Exercise sheet 1

Exercise 1. Recall that the group completion functor (-$)^{\mathrm{gP}}: \mathrm{CMon} \rightarrow \mathrm{Ab}$ is left adjoint to the inclusion $\mathrm{Ab} \subset \mathrm{CMon}$.
(a) A commutative monoid M has the cancellation property if $a+c=b+c$ implies $a=b$. Show that the unit map $M \rightarrow M^{\mathrm{gp}}$ is injective if and only if M has the cancellation property.
(b) Suppose that $(M,+, \cdot)$ is a semiring (i.e., $(M,+)$ is a commutative monoid, (M, \cdot) is a monoid, and the distributivity law holds). Show that the group completion M^{gp} (with respect to +) admits a unique ring structure such that $M \rightarrow M^{\mathrm{gp}}$ is a morphism of semirings.
(c) Show that the inclusion $\mathrm{Ab} \subset$ CMon also has a right adjoint and describe it explicitly.
(d) Let X be a topological space. Show that $\operatorname{Maps}(X, \mathbb{N})^{\mathrm{gp}} \simeq \operatorname{Maps}(X, \mathbb{Z})$, where $\operatorname{Maps}(X, Y)$ denotes the set of continuous maps and \mathbb{N} and \mathbb{Z} are viewed as discrete topological spaces.
(e) Let Mon be the category of monoids and Grp the category of groups. Show that the inclusion $\operatorname{Grp} \subset$ Mon has a left adjoint L and that if M is a commutative monoid then $L(M) \simeq M^{\mathrm{gp}}$.

Exercise 2.

(a) Let G be a finite group. Show that the functor associating to a finite G-set X the G-representation $\mathbb{C}[X]$ induces a morphism of rings $A(G) \rightarrow R(G)$ from the Burnside ring to the representation ring (use Exercise 1(b)).
(b) Let p be a prime number and C_{p} a cyclic group of order p. Show that there are isomorphisms of rings

$$
A\left(C_{p}\right) \simeq \mathbb{Z}[x] /\left(x^{2}-p x\right) \quad \text { and } \quad R\left(C_{p}\right) \simeq \mathbb{Z}[y] /\left(y^{p}-1\right)
$$

What is the map $A\left(C_{p}\right) \rightarrow R\left(C_{p}\right)$ from (a) under these identifications?

Exercise 3. Let $A=\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$ and let $P=\operatorname{ker}(\sigma)$ where

$$
\sigma: A^{3} \rightarrow A, \quad \sigma(f, g, h)=x f+y g+z h .
$$

Show that there is an isomorphism of A-modules $P \oplus A \simeq A^{3}$ but that P is not free.
Hint. Let S^{2} be the sphere of unit vectors in \mathbb{R}^{3}. Observe that every $p \in P$ induces a continuous function $S^{2} \rightarrow \mathbb{R}^{3}$. Use this to show that if P were free, then the tangent bundle to S^{2} would be trivial, which is false.

Exercise 4. Let R be a ring and $I \subset R$ a two-sided nilpotent ideal (i.e., $I^{n}=0$ for some n). Extension of scalars defines a functor $\operatorname{Proj}(R) \rightarrow \operatorname{Proj}(R / I), P \mapsto P / I P$. Show that:
(a) For every $P, Q \in \operatorname{Proj}(R)$, the induced map $\operatorname{Isom}_{R}(P, Q) \rightarrow \operatorname{Isom}_{R / I}(P / I P, Q / I Q)$ is surjective, where Isom $_{R}$ denotes the set of R-linear isomorphisms.
(b) $\operatorname{Proj}(R) \rightarrow \operatorname{Proj}(R / I)$ induces a bijection between isomorphism classes of objects.

In particular, $K_{0}(R) \rightarrow K_{0}(R / I)$ is an isomorphism (we say that K_{0} is nilinvariant).
Hint. For both (a) and (b), reduce first to the case $I^{2}=0$. Note that the injectivity in (b) follows from (a). To prove the surjectivity in (b), first show that every idempotent $\bar{e} \in R / I$ lifts to an idempotent in R. If e is any lift of \bar{e}, this amounts to solving the equation $(e+x)^{2}=e+x$ in R; this equation becomes easier to solve by adding the constraint $e x=x e$.

