SoSe 21 Riemannsche Flächen. Übungsblatt 3

- **3.1.** (Diskrete Bewertungen) Sei K ein Körper. Eine diskrete Bewertung auf K ist eine Abbildung $v: K \to \mathbb{Z} \cup \{+\infty\}$ mit folgenden Eigenschaften (für alle $a, b \in K$):
 - 1. $v(a) = +\infty \Leftrightarrow a = 0$
 - 2. v(ab) = v(a) + v(b)
 - 3. $v(a+b) \ge \min\{v(a), v(b)\}\$
 - (a) Sei k ein Körper und k(t) der Quotientenkörper des Polynomrings k[t]. Man definiert deg: $k(t) \to \mathbb{Z} \cup \{-\infty\}$, $\deg(p(t)/q(t)) = \deg(p(t)) \deg(q(t))$, mit $\deg(0) = -\infty$. Zeigen Sie, dass deg eine diskrete Bewertung auf k(t) ist.
 - (b) Sei X eine zusammenhängende Riemannsche Fläche und $x \in X.$ Zeigen Sie, dass die Ordnungsabbildung

$$\operatorname{ord}_x \colon \mathfrak{M}(X) \to \mathbb{Z} \cup \{+\infty\}$$

eine diskrete Bewertung auf $\mathcal{M}(X)$ ist.

(c) Welche Beziehung besteht zwischen (a) mit $k = \mathbb{C}$ und (b) mit $X = \mathbb{P}^1$?

3.2.

- (a) Zeigen Sie, dass die eigentliche holomorphe Abbildungen $p: \mathbb{C} \to \mathbb{C}$ genau die nichtkonstanten Polynome sind.
- (b) Sei $\operatorname{Aut}(\mathbb{C})$ die Menge aller Biholomorphismen $\mathbb{C} \to \mathbb{C}$. Zeigen Sie, dass

$$Aut(\mathbb{C}) = \{ a + bz \mid a, b \in \mathbb{C}, \ b \neq 0 \}.$$

- (c) Für ein nicht-konstantes Polynom $p(z) \in \mathbb{C}[z]$, bestimmen Sie die Verzweigungspunkte von $p \colon \mathbb{P}^1 \to \mathbb{P}^1$.
- **3.3.** Man betrachte die meromorphe Funktion $\tan = \frac{\sin}{\cos}$ auf \mathbb{C} . Man zeige, dass $\tan(\mathbb{C}) = \mathbb{P}^1 \setminus \{\pm i\}$ und dass $\tan: \mathbb{C} \to \mathbb{P}^1 \setminus \{\pm i\}$ eine Überlagerung ist.
- 3.4. (Weierstraßsche \wp -Funktion) Sei $\Gamma\subset\mathbb{C}$ ein Gitter. Die Weierstraßsche \wp -Funktion bzgl. Γ ist

$$\wp_{\Gamma}(z) = \frac{1}{z^2} + \sum_{\omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

(a) Zeigen Sie, dass \wp_{Γ} eine doppeltperiodische meromorphe Funktion auf \mathbb{C} bzgl. Γ ist, mit Polstellenmenge Γ .

Hinweis. Sie dürfen annehmen, dass die Summe $\sum_{\omega \in \Gamma \setminus \{0\}} \frac{1}{|\omega|^{\alpha}}$ konvergiert für $\alpha > 2$. Sei R > 0. Zeigen Sie zuerst, dass die Summe

$$\sum_{\substack{\omega \in \Gamma \setminus \{0\} \\ |\omega| \ge R}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

auf der Scheibe |z| < R gleichmäßig konvergiert, und damit eine holomorphe Funktion darauf definiert. Um zu beweisen, dass \wp_{Γ} doppeltperiodisch ist, betrachten Sie die Ableitung \wp'_{Γ} .

1

- (b) Man betrachte die induzierte holomorphe Abbildung $\wp_{\Gamma} \colon \mathbb{C}/\Gamma \to \mathbb{P}^1$. Wie viele Nullstellen hat sie, mit Vielfachheit gerechnet?
- (c) Sei $f \in \mathcal{M}(\mathbb{C})$ eine doppeltperiodische meromorphe Funktion bzgl. Γ , deren Pollstellenmenge genau Γ ist und deren Laurentreihenentwicklung um 0 folgende Gestalt hat:

$$f(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} a_k z^k.$$

Zeigen Sie, dass $f = \wp_{\Gamma}$.

 $\mathit{Hinweis}.$ Betrachten Sie die Differenz $f-\wp_{\Gamma}$ auf $\mathbb{C}/\Gamma.$