Exercise sheet 1

Exercise 1. Recall that the group completion functor $(-)^{\text{gp}}$: CMon \rightarrow Ab is left adjoint to the inclusion Ab \subset CMon.

- (a) A commutative monoid M has the cancellation property if a + c = b + c implies a = b. Show that the unit map $M \to M^{\text{gp}}$ is injective if and only if M has the cancellation property.
- (b) Suppose that $(M, +, \cdot)$ is a semiring (i.e., (M, +) is a commutative monoid, (M, \cdot) is a monoid, and the distributivity law holds). Show that the group completion $M^{\rm gp}$ (with respect to +) admits a unique ring structure such that $M \to M^{\rm gp}$ is a morphism of semirings.
- (c) Show that the inclusion Ab ⊂ CMon also has a right adjoint and describe it explicitly.
- (d) Let X be a topological space. Show that $Maps(X, \mathbb{N})^{gp} \simeq Maps(X, \mathbb{Z})$, where Maps(X, Y) denotes the set of continuous maps and \mathbb{N} and \mathbb{Z} are viewed as discrete topological spaces.
- (e) Let Mon be the category of monoids and Grp the category of groups. Show that the inclusion $\operatorname{Grp} \subset \operatorname{Mon}$ has a left adjoint L and that if M is a commutative monoid then $L(M) \simeq M^{\operatorname{gp}}$.

Exercise 2.

- (a) Let G be a finite group. Show that the functor associating to a finite G-set X the G-representation $\mathbb{C}[X]$ induces a morphism of rings $A(G) \to R(G)$ from the Burnside ring to the representation ring (use Exercise 1(b)).
- (b) Let p be a prime number and C_p a cyclic group of order p. Show that there are isomorphisms of rings

$$A(C_p) \simeq \mathbb{Z}[x]/(x^2 - px)$$
 and $R(C_p) \simeq \mathbb{Z}[y]/(y^p - 1).$

What is the map $A(C_p) \to R(C_p)$ from (a) under these identifications?

Exercise 3. Let $A = \mathbb{R}[x, y, z]/(x^2 + y^2 + z^2 - 1)$ and let $P = \ker(\sigma)$ where

$$\sigma \colon A^3 \to A, \quad \sigma(f, g, h) = xf + yg + zh.$$

Show that there is an isomorphism of A-modules $P \oplus A \simeq A^3$ but that P is not free.

Hint. Let S^2 be the sphere of unit vectors in \mathbb{R}^3 . Observe that every $p \in P$ induces a continuous function $S^2 \to \mathbb{R}^3$. Use this to show that if P were free, then the tangent bundle to S^2 would be trivial, which is false.

Exercise 4. Let R be a ring and $I \subset R$ a two-sided nilpotent ideal (i.e., $I^n = 0$ for some n). Extension of scalars defines a functor $\operatorname{Proj}(R) \to \operatorname{Proj}(R/I)$, $P \mapsto P/IP$. Show that:

- (a) For every $P, Q \in \operatorname{Proj}(R)$, the induced map $\operatorname{Isom}_R(P, Q) \to \operatorname{Isom}_{R/I}(P/IP, Q/IQ)$ is surjective, where Isom_R denotes the set of *R*-linear isomorphisms.
- (b) $\operatorname{Proj}(R) \to \operatorname{Proj}(R/I)$ induces a bijection between isomorphism classes of objects.

In particular, $K_0(R) \to K_0(R/I)$ is an isomorphism (we say that K_0 is *nilinvariant*).

Hint. For both (a) and (b), reduce first to the case $I^2 = 0$. Note that the injectivity in (b) follows from (a). To prove the surjectivity in (b), first show that every idempotent $\bar{e} \in R/I$ lifts to an idempotent in R. If e is any lift of \bar{e} , this amounts to solving the equation $(e + x)^2 = e + x$ in R; this equation becomes easier to solve by adding the constraint ex = xe.