
1. Complex oriented cohomology theories

Let R be a homotopy commutative ring spectrum. We say that R is complex
orientable if there exists a factorization

S ' Σ−2Σ∞CP1 R

Σ−2Σ∞CP∞

1

ū

We call such a factorization ū ∈ R̃2(CP∞) a complex orientation. A complex
orientation is exactly the datum needed to define a Thom class (“orientation”) for
each complex vector bundle. In particular we can define a theory of Chern classes.
Today we will be only interested in c1 of line bundles. If L is a line bundle over a
space X, it is classified by some map fL : X → BU1 ' CP∞. Therefore we can
define

c1(L) := f∗Lu .

Example 1. If R = Z, we can take u ∈ H2(CP∞;Z) be the class corresponding to
the 2-cell in the standard decomposition. Then c1(L) is the usual Chern class.

Example 2. If R = KU is the complex K-theory spectrum, we can take u ∈
K̃U

2
(CP∞) given by ([η] − 1)β−1 where η is the tautological bundle and β is the

Bott class. Then c1(L) = ([L]− 1)β−1.

Example 3. If R = MU := Th(BU) is the complex cobordism spectrum, the
equivalence Th(BU1) ' Σ∞CP∞ identifies the map Th(BU1) → Th(BU) = MU
with a complex orientation.

If R is complex orientable, the Atiyah-Hirzebruch spectral sequence degenerates
and one gets isomorphisms

R∗(CP∞) ' R∗[[u]] R∗(CP∞ × CP∞) ' R∗[[u1, u2]]

So, if we take the map µ : CP∞ ×CP∞ → CP∞ classifying the sum of line bundles
we obtain µ∗u = F (u1, u2) where F is a power series such that

c1(L1 ⊗ L2) = F (c1(L1), c1(L2)) .

Example 4. In the case R = Z we have F (x, y) = x+ y. In the case R = KU we
have F (x, y) = β−1[(1 + βx)(1 + βy)− 1]

The power series F satisfies the following properties

(1) F (x, 0) = F (0, x) = x;
(2) F (x, F (y, z)) = F (F (x, y), z);
(3) The coefficient aij ∈ π∗R of xiyj lies in degree 2(i+ j)− 2

If A∗ is a graded ring a power series F ∈ A[[x, y]] with the above three properties
is called a graded formal group law. There is a universal graded formal group law
over the graded ring

L→ Z[aij ]/(−−)

Therefore for every complex oriented homotopy ring spectrum R we have a map
L→ π∗R.
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Theorem 5 (Quillen). The map

L→ π∗MU

is an isomorphism.

So for any complex oriented cohomology theory we obtain a graded formal group
law. Can we go the other way around? Sometimes! Let [n] = F (x, [n − 1](x)) be
the “multiplication by n” power series.

Theorem 6 (Landweber exact functor theorem). Suppose (A∗, F ) is a graded for-
mal group law and for every prime p let vn be the coefficient of xp

n

in [p]. Then
the functor

X 7→ MU∗X ⊗MU∗ A∗

is a homology theory if (p, v1, v2, . . . ) is a regular sequence. In which case the
homotopy ring spectrum representing it is the unique homotopy ring spectrum with
the given graded formal group law.

Example 7. Let A∗ = Z[β±1] with |β| = 2 and F (x, y) = x+ y + βxy. Then this
graded formal group law is Landweber exact and the corresponding homotopy ring
spectrum is KU. This is the famous Conner-Floyd theorem.

We will be interested in a special kind of ring spectra. We say that R is weakly
even periodic if the maps

π2R⊗π0R πnR→ πn+2R

are isomorphisms for every n ∈ Z. Note that by choosing n = −2 this implies that
π2R is an invertible module and π2nR ' (π2R)⊗n. We say that R is complex
periodic if it is complex orientable and weakly even periodic. The prototypical
example is KU. The graded formal group laws appearing in these case are special

A formal group over a commutative ring R is a pair (ω, F ) where ω is an
invertible R-module and F is a graded formal group law over Sym∗ω :=

⊕
n∈Z ω

⊗n.
It is clear that if A is a complex periodic ring spectrum, then we obtain a formal
group by taking (π2A,F ).

Algebraic geometry is a good source of formal groups.

Example 8. Let R be a commutative ring and let G be a locally of finite presenta-
tion, geometrically connected, geometrically reduced flat purely 1-dimensional group
scheme over R (from now one “group scheme over R”). Then we can get a formal
group (ω, F ) by taking ω to be the cotangent bundle of G at the indentity and by F
the Taylor series of the multiplication operation G×G→ G.

If G = Gm Is the multiplicative group, we obtain exactly the formal group of
K-theory (since the cotangent bundle of Gm is canonically trivialized). The other
important example comes from elliptic curves. An elliptic curve E → SpecR is
a proper group scheme over R.

Definition 9. An elliptic cohomology theory is a triple (E,A, ϕ) where E → SpecR
is an elliptic curve, A is a complex periodic ring spectrum and ϕ is an isomorphism
between the formal group of E and the formal group of A.

If the formal group of E is Landweber exact, then we can always build a unique
elliptic cohomology theory. We want to study the general case, and possibly do it
in a more structured way.
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Let Mell be the moduli stack of elliptic curves, that is the Deligne-Mumford
stack such that Map(SpecR,Mell) is naturally equivalent to the groupoid of elliptic
curves over R. Then it’s easy to check that every elliptic curve classified by a flat
map SpecR → Mell is Landweber exact, and therefore gives rise to an elliptic
cohomology theory.

Theorem 10 (Goerss-Hopkins-Miller). There is a sheaf Otop of E∞-ring spectra
on the étale topos of Mell such that for every flat E : SpecR→Mell the E∞-ring
Γ(SpecR,Otop) represents the elliptic cohomology theory associated to E.

Given the Goerss-Hopkins-Miller theorem we can define the elliptic cohomology
theory associated to any elliptic curve E : SpecR → Mell as Γ(SpecR,Otop).
Moreover we can consider also Γ(Mell,Otop) (note that this is not strictly speaking
an elliptic cohomology theory). This is an E∞-ring spectrum known as TMF.

The original proof the Goerss-Hopkins-Miller theorem went through a compli-
cated obstruction theory argument, which moreover proved that there exists a
unique such sheaf of E∞-ring spectra. In this seminar we will do a more conceptual
proof based on spectral algebraic geometry.

2. Spectral algebraic geometry

To prove the Goerss-Hopkins theorem, we will use ideas from spectral algebraic
geometry. For now we will not enter into the details of the definitions (that’s
what the next talk is for!), rather let us take for granted that there is a notion
of algebraic geometry over an E∞-ring. In particular we will use that there are
subcategories of Fun(CAlgR,Spc) whose objects we will call spectral schemes and
spectral Deligne-Mumford stacks respectively.

A (strict) commutative group scheme over R is a functor

G : CAlgR → D(Z)≥0

such that it becomes representable by a spectral scheme over R after postcomposing
with D(Z)≥0 → Spc.

Example 11. The multiplicative group Gm : CAlgR → D(Z)≥0 is defined by send-
ing S to the commutative group of strict units of S:

Gm(S) := t≥0 mapSp(Z, gl1(R))

where gl1(R) is the spectrum of invertible elements of R. Note that we need this
trick to make it into a Z-module.

Example 12. A spectral elliptic curve over R is a proper, locally of almost fi-
nite presentation geometrically reduced, geometrically connected commutative group
scheme of dimension 1.

A preorientation over a commutative group scheme G is a map of Z-modules
Z[2]→ G(R) or, equivalently, a class u ∈ π2G(R).

Example 13. Let Gm be the multiplicative group. Then the space of preorientations
of Gm over R is exactly

MapZ(Z[2],Gm(R)) ' MapE∞−Grp(B
2Z,GL1(R)) ' MapCAlg(S[CP∞], R)
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Note that if G is a group scheme over R we have that ΩG is affine and represented

by R⊗OG,e
R, therefore Ω2G is also affine represented by O⊗S

2

G,e ⊗OG,e
R. Thus the

space of preorientations is always representable by an E∞-ring R′. Moreover a
simple computation shows π0(R)→ π0(R′) is an isomorphism if R is connective.

We can then consider the stack Mpre
ell of preoriented (spectral) elliptic curves.

Then underlying ∞-topos of Mpre
ell is equivalent to the ∞-topos of Mell, precisely

we can see the map Mell →Mpre
ell as a “nilpotent thickening”. Thus we can think

ofMpre
ell as the datum of a connective sheaf of E∞-rings O′ onMell. One can think

of O′(R) as the smallest E∞-ring where we can define a lift of E. Unfortunately
O′ is not quite what we want since, for example, it is not complex periodic. But
we can fix this.

The dualizing line ωG of an algebraic group G is the unique R-module sitting in
the fiber sequence

ΣωG → OG,e ⊗R OG,e → OG,e

(that is ωG is the ideal of the diagonal in G×G at the identity section). Then for
every preorientation α we can define the Bott map

Σ2ωG → Σ(OG,e ⊗R OG,e)
α−→ R

We say that α is an orientation when this map is an equivalence.
I cannot find a direct proof, but a preorientation is just a map of formal group

Spf RCP∞ → Ĝ, and it is an orientation exactly when it is an equivalence.

Example 14. In the case G = Gm we have ωGm ' S canonically. Moreover for
the universal preorientation over S[CP∞] we have that the Bott map Σ2S[CP∞]→
S[CP∞] is exactly multiplication by the Bott element β ∈ π2S[CP∞]. Therefore the
space of orientations of Gm is represented by S[CP∞][β−1].

Using the fact that ωG is projective of rank 1, it is easy to show that the space
of orientations of an algebraic group is always representable. We write OG for the
E∞-ring over R classifying the space of orientations

Theorem 15 (Snaith). The E∞-ring OGm is equivalent to KU.

One could now ask what happens if we consider OE for E an elliptic curve
over a discrete ring. Unfortunately the answer is “not much interesting”: if G is
an algebraic group over a discrete ring OG is always an algebra over the rational
numbers.

We will deduce the Goerss-Hopkins-Miller theorem from the analog statement
for elliptic cohomology. In order to do so we need first to find a lift of the universal
elliptic curve on Mell over “the sphere spectrum”.

Proposition 16. The functor sending R to the groupoid of spectral elliptic curves
over R is represented by a spectral Deligne-Mumford stack Ms

ell whose underlying
∞-topos is the same as the moduli stack of elliptic curves.

Note that while this gives a sheaf Os of E∞-rings over Mell, it is not the sheaf
we are looking for. For example the sections of Os over affines are connective and
will not be complex orientable (at least in general). One should think about it as
a “spectral thickening” of Mell similar in spirit to S seen as a spectral thickening
of Z. One maybe would like a more explicit description of Ms

ell (similar to the
global quotient description of Mell given by the Weierstraß equations), but as far
as I know this has not been developed yet.
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Theorem 17 (Lurie). Let E : SpecR → Mell be an étale map and let E′ be the
corresponding spectral elliptic curve over Os(E). Then the E∞-ring OE′ classifying
orientations of E′ represents an elliptic cohomology theory associated to E.

Proof. This is essentially a computation of the homotopy groups of OE , since we
already know that its formal group is equivalent to the formal group associated to
E. �

From now on we will consider OE′ to be “the” elliptic cohomology associated to
E.

3. Tempered cohomology

There’s an ∞-category Glo whose objects are compact (abelian) Lie groups and
whose morphisms are given by

Glo(G,H) = MapLie(G,H)hH

It receives a map from the ∞-category of compact (abelian) Lie groups (in fact it
is a left fibration represented by the trivial group).

For every Lie group G we get a map

Oab
G → Glo G/H 7→ H

where Oab
G is the subcategory of those orbits with abelian stabilizers. Therefore we

have a left Kan extension

SpcG → Spcgl

In a sense a cohomology theory on Spcgl is a cohomology theory on SpcG for every
G. For more about it, stay tuned :).

Let G be a 1-dimensional commutative group scheme. Then for every finitely
generated abelian group B there is a group scheme G[B] such that G[B](R) =
MapZ(B,G(R)) (the proof is easy: B is generated by finite colimits by Z and group
schemes have finite limits).

Theorem 18. The datum of an extension of the functor G[−] : Abop
fg → GrpSch

along (̂−) Abfg → Gloop is exactly the datum of a preorientation of G.

Therefore if (G, α) is a preoriented group scheme we obtain a functor

Glo→ GrpSch
Γ−→ CAlgop

By right Kan extending we obtain finally a functor

AG(−) : Spcop
gl → CAlg

which is called the tempered cohomology of G.

Example 19. Let G = Gm be the oriented multiplicative group. Then the composite

Spcop
G → Spcop

gl → CAlg

is given by the equivariant K-theory functor X 7→ KUG(X). So the tempered co-
homology of the multiplicative group recovers equivariant K-theory. More generally
AG is represented by the global K-theory spectrum.

We know that KUG has some interesting properties. For example
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Theorem 20 (Atiyah-Segal). Let G be a compact Lie group and X a finite G-space.
Then the map

π∗KUG(X)→ π∗KU(XhG)

exhibits the right hand side as the completion of the left hand side at the augmen-
tation ideal.

Theorem 21 (Character theory). Let G be a finite group and X a finite G-space.
Then there is an equivalence

C⊗KU0
G(X) ' H2∗

(
∐
g∈G

Xg)/G;C


We will see that these two theorems are true in the case of a tempered cohomology

for a general Barsotti-Tate group (where C will need to be replaced by some ring
where the given Barsotti-Tate group is étale). For example this will produce the
HKR character theory as a biproduct.


