Exercise sheet 3

Exercise 1. Let \mathcal{A} be a category with finite products. Let $Mon(\mathcal{A})$ be the category of monoids in \mathcal{A} and $CMon(\mathcal{A}) \subset Mon(\mathcal{A})$ the subcategory of commutative monoids. Show that there are equivalences of categories:

- (a) $\operatorname{CMon}(\mathcal{A}) \simeq \operatorname{Mon}(\operatorname{Mon}(\mathcal{A}))$
- (b) $\operatorname{Mon}(\operatorname{CMon}(\mathcal{A})) \simeq \operatorname{CMon}(\mathcal{A})$

Exercise 2. Let M be a commutative monoid and $L \subset M$ a cofinal submonoid (that is, for every $x \in M$, there exists $y \in M$ such that $x + y \in L$). Prove the following assertions:

- (a) The induced mopphism $L^{\rm gp} \to M^{\rm gp}$ is injective.
- (b) The map $M \times L \to M^{gp}$, $(x, y) \mapsto x y$, exhibits M^{gp} as the quotient of $M \times L$ by the equivalence relation:

$$(x,y) \sim (x',y') \quad \Leftrightarrow \quad \text{there exists } z \in L \text{ such that } x + y' + z = x' + y + z.$$

Remark. In the special case $L = \mathbb{N}$, we can reformulate this description as M^{gp} as follows:

$$M^{\mathrm{gp}} \simeq \operatorname{colim}\left(M \xrightarrow{+1} M \xrightarrow{+1} M \xrightarrow{+1} \cdots\right).$$

Exercise 3. Let R be commutative ring. An *orientation* of a finitely generated projective R-module P is an isomorphism ω : det $(P) \simeq R$. Such pairs (P, ω) form a groupoid in which a morphism $(P, \omega) \rightarrow (P', \omega')$ is an isomorphism $\phi: P \rightarrow P'$ such that $\omega = \omega' \circ \det(\phi)$. Define $(P, \omega) \oplus (P', \omega')$ to be the R-module $P \oplus P'$ with orientation

$$\det(P \oplus P') \simeq \det(P) \otimes_R \det(P') \xrightarrow{\omega \otimes \omega'} R \otimes_R R \simeq R.$$

It is straightforward to check that the operation \oplus is part of a symmetric monoidal structure on the groupoid $\operatorname{Proj}_{ev}^{\operatorname{or}}(R)$ of oriented finitely generated projective *R*-modules of even rank.¹ The rank defines a morphism of abelian groups rk: $\pi_0(\operatorname{Proj}_{ev}^{\operatorname{or}}(R))^{\operatorname{gp}} \to 2\mathbb{Z}_R$. Let $\tau_{\leq 1}SK(R) \subset \operatorname{Proj}_{ev}^{\operatorname{or}}(R)^{\operatorname{gp}}$ be the full subgroupoid consisting of the objects of rank 0; it is a Picard groupoid. Use the group completion theorem to show that

$$\pi_0(\tau_{\leq 1}SK(R)) \simeq SK_0(R)$$
 and $\pi_1(\tau_{\leq 1}SK(R)) \simeq SK_1(R).$

¹The restriction to even rank is needed for the braiding to be orientation-preserving; without this restriction, \oplus is only a non-braided monoidal structure.