Lineare Algebra II 5. Übungsblatt

Abgabe: Do. 02.06.2022, 10:15

Einstiegsaufgabe A. Bestimmen Sie die Signatur der symmetrischen Bilinearform b_A für die folgenden Matrizen A über \mathbb{R} :

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

Einstiegsaufgabe B. Berechnen Sie die vollständigen Multiplikationstabellen der endlichen Ringe $\mathbb{Z}/4\mathbb{Z}$ und $\mathbb{Z}/6\mathbb{Z}$, und bestimmen Sie damit die Einheitengruppen $(\mathbb{Z}/4\mathbb{Z})^{\times}$ und $(\mathbb{Z}/6\mathbb{Z})^{\times}$.

Aufgabe 1. (2+2 Punkte) Sei K ein Körper und sei V ein K-Vektorraum.

- (a) Prüfen Sie nach, dass das Tripel $(\operatorname{End}_K(V), +, \circ)$ ein Ring ist, wobei + die punktweise Addition ist.
- (b) Falls $\dim_K V \geq 2$, zeigen Sie, dass der Ring $(\operatorname{End}_K(V), +, \circ)$ nicht kommutativ ist.

Aufgabe 2. (2 Punkte) Sei $z \in \mathbb{C}$ eine komplexe Zahl, so dass $z^n \in \mathbb{Z}$ für ein $n \in \mathbb{N} \setminus \{0\}$. Zeigen Sie, dass

$$\mathbb{Z}[z] := \{a_0 + a_1 z + \dots + a_{n-1} z^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{Z}\}$$

ein Unterring von \mathbb{C} ist.

Aufgabe 3. (2+2 Punkte)

- (a) Zeigen Sie, dass $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$. Hinweis. Betrachten Sie die Abbildung $N \colon \mathbb{Z}[i] \to \mathbb{Z}$, $N(x) = |x|^2$, und zeigen Sie dass N bildet Einheiten in $\mathbb{Z}[i]$ auf Einheiten in \mathbb{Z} ab.
- (b) Bestimmen Sie alle Einheiten in $\mathbb{Z}[\sqrt{-d}]$ für alle $d \in \mathbb{N}, d \geq 2$.

Bemerkung. Die Einheiten in $\mathbb{Z}[\sqrt{d}]$ für $d \geq 2$ sind schwieriger zu bestimmen. Ein ähnliches Argument zeigt, dass $a + b\sqrt{d}$ genau dann eine Einheit in $\mathbb{Z}[\sqrt{d}]$ ist, wenn $a^2 - db^2 = \pm 1$. Dies ist eine berühmte diophantische Gleichung, die Pellsche Gleichung, die bekanntlich unendlich viele Lösungen besitzt (außer wenn $\sqrt{d} \in \mathbb{N}$). Es gilt zum Beispiel

$$\mathbb{Z}[\sqrt{2}]^{\times} = \{ \pm (1 + \sqrt{2})^n \mid n \in \mathbb{Z} \}.$$