Exercise sheet 10

Exercise 1. Let \mathcal{C} be an exact category and $\mathcal{B} \subset \mathcal{C}$ a full subcategory closed under extensions (with the induced exact structure). Suppose that, for every $X \in \mathcal{C}$, there exists $X' \in \mathcal{C}$ such that $X \oplus X' \in \mathcal{B}$ (one says that \mathcal{B} is *cofinal* in \mathcal{C}). Show that the induced map $K_0(\mathcal{B}) \to K_0(\mathcal{C})$ is injective.

Hint. For the minimal exact structure on \mathcal{C} , this was proved in Exercise 3.2. Use this case as the starting point.

Remark. The cofinality theorem states that furthermore $K_n(\mathcal{B}) \simeq K_n(\mathcal{C})$ for all $n \ge 1$.

Exercise 2. Let \mathcal{C} be an exact category. A chain complex (C_*, d_*) in \mathcal{C} is called *exact* if each differential $d_{i+1}: C_{i+1} \to C_i$ factors as $C_{i+1} \twoheadrightarrow C'_i \rightarrowtail C_i$ and $C'_i \rightarrowtail C_i \twoheadrightarrow C'_{i-1}$ is an exact sequence.

Let \mathcal{C} and \mathcal{D} be exact categories and let

$$0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to 0$$

be a chain complex of exact functors $\mathcal{C} \to \mathcal{D}$ which is objectwise exact in the above sense. Show that there is a null-homotopy

$$\sum_{i=0}^{n} (-1)^{i} (F_{i})_{*} \simeq 0 \colon K(\mathcal{C}) \to K(\mathcal{D}).$$

Hint. To prove that the functors F'_i are exact, one can assume that \mathcal{D} is abelian by Exercise 8.3.

Exercise 3. Let X be a noetherian scheme, $i: Z \hookrightarrow X$ a closed immersion, and $j: U \hookrightarrow X$ the complementary open immersion. Let $\operatorname{Coh}_Z(X) \subset \operatorname{Coh}(X)$ be the full subcategory of coherent sheaves \mathcal{F} such that $j^*(\mathcal{F}) = 0$. Prove the following statements:

- (a) The functor $i_*: \operatorname{QCoh}(Z) \to \operatorname{QCoh}(X)$ is fully faithful and restricts to a functor $i_*: \operatorname{Coh}(Z) \to \operatorname{Coh}_Z(X)$.
- (b) For every sheaf $\mathcal{F} \in \operatorname{Coh}_Z(X)$, there exists a finite filtration

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F}$$

such that $\mathcal{F}_i/\mathcal{F}_{i-1}$ is in the essential image of $i_* \colon \operatorname{Coh}(Z) \to \operatorname{Coh}_Z(X)$.

Exercise 4. Let k be a field. Recall the classification of vector bundles (finite locally free sheaves) on the projective line \mathbb{P}_k^1 : every vector bundle is a sum of line bundles in a unique way, and every line bundle is isomorphic to $\mathcal{O}(n)$ for some unique $n \in \mathbb{Z}$. Using this result, compute and compare the following abelian groups:

- (a) $\pi_0(\operatorname{Vect}(\mathbb{P}^1_k)^{\simeq})^{\operatorname{gp}}$
- (b) $K_0(\operatorname{Vect}(\mathbb{P}^1_k))$

Hint. There is a short exact sequence of sheaves $0 \to \mathcal{O}(-1) \to \mathcal{O}^2 \to \mathcal{O}(1) \to 0$.