Exercise sheet 8

Exercise 1. Let \mathcal{C} be an exact category. Show that there is an equivalence of categories $Q\mathcal{C} \simeq Q(\mathcal{C}^{\text{op}})$.

Exercise 2. Let X be a scheme.

- (a) Show that the category Vect(X) of finite locally free \mathcal{O}_X -modules is an exact category if one takes admissible epimorphisms to be epimorphisms of sheaves.
- (b) Show that a morphism $u \colon \mathcal{E} \to \mathcal{F}$ in $\mathrm{Vect}(X)$ is an admissible monomorphism if and only if, for every $x \in X$ with residue field $\kappa(x)$, the induced morphism of $\kappa(x)$ -vector spaces $u(x) \colon \mathcal{E} \otimes_{\mathcal{O}_X} \kappa(x) \to \mathcal{F} \otimes_{\mathcal{O}_X} \kappa(x)$ is injective.

Exercise 3. Let \mathcal{A} be an abelian category and $\mathcal{C} \subset \mathcal{A}$ a full subcategory containing 0 and closed under extensions. Show that \mathcal{C} admits an exact structure in which a morphism is an admissible monomorphism (resp. an admissible epimorphism) if and only if it is a monomorphism (resp. an epimorphism) in \mathcal{A} whose cokernel (resp. kernel) belongs to \mathcal{C} . Moreover, the inclusion functor $\mathcal{C} \hookrightarrow \mathcal{A}$ is then exact.

Remark. Conversely, for any exact category \mathfrak{C} , one can show that there exists an abelian category and an exact fully faithful embedding $\mathfrak{C} \subset \mathcal{A}$, closed under extensions, such that the exact structure of \mathfrak{C} is inherited from \mathcal{A} . In fact, one can take \mathcal{A} to be the category of additive functors $\mathfrak{C}^{\text{op}} \to \operatorname{Ab}$ that send short exact sequences to left exact sequences.

Exercise 4. A ring R is called *flasque* if there exists an R-bimodule M, finitely generated and projective as a left R-module, and an isomorphism of bimodules $\theta \colon R \oplus M \simeq M$. An example is the ring of A-linear endomorphisms of $\bigoplus_{\mathbb{N}} A$ for any ring A.

Let R be a flasque ring.

- (a) Show that $K_0(R) = 0$.
- (b) More generally, show that the space K(R) is weakly contractible as follows. Construct a finite-product-preserving functor $\infty \colon \operatorname{Proj}(R) \to \operatorname{Proj}(R)$ with a natural equivalence $\infty(P) \simeq P \oplus \infty(P)$ (here, $\operatorname{Proj}(R)$ is the category of finitely generated projective left R-modules). Using the universal property of group completion, deduce that there exists a morphism $\infty \colon K(R) \to K(R)$ which is homotopic to $\operatorname{id} + \infty$, where $+\colon K(R) \times K(R) \to K(R)$ is induced by the functor $\oplus \colon \operatorname{Proj}(R) \times \operatorname{Proj}(R) \to \operatorname{Proj}(R)$. Using Eckmann-Hilton, deduce that $\pi_n K(R) = 0$ for all $n \geq 1$.

Remark. It follows from the group completion theorem that the space BGL(R) is acyclic.