refinement

Refinement

The category Glo™: objects are still finite groupoids. Morphisms
from X to Y are finite covering maps M — X x Y. Composition
with N — Y x Z, given by factorization

MxyN—-T—=>XxZ

where first map has connected fibers and second is finite covering.

Have factorization

Span(Gpd) — Glo™ vy Catoo



Spans - Examples

Restriction
For H C G the span

f BH id
N
BG BH

induces the functor f* = resﬁ : Spg — Spy-

Geometric fixed points
For G — G/N the span

. BG
N

BG B(G/N)

induces the functor g = ®N : Spe — Spe/n-



Spans - Examples 2

Composition of spans lead to relations between functors.

The composite
* * Cp

/ o \‘ =
BC, \* *\/ BC, *\/ N

encodes the relation



Spans - Examples 3

The composite in Glo™

BC, BC, %
Ny © /N = v\
BC, * * BC, * *
encodes the relation

d o triver = id

Note than in Span(Gpd) this would give the span x < BC, —
instead. But in Glo™ we use the factorization

BCp — % — x X * = *

of connected fibers followed by finite cover (“finite cover” means
potentially non-surjective).



Spans - Examples 4

Let H C G. The composite

BG
RN ©
BG *

encodes the relation

BH

v

BH
N

BG

®C o NG = d°

In particular

®C o N = id.

BH

v

BH
pY

BG



Example: Genuine C,-spectra

Genuine C,-spectra
Giving E € Spc, is equivalent to giving a triple (Eo, E1, f) where:

1. Ey € Fun(BCp,Sp) “is" the underlying spectrum with
Cp-action.

2. E; € Sp “is" the geometric fixed points ®CPE.

3. f: B — Egc” is a map of spectra.

Recovring fixed points
The categorical fixed points E € Sp of E = (Ey, E1, f) may be
recovered as the following pullback

E¢% —— E

I

hC, tC,
EO P can EO P



Borel and Borelification

Proposition
Have a forgetful-cofree adjunction

U:Spg = Fun(BG,Sp) : r¢
Where the right adjoint is fully faithful.

Definitions

> The essential image Sp2°® C Sp of r¢ is (by definition) the
subcategory of Borel G-spectra.

» The composite
B = Be : Spg — Fun(BG,Sp) — Spg

is called the Borelification. The unit gives a natural
transformation id — .



Borel and Borelification, proof

Proposition
Have a forgetful /cofree adjunction

U:Spg = Fun(BG,Sp) : r¢

Where the right adjoint is fully faithful.

Proof sketch -
Choose point-set model Sps for Sps; and choose free contractible
G-space EG. Define

B:Spc —Spg X+ Map(EG, X)

Check that this factors through subcategory of Borel G-spectra
(i.e. spectra where (=) = (=) for all subgroups H). Also have
natural transformation id — /3 given by const : X — Map(EG, X).
Check that this descends to co-categories, to give 3 : Spg — Spg
which is "idempotent”. Now Lurie [5.2.7.4] tells us this is a
localization (with fully faithful right adjoint).



Part 1. Tate diagonal in Sp.



Recall: Tate construction and diagonal

» G finite group, and X € Fun(BG,Sp). Have norm map
Nm : Xpe — XhC
and define XtC as the cofiber. So have cofiber sequence

Xne — XMC — X6,

» For G = C,, have "Tate diagonal”
Ap: X — (XEP)IC
Defined using “Yoneda trick”. Used that
X — (X®P)tCr

is exact (by binomial formula).

» This is special feature of spectra. There is no such (lax sym.
mon.) non-zero map in D(Z).



Geometric fixed points and Tate construction

Proposition

Let E € Spc,. Then Et% ~ &% (BE).

Proof sketch: Using isotropy separation sequence and Adam’s
isomorphism one always has a fiber sequence:

Xic, = XP — ¢ X
Now apply this to X = SE and compare with the fiber sequence
defining E*¢. Use that (BE)% ~ (BE)N.

Definition
Let E € Spg. The proper Tate construction E™C is defined as
®C(BE).

(—)7 :Spg — Sp

admits lax symmetric monoidal structure, since both ®¢ and § do.



Norm and Tate diagonal

G finite, E € Spc. Have norm N¢ : Sp — Sp. and unit E — 3E

in Spg. Get
NE(=) = BNE(-).

Applying ®¢, get the composite
AC X ~ OCNC(X) = dC(BNC(X)) ~ (X®C€)TC
This agrees with the Tate diagonal X — (X®P)t% when G = C,.

Definition
The above composition defines the Tate diagonal for G

AS < (=) = ((-)*€)C : Sp— Sp.



Part 2: The E.-Frobenius



Frobenius

Fix prime p.
For discrete ring R have two maps

can: R— R/p x = x (mod p)

and
»:R—R/p x — xP (mod p)

which is also ring homomorphism:
(x+y)P =xP+yP (mod p)

using the binomial formula.



E..-Frobenius

Likewise for A € CAlg...

Definition
Let A € CAlg. The E.-Frobenius on A, is the ring-map ¢, defined
as the composition

b A D (ATP)IC TS ALCy

of Tate diagonal with multiplication in A.

Also have a canonical map
can: A — ARG 5 AtG

Both maps are rings maps.



Frobenius on Eilenberg-Mac Lane

Discrete rings
Let A= HR € CAlg for discrete ring R and ¢, : HR — (HR)! be
the Eo.-Frobenius. Then

T0(¢p) : R =~ mo(HR) — mo(HR! ) ~ R/p

is the ordinary Frobenius x — xP (mod p).



Frobenius and Steenrod squares

The E,-Frobenius ¢ does induce the ordinary Frobenius on 7.
But converse is not true: Consider F, = HF» with trivial
Cs-action. Then

T (F52) =~ A* (G, Fa) ~ Fa((s)) sem
Get spectrum level splitting:

F5? ~ [[ Z"F,
neZ

Theorem (Nikolaus-Scholze)

The Eo-Frobenius ¢ : Fy — (IF2)! is the product of all
non-negative Steenrod squares sq" : Fo — X" for n > 0.



Frobenius and Segal conjecture

Segal's conjecture for C, may be phrased as the following theorem.

Theorem (Gunawardena, Lin)

For A =S both maps can, ¢, : S — St exhibit St as the
p-completion of S.

Remark

Once one has the theorem for can then it follows for ¢, by
multiplicativity. Indeed both can and ¢, are S-algebra maps, hence
can = ¢p.



Frobenius and Adams op’s

Consider A = KU the periodic complex K-theory spectrum,
equipped with trivial Gy-action. Recall that m, KU ~ Z[3F!]. Can
show

T (KU = m (KU)((£)) /(¢ +1)P — 1) = 7 KU @Qp(Cp)-

Theorem (Nikolaus-Scholze)

Suppose X a retract of finite CW-complex. Then Frobenius
¢p : KU — KU induces the map

KUY(X) = KU(X)®Q, Vi yP(V)

where 1P = p-th Adams operation.



Complements on Frobenius and Power operations

Nikolaus and Scholze use similar strategy to identify both

¢z : Ty — (F2)'2 and ¢, : KU — KU, Let A € CAlg. Their
strategy is to reduce to identifying action of ¢, on associated
cohomology theory A*(X) = [E~*X, A] in terms of power
operations. Power operations are stable operations on
multiplicative cohomology which are constructed from the space
level diagonal.

Proposition
For X = X°Y there is a unique (lax sym. mon.) factorization

(E(Y x - x V)=

YA
i ®
e

X (X@...@X)fcp



Frobenius and Power operations, 2

Proposition
For X = XY there is a unique (lax sym. mon.) factorization

(Y 5o x V)

rea @
i/> l

X (X®...®X)tcp

Proof: By a theorem of Nikolaus, ¥5° : Spc — Sp is initial lax
sym. mon. functor between the two categories. Since all three
functors are lax. sym. mon. it follows that the diagram commutes.



Frobenius and Power operations, 3

Corollary
For an Ey.-ring A, the map

Q% 1 QA — QAL
factors as
QA é} ((QooA)xp)th m_u>/t (QooA)th <3'>7 (QooAth)hIFPX
Here the composite
Pp: QA B ((Q%A)<P)Ts M4 (Q A)i%s

is the power operation.
(For more details, see Nikolaus-Scholze section IV.1)



Part 3: The generalized
E..-Frobenius



Generalized Frobenius - the idea

Let A € CAlg be an E.-algebra, and G a finite group.
The Es-multiplication on A gives a map

A9C 5 A

of spectra with G-action. Where A®C is the underlying spectrum
of N®A. Since SA is cofree on A (as a spectrum with trivial
G-action) we get an induced map

NCA — BA.
Applying ®¢ gives a map
pC A~ PCNCA = GCBA~ ATC

Which is called the generalized Frobenius map.



Generalized Frobenius - more detail

The underlying spectrum of N®A is just A®C (the G-indexed
tensor product). The E,.-multiplication on A then gives a map

A®C 5 A
of spectra with G-action. l.e. it is a map
UcNCA — UgtrivC A

Now, Btrive A = rg(Ugtriv® A) is the cofree genuine G-spectrum
on Ugtriv®A. So the above map (from the underlying spectrum of
a genuine G-spectrum) induces a map

NCA — Btrive A.
Applying ®C gives a map
#° A~ OONCA = dCBtrivC A~ ATC

Which is called the generalized Frobenius map.



Even more generalized Frobenius

As before, but now given H C G a subgroup. The
Eoo-multiplication on A gives a map

ABC/H A

of spectra with G-action. Where A®¢/H is the underlying
spectrum of NﬁBHtrivHA. Since SGA is cofree on A (as a
spectrum with trivial G-action) we get an induced map

NS Butrivi A — BGA.
Applying ®¢ gives a map
o8 ATH ~ oHptriv A ~ O NG Bytriv A — ©CBcA ~ ATC

Which is called the generalized Frobenius map.



Generalized canonical map

Let A be any spectrum (e.g an Eo.-ring). Let G — K surjection of
finite groups. Have

trive B triviK A — Betrive A
applying ®¢ get
ATK ~ oK ByetrivE A ~ dC trive B trivK A — &€ Bstrive A ~ ATC

i.e. a map
canf : ATK 5 ATC
called the generalized canonical map.

Remark
When A is an E.-ring, canfé is multiplicative.



Special case

When H = e C G is trivial subgroup, d)f, = ¢C is the composite of
Tate diagonal with multiplication

¢G:A—)(A®G)TG _>ATG

In particular for G = C, recover the Nikolaus-Scholze Frobenius.



Part 4: The Frobenius action on CAlg



The category Q

FinGrp def category of finite groups. Then,

Q def Quillen’s Q-construction on FinGrp
except, FinGrp is not an exact category...
Official definition
The symmetric monoidal 1-category Q has
» Objects: finite groups

» Morphism: from H to G: (surjection,injection)-spans
H« K—G

» Composition: usual composition of spans

» Symmetric monoidal structue: Cartesian product



Integral Forbenius action

Theorem A* (Yuan)
There is an oplax monoidal functor

Q — Fun(CAlg, CAlg)

such that

1. G € Q acts by the proper Tate construction (—)7¢.

2. A surjection (K «— G = G) is sent to the canonical
transformation

canﬁ : (—)TK — (—)TG.

3. An injection (H = H < G) is sent to the Frobenius

of - () — (-)7C.



Oplax monoidal?

Giving a F : C — D between monoidal an oplax structure means
giving suitably compatible maps

F(c®c c) — F(c)®p F(c).
In particular the oplax’ness of
Q — Fun(CAlg, CAlg)
means we have suitably compatible transformations
(_)T(GXH) N ((_)TH)TG

for all finite groups G, H.
See Remark 3.14 for explicit construction.



Baby application
Suppose A € CAlg is p-complete and that

can®% : A ATG (3)
can©* G A — AT Cp (4)
bp : A ATC (5)

are equivalences. Then may conclude that also
¢Cp><Cp . A*)ATCPXCP

is an equivalence.

Proof: Have a commutative diagram

(ATCp)TCp

02 2
p oplax can

A ATCoxCp
¢Cp><Cp canCF’XCP

Easy to show that iterated ¢, and can are equivalences. Thus all
outer arrows, except qﬁcpxcp, are equivalences, hence it is too.
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