
1. Étale maps of E8-rings

Let R be an E8-ring. Recall that an R-module M is flat if π0M is a flat
π0R-module and the map

π0M bπ0R πnRÑ πnM

is an equivalence for every n P Z. When R is connective, this is equivalent to the
functor M b´ being left t-exact.

A map of E8-rings R Ñ S is étale if π0R Ñ π0S is an étale map of ordinary
rings and S is flat as an R-module.

Theorem 1. Let R be an E8-ring. Then the functor π0 induces an equivalence

ÉtR Ñ Étπ0R

2. 8-topoi

An 8-topos is an 8-category X that is a left exact localization of a presheaf
category. Precisely, there exists a small 8-category I and an adjunction

X L
Ô
i

PShpIq

where L is left-exact (i.e. it commutes with finite limits) and i is fully faithful.

Example 2. Suppose τ is a Grothendieck topology on I. Then X “ Shτ pIq is
an 8-topos (since sheafification is left-exact). It is an open problem whether every
8-topos can be realized this way.

Remark 3. There are in fact intrinsic characterizations of 8-topoi. For example
X is an 8-topos iff it is presentable and the functor X op Ñ Cat sending U to X{U
preserves small limits.

A map of 8-topoi (“geometric morphism”) is an adjunction

X f˚

Ô
f˚

X 1

where f˚ is left exact. It is easy to see that a morphism of sites induces a morphism
of associated topoi.

Example 4. Suppose X is an 8-topos and U P X . Then X{U is also an 8-topos
and there is a map of 8-topoi

X{U
p˚

Ô
p˚

X

with p˚pV q “ U ˆ V .

If X is an 8-topos and C is an 8-category with small limits, a C-valued sheaf is
a limit-preserving functor X op Ñ C. The category of C-valued sheaves is denoted
ShpX ; Cq. A morphism of 8-topoi f : X Ñ X 1 induces an adjunction

ShpX ; Cqf
˚

Ô
f˚

ShpX 1; Cq

Example 5. Suppose X “ Shτ pIq. Then using the universal property of Bousfield
localizations and of presheaf categories we see that ShpX ; Cq » Shτ pI; Cq.

Example 6. By the adjoint functor theorem we have ShpX ; Spcq » X . Moreover
X♥ :“ ShpX ; Setq is the full subcategory of discrete objects.
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Now suppose F P ShpX ; Spq is a sheaf of spectra. Then we can define πnF by

taking the “sheafification” of X op F
ÝÑ Sp

πn
ÝÝÑ Ab, that is the best limit-preserving

approximation. We say that F is connective if πnF “ 0 for all n ă 0.
A map f : X Ñ Y in an 8-topos is an effective epimorphism if Y is the limit of

its Čech cover. If X P X is an object a cover of X is a set of objects tUiu P X{X
such that

š

i Ui Ñ X is an effective epimorphism. A cover of X is simply a cover
of its terminal object.

3. Spectral Deligne-Mumford stacks

Let R be an E8-ring. Then we can take the 8-topos SpecR which is given by
considering the site ÉtR with the étale topology. It comes with a sheaf of E8-rings
OSpecR sending RÑ S to S.

A (nonconnective) spectral Deligne-Mumford stack is a pair pX ,Oq where
X is an 8-topos, O is a sheaf of E8-rings on X , such that there exists a cover tUiu
of X and E8-rings Ri such that pX{Ui

,Oq is equivalent to pSpecRi,OSpecRiq for
every i.

We say that pX ,Oq is connective if O is.

Example 7. Let X be an ordinary scheme (or even an ordinary Deligne-Mumford
stack). Then if we let Xét be the étale topos of X, then pXét,Oq is a spectral Deligne-
Mumford stack. This in fact gives an embedding of classical Deligne-Mumford stacks
into spectral Deligne-Mumford stacks.

The inclusion of classical Deligne-Mumford stacks into all connective spectral
Deligne-Mumford stacks has a left adjoint, which we call the “underlying” classical
DM-stack (concretely this replaces O by π0O and the 8-topos by its 1-localic
approximation).

There is a functor from spectral DM stacks and functors CAlg Ñ Spc sending
X to MappSpec´,X q. This is fully faithful. Moreover a spectral DM stack is
connective iff this functor factors through the localization CAlg Ñ CAlgcn.

Lemma 8. The space of spectral DM-stacks flat over R is equivalent to the space
of spectral DM-stacks flat over tě0R.

Proof. The inverse functor is given by the connective cover functor pX ,Oq ÞÑ
pX , tě0Oq. �

4. Spectral elliptic curves

We let Var`pRq to be the 8-category of flat spectral DM stacks over R such that
tě0X Ñ Spec tě0R is proper, locally almost of finite presentation, geometrically
reduced and geometrically connected. Note that the map Var`ptě0Rq Ñ Var`pRq
is an equivalence. A strict abelian variety over R is a functor

CAlgR Ñ ModcnZ

such that it becomes representable by an object in Var` after forgetting to spaces.
An elliptic curve over R is an abelian variety over R of dimension 1 (that is, such
that for every map tě0R Ñ k where k is an algebraically closed field the classical
abelian variety over k has dimension 1).

When R is a discrete ring, this reduces to the classical notion of
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5. The moduli stack of elliptic curves

Our goal is the following

Theorem 9. There exists a spectral Deligne-Mumford stack Ms
ell such that for

every E8-ring R the space MappSpecR,Ms
ellq is equivalent to the space of strict

spectral elliptic curves over R. Moreover the underlying 8-topos of Ms
ell is equiv-

alent to the 8-topos of its underlying Deligne-Mumford stack Mell.

To prove it we will use the following

Theorem 10 (Artin-Lurie representability theorem). Let F : CAlgcn Ñ Spc be a
functor. Suppose that

‚ F is a sheaf for the étale topology;
‚ The restriction of F to discrete rings is represented by a Deligne-Mumford

stack X0;
‚ F is locally almost of finite presentation: it commutes with all filtered limits

in CAlgďn for every n ă 8;
‚ F is nilcomplete: For every R we have F pRq » limF ptďnRq;
‚ F is infinitesimally cohesive: for every maps RÑ S and R1 Ñ S such that

they are surjections with nilpotent kernels on π0 we have F pR ˆS R
1q »

F pRq ˆF pSq F pR
1q

‚ F admits a cotangent complex: for every R and η P F pRq there’s an R-
module LF,η such that MapRpLF,η,Mq is equivalent to the fiber of F pR ‘
Mq Ñ F pRq. Moreover for every map of E8-rings f : R Ñ S the map
f˚LF,η Ñ LF,fη is an equivalence.

Then there exists a (connective) spectral Deligne-Mumford stack X representing F
and moreover its 8-topos is the same as its underlying classical DM stack.

In fact we won’t prove most of this (sorry!)

Proposition 11. The functor R ÞÑ ιVar`pRq is infinitesimally cohesive, locally
almost of finite presentation and nilcomplete.

Lemma 12. The functor R ÞÑ ιVar`pRq has a connective cotangent complex.

Proof. Let X P Var`pRq. We need to study ιVar`pR ‘Mq ˆιVar`pRq tXu. Using
that ιVar` is infinitesimally cohesive we have a pullback diagram

ιVar`pR‘Mq ιVar`pRq

ιVar`pRq ιVar`pR‘ ΣMq

so
ιVar`pR‘Mq ˆιVar`pRq tXu » ιVar`pRq ˆιVar`pR‘ΣMq tXR‘ΣMu

This is the space of couples pY, η : YR‘M
„
ÝÑ XR‘M q where Y is a variety over R.

That is, identifying Y with X by the pullback of η with R, this is the space of maps
XR‘M Ñ XR‘M extending the identity over R. By the theory of the cotangent
complex this is just MapXpLX{R,Σf˚Mq » MapRpΣ

´1f`LX{R,Mq. THerefore

the cotangent complex at X is Σ´1f`LX{R �

Lemma 13. For every simplicial set K with finitely many simplices in each di-
mension the functor R ÞÑ ιFunpK,Var`pRqq has a connective cotangent complex.
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Proof. We will prove more generally that for every mapK Ñ K 1 the map FunpK 1,Var`q Ñ
FunpK,Var`q has a connective cotangent complex. As usual one can reduce to the
case B∆1 Ñ ∆1. So we need to show that the diagonal map

ιFunp∆1,Var`pRqq Ñ ιVar`pRq ˆ ιVar`pRq

has a connective cotangent complex. To do so we need to describe the space of
dotted arrows in the diagram

SpecR ιFunp∆1,Var`pRqq

SpecpR‘Mq ιVar`

The bottom arrow corresponds to XR‘M , YR‘M P Var`pR ‘ Mq and the top
arrow gives a map f : XR Ñ YR in Var`pRq. Therefore the space of dotted
lifts is equivalent to the space of extensions to XR‘M of XR Ñ YR Ñ YR‘M .
The theory of cotangent complex tells us this is MapXpf

˚LY {R, p˚Mq, that is
MapRpp`f

˚LY {R,Mq. �

Lemma 14. The functor sending R to the groupoid of abelian varieties is in-
finitesimally coehesive, locally almost of finite presentation, nilcomplete and admits
a cotangent complex.

Proof. That it is infinitesimally cohesive and nilcomplete follows from the fact that
abelian group objects commute with limits. That it is locally almosto of finite
presentation follows from the fact that abelian group objects commute with uni-
formly bounded above filtered colimits. So it is enough to look at the cotangent
complex. But the trick here is to see that the map Var`pR ‘Mq Ñ Var`pRq is
conservative �


