1. ETALE MAPS OF E,-RINGS

Let R be an E,-ring. Recall that an R-module M is flat if moM is a flat
moR-module and the map
oM @ror T R — T M
is an equivalence for every n € Z. When R is connective, this is equivalent to the
functor M ® — being left t-exact.
A map of Eg-rings R — S is étale if mgR — 7S is an étale map of ordinary
rings and S is flat as an R-module.

Theorem 1. Let R be an Eqy-ring. Then the functor my induces an equivalence

Etg — Bty r

2. 00-TOPOI

An oo-topos is an co-category X that is a left exact localization of a presheaf
category. Precisely, there exists a small co-category Z and an adjunction

x£PSh(7)
where L is left-exact (i.e. it commutes with finite limits) and ¢ is fully faithful.

Example 2. Suppose T is a Grothendieck topology on I. Then X = Sh.(I) is
an o0-topos (since sheafification is left-exact). It is an open problem whether every
co-topos can be realized this way.

Remark 3. There are in fact intrinsic characterizations of co-topoi. For example
X is an co-topos iff it is presentable and the functor X°P — Cat sending U to Xy
preserves small limits.

A map of co-topoi (“geometric morphism”) is an adjunction
*
x5 x
S
where f* is left exact. It is easy to see that a morphism of sites induces a morphism
of associated topoi.

Example 4. Suppose X is an co-topos and U € X. Then Xy is also an o0-topos
and there is a map of co-topoi
*
Xysx
P
with p*(V) =U x V.
If X is an oo-topos and C is an oo-category with small limits, a C-valued sheaf is

a limit-preserving functor X°? — C. The category of C-valued sheaves is denoted
Sh(X;C). A morphism of co-topoi f: X — X’ induces an adjunction

*
Sh(X; C);:, Sh(X";C)
*
Example 5. Suppose X = Sh,(Z). Then using the universal property of Bousfield
localizations and of presheaf categories we see that Sh(X;C) ~ Sh,(Z;C).

Example 6. By the adjoint functor theorem we have Sh(X;Spc) ~ X. Moreover
XY := Sh(AX;Set) is the full subcategory of discrete objects.
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Now suppose F' € Sh(X;Sp) is a sheaf of spectra. Then we can define 7, F' by

taking the “sheafification” of A°P EiN Sp =% Ab, that is the best limit-preserving
approximation. We say that F' is connective if 7, F' = 0 for all n < 0.

A map f: X — Y in an oo-topos is an effective epimorphism if Y is the limit of
its Cech cover. If X € X is an object a cover of X is a set of objects {Ui} € X)x
such that [ [, U; — X is an effective epimorphism. A cover of X is simply a cover
of its terminal object.

3. SPECTRAL DELIGNE-MUMFORD STACKS

Let R be an Eg-ring. Then we can take the co-topos Spec R which is given by
considering the site Etr with the étale topology. It comes with a sheaf of Eq,-rings
Ogpec r sending R — S to S.

A (nonconnective) spectral Deligne-Mumford stack is a pair (X', O) where
X is an co-topos, O is a sheaf of Ey-rings on X, such that there exists a cover {U;}
of & and Ex-rings R; such that (X)y,,0) is equivalent to (Spec R;, Ospec r,;) for
every 1.

We say that (X, O) is connective if O is.

Example 7. Let X be an ordinary scheme (or even an ordinary Deligne-Mumford
stack). Then if we let X¢; be the étale topos of X, then (Xgt, O) is a spectral Deligne-
Mumford stack. This in fact gives an embedding of classical Deligne-Mumford stacks
into spectral Deligne-Mumford stacks.

The inclusion of classical Deligne-Mumford stacks into all connective spectral
Deligne-Mumford stacks has a left adjoint, which we call the “underlying” classical
DM-stack (concretely this replaces O by myO and the oo-topos by its 1-localic
approximation).

There is a functor from spectral DM stacks and functors CAlg — Spc sending
X to Map(Spec —, X'). This is fully faithful. Moreover a spectral DM stack is
connective iff this functor factors through the localization CAlg — CAlg®”.

Lemma 8. The space of spectral DM-stacks flat over R is equivalent to the space
of spectral DM-stacks flat over t>oR.

Proof. The inverse functor is given by the connective cover functor (X,0) —
(X,t;o@). O

4. SPECTRAL ELLIPTIC CURVES

We let Var, (R) to be the co-category of flat spectral DM stacks over R such that
t>9X — SpectsoR is proper, locally almost of finite presentation, geometrically
reduced and geometrically connected. Note that the map Var, (t>0R) — Vary (R)
is an equivalence. A strict abelian variety over R is a functor

CAlgp — Modz"

such that it becomes representable by an object in Var, after forgetting to spaces.
An elliptic curve over R is an abelian variety over R of dimension 1 (that is, such
that for every map t>oR — k where k is an algebraically closed field the classical
abelian variety over k has dimension 1).

When R is a discrete ring, this reduces to the classical notion of



5. THE MODULI STACK OF ELLIPTIC CURVES
Our goal is the following

Theorem 9. There exists a spectral Deligne-Mumford stack M?,, such that for
every Eq-ring R the space Map(Spec R, M3,;) is equivalent to the space of strict
spectral elliptic curves over R. Moreover the underlying co-topos of M3, is equiv-
alent to the co-topos of its underlying Deligne-Mumford stack M.

To prove it we will use the following

Theorem 10 (Artin-Lurie representability theorem). Let F' : CAlg® — Spc be a
functor. Suppose that

F is a sheaf for the étale topology;
o The restriction of F' to discrete rings is represented by a Deligne-Mumford
stack Xo;
o Fislocally almost of finite presentation: it commutes with all filtered limits
in CAlgg,, for every n < oo;
e F is nilcomplete: For every R we have F(R) ~ lim F(t<, R);
o I is infinitesimally cohesive: for every maps R — S and R’ — S such that
they are surjections with nilpotent kernels on my we have F(R xg R') ~
F(R) xp(s) F'(R)
e F' admits a cotangent complex: for every R and n € F(R) there’s an R-
module L, such that Mapr(Lg,, M) is equivalent to the fiber of F(R ®
M) — F(R). Moreover for every map of Eq-rings f : R — S the map
f*Lgy — LE gy is an equivalence.
Then there exists a (connective) spectral Deligne-Mumford stack X representing F
and moreover its 00-topos is the same as its underlying classical DM stack.

In fact we won’t prove most of this (sorry!)

Proposition 11. The functor R — 1 Var, (R) is infinitesimally cohesive, locally
almost of finite presentation and nilcomplete.

Lemma 12. The functor R +— 1 Vary(R) has a connective cotangent complex.

Proof. Let X € Vary (R). We need to study ¢ Var, (R@® M) X, var, (r) {X}. Using
that ¢ Var is infinitesimally cohesive we have a pullback diagram

tVary (R@ M) ——— 1 Var (R)

l |

tVar, (R) ——— +Var, (R®XM)
SO
tVary (R® M) X, var, (ry {X} =~ t Vary (R) X, var, (rezm) {XrexM}

This is the space of couples (Y,n : Yrgy — Xpeun) where Y is a variety over R.
That is, identifying Y with X by the pullback of n with R, this is the space of maps
Xrom — Xrewm extending the identity over R. By the theory of the cotangent
complex this is just Mapy (Lx /g, 2f*M) ~ MapR(E_1f+LX/R,M). THerefore
the cotangent complex at X is X1 f, Ly /R O

Lemma 13. For every simplicial set K with finitely many simplices in each di-
mension the functor R — (Fun(K, Vary (R)) has a connective cotangent complez.



Proof. We will prove more generally that for every map K — K’ the map Fun(K’, Var, ) —
Fun(K, Var, ) has a connective cotangent complex. As usual one can reduce to the
case 0A! — Al. So we need to show that the diagonal map

tFun(A', Var, (R)) — ¢ Var, (R) x ¢ Var, (R)

has a connective cotangent complex. To do so we need to describe the space of
dotted arrows in the diagram

Spec R ———— (Fun(Al, Var, (R))

| |

Spec(R®M) ———  (Var,

The bottom arrow corresponds to Xpgum, Yreym € Vary (R @ M) and the top
arrow gives a map f : Xg — Yg in Vary(R). Therefore the space of dotted
lifts is equivalent to the space of extensions to Xprgrn of Xp — Yr — Yraum.
The theory of cotangent complex tells us this is Mapy (f*Ly g, p*M), that is
Mapg(p+ f*Ly /g, M). U

Lemma 14. The functor sending R to the groupoid of abelian varieties is in-
finitesimally coehesive, locally almost of finite presentation, nilcomplete and admits
a cotangent complex.

Proof. That it is infinitesimally cohesive and nilcomplete follows from the fact that
abelian group objects commute with limits. That it is locally almosto of finite
presentation follows from the fact that abelian group objects commute with uni-
formly bounded above filtered colimits. So it is enough to look at the cotangent
complex. But the trick here is to see that the map Vary(R@® M) — Vary(R) is
conservative (I



