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Our goal in this talk is to prove the following theorem

Theorem 1. The projection map

Kpart(Fp)→ π0 Kpart(Fp) ∼= Z≥0

is an isomorphism on mod p homology.

1 A general formula for partial K-theory

Let C be a Waldhausen ∞-category. Recall that the partial K-theory of C is
defined as LS•C', where

L : Fun(∆op,Space)→ Mon(Space)

is the left adjoint to the canonical inclusion Mon(Space) ⊆ Fun(∆op,Space)
identifying E1-monoids as those Segal spaces with contractible 0-space.

Our goal for this section is to give a formula for L. For this it will be
convenient reintepret the indexing category ∆op

Remark 2. Let Ord± be the category of finite totally ordered sets with a distinct
top and bottom and morphisms preserving top and bottom. We will write the
generic element of Ord± as

(n) = {⊥ < 1 < · · · < n < >} .

Note that (0) = {⊥ < >}. Then there is an equivalence

∆op ∼= Ord± .

This is obtained by sending a finite totally ordered set A to the poset of subsets
B′ ⊆ A that are downward closed, with bottom ∅ and top A. Therefore, under
this equivalence [n] is sent to (n) (if we write i for the downward closed subset
{0 < · · · < i− 1}).
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Let Ord×± be the product completion of Ord±. Its objects are finite collec-
tions {(ni)}i∈I of objects of Ord± and a morphism {(ni)}i∈I → {(mj)}j∈J is a
pair (ϕ, {fj}j∈J) where ϕ : J → I is a map of finite sets and fj : (nϕj) → (ni)
is a map in Ord±. By abstract nonsense we have

Fun(Ord±,Space) ∼= Fun×(Ord×±,Space) .

Construction 3. We define I as the following category. Its objects are pairs
(I, P ) where I is a finite totally ordered set and P = {Pj}j∈J is a partition
of I into intervals. A morphism f : (I, P ) → (I ′, P ′) is a monotone function
f : I → J such that it refines the partition (i.e. every interval Pi is the union
of subsets of the form f−1Qj.

We will write the general element (I, P ) as

(d1) · · · (dk)

where I = {(1, 1) < (1, 2) < · · · < (1, d1) < (1, 2) < · · · < (k, 1) < · · · < (k, dk)}
and Pj = {(j, 1) < · · · < (j, dk)}.

There is a morphism I → Ord×± sending (n1) · · · (nk) to {(n1), . . . , (nk)} (be
warned: the (ni) on both sides are elements of different categories! We need to
add a top and bottom).

Theorem 4. If X ∈ Fun(Ord±,Space) the left adjoint L(X) is the monoid with
underlying space the colimit

colim
(n1)···(nk)∈I

Xn1
× · · · ×Xnk

.

of the composite functor

I → Ord×±
X×−−→ Space

Proof. There is a functor

Free : Ordop
± → Fun(Ord±,Space)

L−→ Mon(Space)

sending (n) to the free monoid generated by {1, . . . , n} (this is just a simple
application of Yoneda). We will write T for the opposite of its essential image
(this is the Lawvere theory of associative monoids). Therefore we have a functor
Free : Ord± → T

Lemma 5. Precomposition with Free induces an equivalence

Fun×(T ,Space)→ Mon(Space)

and therefore the functor Mon(Space) ⊆ Fun(∆op,Space) can be identified with
the functor

Fun×(T ,Space)→ Fun×(Ord×±,Space)

induced by precomposition with the unique product-preserving functor

Free× : Ord×± → T .
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Proof. This is just an easy consequence of [1, Proposition 5.5.8.25] since Free(1)
is a compact projective generator of Mon(Space).

Now, by a proof analogous to [2, Lemma 2.18] left Kan extension along
a product preserving functor of functors valued in a cartesian closed category
preserves product preserving functors (the functor (A ×B B/x)(A ×B B/y) →
A×B B/x×y sending (φa→ x, φa′ → y) to φ(a× a′)→ x× y) has a left adjoint
and so it is cofinal). Therefore the left adjoint L to

Fun×(T ,Space)→ Fun×(Ord×±,Space)

is given by the left Kan extension. To conclude we just need to compute the
value of this left Kan extension on the object Free(1). By general nonsense this
value is given by

colim
{(ni)}i∈I∈Ord×±×T T/Free(1)

X(n1)× · · · ×X(nk)

Now Ord×±×T T/Free(1) is the category of pairs ({(ni)}i∈I , x) where {(ni)}i∈I ∈
Ord×± and x ∈ Free(n1 + · · ·+ nk). We construct a map

I → Ord×±×T T/Free(1)

sending

(n1) · · · (nk) 7→ ({(ni)}i=1...,k, x
(1)
1 · · ·x(1)n1

· · ·x(k)1 · · ·x(k)nk

This turns out to have a left adjoint, and so it is cofinal, thus proving the
theorem. (The description of this left adjoint is messy so we’ll not do it here,
but it essentially sends a monomial to the totally ordered sets of its variables
with the coarser partition in convex subsets in variables of the same type).

2 Partial K-theory of split-exact categories

Now let us suppose C is a split exact category (for example the category of
finite dimensional vector spaces), that is an additive category C together with
the Waldhausen structure where the cofibrations are morphisms isomorphic to
morphisms X → X ⊕ Y .

Remark 6. Kpart
0 (C) is just the monoid π0C' of isoclasses of C.

We want to write a simpler formula for Kpart(C). The first observation is
that we can describe π0SnC'.

Definition 7. A filtered dimension is a sequence d = 〈d1, . . . , dn〉 of elements
di = [Xi] ∈ Kpart

0 (C). We think of it as specifying an object

0 � X1 � X1 ⊕X2 � . . .� X1 ⊕ · · ·Xn
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of SnC. Since C is split exact, there is a bijection between filtered dimensions
and π0SnC'. We say that d is of lenght n and dimension

∑
i di. We write

l(d) = n and |d| =
∑

i di.
A filtered dimension sequence is just an ordered sequence D = (d(1),d(2), . . . ,d(k))

of filtered dimensions. We write l(D) =
∑

j l(d
(j)) and |D| =

∑
j |d(j)|.

If d is a filtered dimension sequence, we write S(d) for the connected com-
ponent of Sl(d)(C)' corresponding to d, so that

SnC' =
∐

l(d)=n

S(d)

Now let F be the Grothendieck construction on the functor I → Set given
by

(n1) · · · (nk) 7→ π0(Sn1
C × · · · × Snk

C)' .

This is a 1-category. Its objects are filtered dimension sequencesD = (d(1), . . . ,d(k))
and morphisms are arrows f : (n1) · · · (nk) → (m1) · · · (mr) in I such that
dj =

∑
fi=j di. Then we can write

Kpart(C) = colim
(n1)···(nk)∈I

Sn1
C' × · · · × Snk

C' ∼= colim
D∈F

S(D) .

Concretely an element of F is an element (n1) · · · (nk) ∈ I whose elements are
labelled by elements in Kpart

0 C. Its morphisms are morphisms f : I → I ′ in I
such that every element in the target is labelled with the sum of the labels of
the elements in its preimage.

We can simplify F further. Note that Kpart
0 C = π0C' is a zerosumfree

monoid, since the product of two sets is the one-point set iff both of them are:
therefore if an element in the target of a morphism in F is labeled with 0, all its
preimages must be labeled with 0 as well. Let us say that a filtered dimension
d = (d1, . . . , dn) is reduced if none of the di is 0 (this means that it corresponds
to a nondegenerate simplex of π0S•C').

Lemma 8. Let Fred ⊆ F be the full subcategory spanned by the filtered di-
mension sequences for which all components are reduced. Then the inclusion is
cofinal and Fred decomposes

Fred =
∐

d∈Kpart
0 (C)

Fred
d

where Fred is subcategory of reduced filtered dimension sequences of total di-
mension d. Moreover if Kpart

0 C is cancellative, all Fred
d are posets (in fact you

need less: all you need is that if m,∈ Kpart
0 C are such that m + n = m, then

n = 0, which is true for all categories of projective modules over a ring).

Proof. First of all notice that the inclusion Fred ⊆ F has a left adjoint, obtained
by discarding all null elements of a filtered dimension sequence (this is well-
defined since an element in the target can be labeled with 0 only if all of its
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preimages are 0), therefore the inclusion is cofinal. The decomposition is obvious
from the fact that all maps in F preserve the total dimension.

Finally the statement about being a poset follows from the fact that in a can-
cellative zerosummandfree monoid M , for every list {m1,m2, . . . } of elements
in M and n ∈ N there is at most one j such that m1 + · · ·+mj = n.

In Fred
n there are two special kinds of maps: the collapse maps, that are

maps that preserve the partition in convex subsets, for example

ci〈d1, . . . , dn〉 7→ 〈d1, . . . , di−1, di + di+1, di+2, . . . dn〉

and the splitting maps, that are maps that are bijections on the underlying sets
and preserve the labels. For example

si : 〈d1, . . . , dn〉 7→ 〈d1, . . . , di〉〈di+1 . . . , dn〉

In fact it’s not hard to show that these two kind of maps form a factorization
system in Fred: every map is a composition of a splitting map followed by a
collapse map

3 Finite fields

We want to study Kpart(Fp). By the previous result we can write it as

Kpart(Fp) =
∐
n≥0

colim
D∈Fred

n

S(D) .

Let us see a few examples. We have Fred
0 = ∅ and Fred

1 = {〈1〉} so the
corresponding connected components of Kpart(Fp) are

Kpart(Fp)0 = ∗, Kpart(Fp)1 = S(〈1〉) = BGL1Fp .

Something more interesting happens at n = 2. Here Fred
2 is the poset

〈1, 1〉 〈2〉

〈1〉〈1〉

so we have a pushout diagram

BU2(Fp) BGL2Fp

BGL1Fp ×BGL2Fp Kpart(Fp)2
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where U2(Fp) < GL2(Fp) is the subgroup of upper triangular matrices and
U2(Fp)→ GL1Fp×GL1Fp is the projection to the diagonal elements. Therefore
one can compute

π1(Kpart(Fp), [F2
p]) ∼= GL2(Fp)/E2(Fp) = GL2(Fp)ab

where E2(Fp) is the normal subgroup generated by the elementary matrices.
If I have made no mistake, this computation generalizes and you get π1(Kpart(Fp), [Fn

p ]) ∼=
GLn(Fp)ab. One would then be tempted to conjecture Kpart(Fp)n = BGLnF+

p ,
but this seems impossible because the latter space does not have trivial reduced
mod p cohomology.

Our big theorem will now follow from the following statement

Proposition 9. For every m ≥ 0 the reduced mod p homology of

colim
D∈Fred

m

S(D)

is trivial.

We will prove this by filtering the colimit by subcategories. The fundamental
input of this is the following computation

Proposition 10. If n ≥ 0, let C+
n ⊆ Fred

d the full subcategory spanned by the
objects with trivial partition (i.e. by elements of the form 〈d〉 for d a single
filtered dimension). Let Cn ⊆ C+

n be the subposet spanned by all objects except
〈n〉. Then the map

colim
〈d〉∈Cn

S(d)→ colim
〈d〉∈C+

n

S(d) = S(d)

is an equivalence on Fp-cohomology.

Proof. Let T be the poset of all proper nonzero subsets of Fn
p and D be its

barycentric subdivision (i.e. its category of simplices). Then T has an obvious
GLn(Fp)-action that is induced on D by naturality. Then DhGLn(Fp) is exactly
the Grothendieck construction on S|Cn

and the map we want to prove is a
Fp-equivalence is

|D|hGLn(Fp) → BGLn(Fp) .

Moreover, the inclusion of chains of length 1 is an equivariant equivalence so
it’s enough to prove

|T |hGLn(Fp) → BGLn(Fp) .

is a mod p equivalence. By the Solomon-Tits theorem we have that |T | is ho-
motopy equivalent to a wedge of (n − 2)-dimensional spheres. Moreover the
GLn(Fp)-action on the top cohomology is the so-called Steinberg representa-
tion. All we care is that it has no GLn(Fp)-homology (since it is an injective
Fp[GLn(Fp)]-module without fixed points), therefore our thesis follows from the
homotopy fixed point spectral sequence.
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Ok, now we are ready to prove our proposition. Let Ai ⊆ Fred
m be the subcat-

egory spanned by those filtered dimension sequences D such that all elements
are less or equal to i, and let A′i ⊆ Ai be the subcategory spanned by those
filtered dimension sequences 〈d(1)〉 · · · 〈d(k)〉 where either all elements are less
or equal to i− 1 or 〈d(j)〉 = 〈i〉. Therefore we have a sequence

A′1 ⊆ A1 ⊆ A′2 ⊆ · · · ⊆ A′m ⊆ Am = Fred
m

Then the results follows from the following two lemmas:

Lemma 11. The inclusion A′i ⊆ Ai is cofinal.

Proof. This inclusion has a left adjoint obtained by “splitting off” the pieces of
size i.

Lemma 12. The map

colim
D∈Ai

S(D)→ colim
D∈A′i+1

S(D)

is an equivalence on Fp-homology.

Proof. It suffices to show that for each D ∈ A′i+1 rAi the map

colim
D′∈(Ai)/D

S(D′)→ S(D)

is an equivalence on Fp-homology.
Let us consider the subposet M ⊆ (Ai)/D consisting of collapse maps D′ →

D. Then the inclusion has a left adjoint (obtained by the canonical factorization
as one splitting map followed by a collapse map) and so it is cofinal. But if
D = 〈d(1)〉 · · · 〈d(n)〉, then M factors as the product

M ∼= M1 × · · ·Mn

where Mj is the posets of collapse maps 〈d′〉 → 〈d(j)〉 where all components in
d′ are ≤ i− 1. This has a the identity as a terminal object unless 〈d(j)〉 = 〈i〉,
in which case it is Ci from proposition 10.
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