Exercise sheet 5

Exercise 1. Let R be a ring and $n \geq 1$. Let $M_{n}(R)$ be the ring of $n \times n$ matrices with coefficients in R. Prove that the categories $\operatorname{Proj}(R)$ and $\operatorname{Proj}\left(M_{n}(R)\right)$ of finitely generated projective left modules are equivalent, hence that $K_{i}(R) \simeq K_{i}\left(M_{n}(R)\right)$ for $i=0,1$.
Exercise 2. An object X in a category has the (unique) right lifting property with respect to a morphism $Y \rightarrow Z$ if every morphism $Y \rightarrow X$ factors (uniquely) through Z.

Prove the following statements:
(a) The nerve functor N : Cat \rightarrow sSet is fully faithful.
(b) A simplicial set X is isomorphic to $N(C)$ for some category C if and only if X has the unique right lifting property with respect to the inclusions $\Lambda_{i}^{n} \subset \Delta^{n}$ for $0<i<n$.
(c) A simplicial set X is isomorphic to $N(C)$ for some groupoid C if and only if X has the unique right lifting property with respect to the inclusions $\Lambda_{i}^{n} \subset \Delta^{n}$ for $0 \leq i \leq n$.

Exercise 3. Recall that a simplicial set is a Kan complex if it has the right lifting property with respect to the inclusions $\Lambda_{i}^{n} \subset \Delta^{n}$ for $0 \leq i \leq n$. Show that every simplicial group is a Kan complex.

Exercise 4. Let $p: E \rightarrow B$ be a functor between groupoids and let $e_{0} \in E, b_{0}=p\left(e_{0}\right)$. The homotopy fiber F of p at b_{0} is the groupoid whose objects are pairs (e, γ) with $e \in E$ and $\gamma: p(e) \simeq b_{0}$ and with the obvious morphisms. Let $i: F \rightarrow E$ be the functor $(e, \gamma) \mapsto e$ and let $f_{0}=\left(e_{0}\right.$, id $) \in F$.
(a) Construct an action of $\pi_{1}\left(B, b_{0}\right)$ on $\pi_{0}(F)$ and a sequence

$$
\pi_{1}\left(F, f_{0}\right) \xrightarrow{i_{*}} \pi_{1}\left(E, e_{0}\right) \xrightarrow{p_{*}} \pi_{1}\left(B, b_{0}\right) \xrightarrow{\partial} \pi_{0}(F) \xrightarrow{i_{*}} \pi_{0}(E) \xrightarrow{p_{*}} \pi_{0}(B)
$$

which is exact in the following sense:
(1) exactness at $\pi_{1}\left(E, e_{0}\right): \operatorname{ker}\left(p_{*}\right)=\operatorname{im}\left(i_{*}\right)$
(2) exactness at $\pi_{1}\left(B, b_{0}\right): \partial \alpha=\partial \beta$ if and only if $\alpha^{-1} \beta \in \operatorname{im}\left(p_{*}\right)$
(3) exactness at $\pi_{0}(F): \partial$ is $\pi_{1}\left(B, b_{0}\right)$-equivariant and $i_{*}(a)=i_{*}(b)$ if and only of a and b are in the same orbit
(4) exactness at $\pi_{0}(E):\left(p_{*}\right)^{-1}\left(\left[b_{0}\right]\right)=\operatorname{im}\left(i_{*}\right)$
(b) Let $p: E \rightarrow B$ be a continuous map between compactly generated topological spaces \rrbracket^{1} and let $e_{0} \in E, b_{0}=p\left(e_{0}\right)$. The homotopy fiber F of p at b_{0} is the set of pairs (e, γ) with $e \in E$ and γ a path from $p(e)$ to b_{0} in B, topologized as a subspace of $E \times \operatorname{Hom}([0,1], B)$. Without going into the details, explain how (a) induces a long exact sequence of homotopy groups

$$
\cdots \rightarrow \pi_{n}\left(F, f_{0}\right) \xrightarrow{i_{*}} \pi_{n}\left(E, e_{0}\right) \xrightarrow{p_{*}} \pi_{n}\left(B, b_{0}\right) \xrightarrow{\partial} \pi_{n-1}\left(F, f_{0}\right) \rightarrow \cdots .
$$

[^0]
[^0]: ${ }^{1}$ The definition of compactly generated topological space is not very important here; what matters is that they satisfy the exponential law $\operatorname{Hom}(A \times B, C) \simeq \operatorname{Hom}(A, \operatorname{Hom}(B, C))$, where $\operatorname{Hom}(A, B)$ is the space of continuous maps with the compact-open topology.

