Exercise sheet 2

Exercise 1. Let M and N be commutative monoids and $f: M \rightarrow N$ an arbitrary map. We say that f is polynomial of degree ≤-1 if $f=0$. For $n \geq 0$, we say that f is polynomial of degree $\leq n$ if for every $x \in M$ there exists a map $D_{x}(f): M \rightarrow N$, polynomial of degree $\leq n-1$, such that

$$
f(y+x)=f(y)+D_{x}(f)(y)
$$

for all $y \in M$. Denote by

$$
\operatorname{Poly}_{\leq n}(M, N)
$$

the set of polynomial maps $M \rightarrow N$ of degree $\leq n$.
Consider the monoid ring $\mathbb{Z}[M]$. For $x \in M$, denote by $[x]$ the corresponding element in $\mathbb{Z}[M]$, so that $[x+y]=[x][y]$. Let $\epsilon: \mathbb{Z}[M] \rightarrow \mathbb{Z}$ be the augmentation map sending every $[x]$ to 1 , let $I=\operatorname{ker}(\epsilon)$ be the augmentation ideal, and let I^{n} be the nth power of the ideal I. Given an abelian group A and a map $f: M \rightarrow A$, write $\hat{f}: \mathbb{Z}[M] \rightarrow A$ for the unique additive extension of f.
(a) Show that $f: M \rightarrow A$ is polynomial of degree $\leq n$ if and only if $\hat{f}\left(I^{n+1}\right)=0$. Deduce that $\operatorname{Poly}_{\leq n}(M, A) \simeq \operatorname{Hom}_{\mathrm{Ab}}\left(\mathbb{Z}[M] / I^{n+1}, A\right)$.
(b) Show that the morphism of rings $\mathbb{Z}[M] / I^{n} \rightarrow \mathbb{Z}\left[M^{\mathrm{gp}}\right] / I^{n}$ induced by the canonical map $M \rightarrow M^{\mathrm{gp}}$ is an isomorphism (Hint: observe that $\mathbb{Z}\left[M^{\mathrm{gp}}\right] \simeq M^{-1} \mathbb{Z}[M]$). Deduce that every polynomial map $f: M \rightarrow N$ extends uniquely to a polynomial map $M^{\mathrm{gp}} \rightarrow N^{\mathrm{gp}}$.

Exercise 2. Let R be a commutative ring and let $P_{n}: \operatorname{Proj}(R) \rightarrow \operatorname{Proj}(R), n \geq 0$, be a family of functors with natural isomorphisms

$$
\begin{gathered}
P_{0}(M) \simeq R, \\
P_{n}(M \oplus N) \simeq \bigoplus_{i+j=n} P_{i}(M) \otimes_{R} P_{j}(N) .
\end{gathered}
$$

Examples include: $(-)^{\otimes n}, \operatorname{Sym}^{n}, \Gamma^{n}, \Lambda^{n}$.
Show that the map $p_{n}: \pi_{0}\left(\operatorname{Proj}(R)^{\simeq}\right) \rightarrow \pi_{0}\left(\operatorname{Proj}(R)^{\simeq}\right)$ defined by $p_{n}([M])=\left[P_{n}(M)\right]$ is polynomial of degree $\leq n$ and hence extends uniquely to a polynomial map $p_{n}: K_{0}(R) \rightarrow$ $K_{0}(R)$.

Remark. The maps so obtained from the exterior powers are denoted by $\lambda^{n}: K_{0}(R) \rightarrow$ $K_{0}(R)$. They give the name to the notion of λ-ring which is a commutative ring equipped with self-maps λ^{n} satisfying some identities; $K_{0}(R)$ is thus an example of a λ-ring.

Exercise 3. Let R be a commutative ring. Denote by \mathbb{Z}_{R} the ring of continuous maps $\operatorname{Maps}(\operatorname{Spec} R, \mathbb{Z})$. Recall that $S K_{0}(R) \subset K_{0}(R)$ is the kernel of the map

$$
(\mathrm{rk}, \operatorname{det}): K_{0}(R) \rightarrow \mathbb{Z}_{R} \times \operatorname{Pic}(R)
$$

(a) Construct a \mathbb{Z}_{R}-module structure on the abelian group $\operatorname{Pic}(R)$.
(b) Show that the map (rk, det) is a morphism of rings if we regard $\mathbb{Z}_{R} \times \operatorname{Pic}(R)$ as the square zero extension of \mathbb{Z}_{R} by $\operatorname{Pic}(R)$ (i.e., with the ring structure given by $(a, x)(b, y)=(a b, a y+b x))$.

Hence, $S K_{0}(R)$ is an ideal in $K_{0}(R)$.
Exercise 4. Let R be a ring. Recall that $E_{n}(R) \subset G L_{n}(R)$ is the subgroup generated by the elementary matrices $e_{i j}(r)$.
(a) Show that $E_{n}(R)$ is perfect for $n \geq 3$, i.e., $E_{n}(R)=\left[E_{n}(R), E_{n}(R)\right]$.

Hint. Use the easily checked formula

$$
\left[e_{i j}(r), e_{k l}(s)\right]= \begin{cases}1 & \text { if } j \neq k \text { and } i \neq l, \\ e_{i l}(r s) & \text { if } j=k \text { and } i \neq l, \\ e_{k j}(-s r) & \text { if } j \neq k \text { and } i=l .\end{cases}
$$

(b) Let $g, h \in G L_{n}(R)$. Show that $[g, h] \oplus 1_{n} \in G L_{2 n}(R)$ belongs to $E_{2 n}(R)$.

Hint. Use the identities

$$
\begin{aligned}
\left(\begin{array}{cc}
{[g, h]} & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{ll}
g & 0 \\
0 & g^{-1}
\end{array}\right)\left(\begin{array}{cc}
h & 0 \\
0 & h^{-1}
\end{array}\right)\left(\begin{array}{cc}
(h g)^{-1} & 0 \\
0 & h g
\end{array}\right) \\
\left(\begin{array}{cc}
g & 0 \\
0 & g^{-1}
\end{array}\right) & =\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-g^{-1} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

and show that every triangular matrix in $G L_{n}(R)$ with 1's on the diagonal belongs to $E_{n}(R)$.
(c) Deduce from (a) and (b) that $E(R)=[G L(R), G L(R)]$.

