Exercise sheet 5

Exercise 1. Let R be a ring and $n \ge 1$. Let $M_n(R)$ be the ring of $n \times n$ matrices with coefficients in R. Prove that the categories $\operatorname{Proj}(R)$ and $\operatorname{Proj}(M_n(R))$ of finitely generated projective left modules are equivalent, hence that $K_i(R) \simeq K_i(M_n(R))$ for i = 0, 1.

Exercise 2. An object X in a category has the *(unique) right lifting property* with respect to a morphism $Y \to Z$ if every morphism $Y \to X$ factors (uniquely) through Z. Prove the following statements:

- (a) The nerve functor $N: Cat \to sSet$ is fully faithful.
- (b) A simplicial set X is isomorphic to N(C) for some category C if and only if X has the unique right lifting property with respect to the inclusions $\Lambda_i^n \subset \Delta^n$ for 0 < i < n.
- (c) A simplicial set X is isomorphic to N(C) for some groupoid C if and only if X has the unique right lifting property with respect to the inclusions $\Lambda_i^n \subset \Delta^n$ for $0 \le i \le n$.

Exercise 3. Recall that a simplicial set is a *Kan complex* if it has the right lifting property with respect to the inclusions $\Lambda_i^n \subset \Delta^n$ for $0 \le i \le n$. Show that every simplicial group is a Kan complex.

Exercise 4. Let $p: E \to B$ be a functor between groupoids and let $e_0 \in E$, $b_0 = p(e_0)$. The homotopy fiber F of p at b_0 is the groupoid whose objects are pairs (e, γ) with $e \in E$ and $\gamma: p(e) \simeq b_0$ and with the obvious morphisms. Let $i: F \to E$ be the functor $(e, \gamma) \mapsto e$ and let $f_0 = (e_0, \mathrm{id}) \in F$.

(a) Construct an action of $\pi_1(B, b_0)$ on $\pi_0(F)$ and a sequence

$$\pi_1(F, f_0) \xrightarrow{\iota_*} \pi_1(E, e_0) \xrightarrow{p_*} \pi_1(B, b_0) \xrightarrow{\partial} \pi_0(F) \xrightarrow{\iota_*} \pi_0(E) \xrightarrow{p_*} \pi_0(B)$$

which is exact in the following sense:

- (1) exactness at $\pi_1(E, e_0)$: ker $(p_*) = \operatorname{im}(i_*)$
- (2) exactness at $\pi_1(B, b_0)$: $\partial \alpha = \partial \beta$ if and only if $\alpha^{-1}\beta \in \operatorname{im}(p_*)$
- (3) exactness at $\pi_0(F)$: ∂ is $\pi_1(B, b_0)$ -equivariant and $i_*(a) = i_*(b)$ if and only of a and b are in the same orbit
- (4) exactness at $\pi_0(E)$: $(p_*)^{-1}([b_0]) = \operatorname{im}(i_*)$
- (b) Let $p: E \to B$ be a continuous map between compactly generated topological spaces¹ and let $e_0 \in E$, $b_0 = p(e_0)$. The homotopy fiber F of p at b_0 is the set of pairs (e, γ) with $e \in E$ and γ a path from p(e) to b_0 in B, topologized as a subspace of $E \times \text{Hom}([0, 1], B)$. Without going into the details, explain how (a) induces a long exact sequence of homotopy groups

$$\cdots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, e_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \cdots$$

¹The definition of compactly generated topological space is not very important here; what matters is that they satisfy the *exponential law* Hom $(A \times B, C) \simeq \text{Hom}(A, \text{Hom}(B, C))$, where Hom(A, B) is the space of continuous maps with the compact-open topology.