
KU- AND K(1)-LOCALIZATION
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Abstract. In this note, we give a brief overview of E-localization and explain

telescope conjecture (at height 1), which describes LK(1) as a telescopic/finite

localization. In particular we show that LKU is a smashing localization, define
Morava K-theory K(1) at a prime p and show that LK(1)(X) = LKU (X)∧p
and eventually define Selmer K-theory KSel(C).
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This document contains slightly expanded version of an overview talk, delivered
at Selmer K-theory Oberseminar organized by Prof. Marc Hoyois, on the topic
KU- and K(1)-localization [Cla17]. these notes are entirely expository and are not
aimed to give a comprehensive account; rather, we hope it might be seen as a bridge
between chromatic homotopy theory and algebraic K-theory.

We have augmented the original content of the talk by some materials well known
to the audience of this subject. In particular, we have proved some results that were
recalled during the talk. We will assume some familiarity with basic notions from
stable homotopy theory, chromatic homotopy theory and algebraic K-theory, the
interested reader can refer to [Lur17], [Rav92a] and [TT90] respectively for the
same.

1. E-localization

We will start with some historical context to get motivation for introducing
E-localization. The stable homotopy category Sp is extraordinarily complicated.
However, a set of approximations and localizations to it that are much simpler and
closer to algebra. The stable homotopy category is somewhat analogous to the
derived category of a ring R, only that R is replaced by the stable sphere S. For
simplicity, we always consider the p-local stable homotopy category and the p-local
sphere for some prime p. It is very common to study R-modules using the fields
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over R, and in recent years there has been an enormous work on studying the stable
homotopy category via its fields. These fields are referred to as Morava K-theories,
denoted by K(n) introduced by Morava in early 1970’s.

Associated to MoravaK-theories are various (homotopy) categories of local spec-
tra that are the approximations to the stable homotopy category mentioned above.
There is the category L of spectra local with respect to K(0) ∨ · · · ∨K(n) and the
category K of spectra local with respect to K(n). There categories are themselves
stable homotopy categories, in the sense of Hopkins [HS98]. We will show that the
category K is in a certain sense irreducible; that is, it has no nontrivial further
localizations.

We will speak about a number of results from Chromatic homotopy theory (such
as the smashing theorem, telescopic conjecture) which provides an understanding
of K for all n and p will give complete information about S.

Definitions 1.1. Let E ∈ Sp be a spectrum.

• A spectrum X is called E-acyclic if E ⊗X ≃ 0. And we denote NullE =
{X ∈ Sp|E ⊗X ≃ 0}
• X is called E-local if any map from an E-acyclic spectrum Y into X is
nullhomotopic (i.e., Y ∈ NullE ⇒ [Y,X] ≃ 0).
• f : X → Y is called E-equivalence if E⊗f : E⊗X → E⊗Y is an equivalence
or, equivalently, if the fiber of f is E -acyclic in other words, a map is an
E-equivalence if and only if it induces an equivalence in E-homology.

Notation 1.2. We will denote the full subcategory of E-local spectra by SpE .

A localization functor is an endofunctor L of the stable homotopy category to-
gether with a natural transformation η : id→ L such that Lη : L→ L2 is an equiv-
alence and Lη ≃ ηL. These localization functors were first discussed in Adams’
blue book [Ada74], Bousfield in his [Bou79] came up with a non-computational
existence proof for such localization functor which forces the E-equivalence to be
invertible.

Theorem 1.3. If E is a spectrum, then there exists a functor

LE : Sp→ Sp

and a natural transformation ηE : id→ LE such that for any spectrum X,

(a) the map ηE(X) : X → LEX shows that LEX is E-local.
(b) the map X → LEX is an E-equivalence : that is, it induces an isomorphism

on E-homology groups E∗(X) ≃ E∗LE(X).

The functor LE is called Bousfield localization at E and the fiber ME of ηE is called
E-acyclization.

So the fiber MEX → X → LEX is E-acyclic, so if a spectrum Y is E-local then
the restriction map [LEX,Y ] → [X,Y ] is an isomorphism, and Map(LEX,Y ) →
Map(X,Y ) is a weak equivalence. So LE can be regarded as a left adjoint to the
inclusion SpE ⊂ Sp of the full subcategory of E-local spectra.

We need prove the existence of this localization functor, Adams tried to do this
by directly localizing the homotopy category, but this procedure is more rigorous
and combinatorial. The hint is, a localization of a locally small category need not
be locally small. Bousfield in [Bou79] uses this hint and some clever idea from
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cardinalities of their spectra, a trick later called as “Bousfield-Smith cardinality
argument” [Hir03][§4.5]. The proof stretches until Theorem 1.8.

Recall that a subspectrum B of a CW-spectrum X is closed if B is a union of
cells and any cell of X with some suspension in B is in B; this assures that X/B
is a CW-spectrum.

Lemma 1.4. Let X be a CW-spectrum and B a proper closed subspectrum with
E∗(X,B) = 0, and let us assume κ be an infinite cardinal ≥ |π∗E|. Then there is
a closed subspectrum W ⊆ X with at most κ cells that does not contain in B and
E∗(W,W ∩B) = 0.

Proof. It’s enough to prove that the collection of spectra W with |E∗W | ≤ κ
is closed under κ-small colimits. Let W1 be any closed subspectrum of X not
contained in B and with at most κ cells. Inductively, for any Wn and for any class
α ∈ E∗(Wn,Wn ∩B), choose a finite closed subspectrum Vα ∈ X such that α goes
to zero in E∗(Wn ∪ Vα, (Wn ∪ Vα)∩B), and let Wn+1 be the union of all Wn along
with all Vα. By assumption, if Wn has at most κ-cells, then E∗(Wn) has at most
κ elements since κ ≥ |π∗E|; thus by induction, all Wn have at most κ-cells. And
constructing W = colimWn; it is clear that E∗(W,W ∩ B) = 0; that is W is not
contained in B, and that W has at most κ cells. □

Lemma 1.5. For any E, there exists an E-acyclic spectrum A such that a spectrum
X is E-local if and only if [A,X] ≃ 0

Proof. Choosing κ as before, and let {Kα} be a set of weak equivalence classes of
E-acyclic spectra with at most κ cells. Let A =

∨
αKα. Clearly if X is E-local,

then [A,X] ≃ 0 (from definition). Conversely, if [A,X] ≃ 0, then [A′, X] ≃ 0
for any spectrum A′ that is obtained from A by taking weak equivalences, shifts,
wedges, summands, and cofibers. Let C(A) denote this class of spectra, so now it
suffices to prove that every E-acyclic spectrum of A belongs in C(A).

Let X be a E-acyclic spectrum; up to weak equivalence, we can consider X to
be a CW-spectrum. By the previous lemma we can construct,

0 = B0 ⊂ B1 ⊆ · · ·Bn = X

such that

(i) each Br is an E-acyclic subspectrum,
(ii) each Br+1 is obtained from Br by adding Wr as in the previous lemma,
(iii) for r a limit ordinal, Br =

⋃
k<r Bk.

Now, if Br ∈ C(A), there is a cofiber sequence

Br → Br+1 → Kα,

where Kα is weakly equivalent to E-acyclic spectrum Wr/(Wr ∩ Br), and thus a
cofiber sequence

ΩKα → Br → Br+1,

thus Br+1 is also in C(A). Likewise, if r is a limit ordinal, it is the cofiber of∨
k<r

Bk
1−i−−→

∨
k+1<r

Bk+1 → Br,

here i is the wedge of Bk ↪→ Bk+1. By transfinite induction, all Br, and in particular
X belongs in C(A). □
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A lot happened in the field of categories since Bousfield’s paper, so we will prove
a lot of things in more mordern language but still stick to the spirit of the original
paper. Before we prove the final part of the existence a localization functor, we will
quickly look at the small object argument which plays a key role in the proof. For
a reference on the small object argument, check [Hov99][§2.1.2]

1.6. We will briefly discuss how, Bousfield localizations can be formed by the small
object argument with the colimits in our category.

A known argument from Kan is that we can replace the mapping space criterion
for local objects with a lifting criterion when C has homotopy colimits using the
notions of ∞-categories.

Given a map f0 : A0 → B ∈ C, we can construct a double mapping cylinders
fn : An → B and we find that an object Y is f0-local if and only if ever map
g : An → Y can be extended to a map g : B → Y up to homotopy. More generally,
If S and T are classes of morphisms and a collection of maps S is containing in
a larger T closed under double mapping cylinders, and ask whether Y satisfies an
extension property with respect to T .

Inductively, first start with Y0 = Y . For a given Yk, either Yk is local (in this
case, we are done) or there exists some set of maps Ai → Bi in T and the maps
gi : Ai → Yn which do not extend Bi up to homotopy. The homotopy pushout⊔

i

Bi ←
⊔
i

Ai → Yk

and call this as Yk+1. The map Yk → Yk+1 is an S-equivalence because it is a
homotopy pushout along an S-equivalence, and all the solutions for the extension
problem in Yk now contain in Yk+1.

So following the above argument we construct Y0, Y1, Y2, . . . , and define Ys =
ho colimYn. Once we have constructed Yk for all the ordinals k < r, we define a
new Yr = ho colimYk. The map Y → Yr is a homotopy colimit of S-equivalence
and hence S-equivalence.

Now, the problem is we need to stop this procedure at some point, like some
ordinal r which is extremely large such that any map Ai → Yr factors, up to
homotopy, through some object Yk with k < r. This could happen due to the
compactness property of the object Ai, and this is called the small object argument.
On the point-set level this has been studied by Smith’s theory of combinatorial
model categories and on the homotopical level this can be addressed using Lurie’s
theory of presentable ∞-categories.

Remark 1.7. If our category C does not have enough colimits, the small object
argument may not apply. But, this doesn’t stop Bousfield localizations from existing
as they don’t depend upon this particular construction in the argument.

Theorem 1.8. For any E, there exists a localization functor X 7→ [X → LEX].

Proof. From the previous lemma, all we need is a canonical map X → LEX such
that [A,LEX] ≃ 0. Getting ideas from the small object argument, we can do this by
successively coning off all maps from A and using transfinite induction. By initial
construction A is a wedge of spectra with less than κ cells, each of which should
be κ-small, so A is κ-small (could be even bigger than the one we chose earlier)
and the small object argument goes through. This also gives the functoriality of
A→ LEX. □
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Example 1.9. Lets consider E be the Eilenberg-McLane spectrum HQ. Then a
spectrum X is E-acyclic if and only if the homotopy groups π∗X consist entirely
of torsion. A spectrum X is E-local if and only if the homotopy groups π∗X are
rational vector spaces.

Example 1.10. Bousfield localization can also be found in chain complexes of
abelian groups as well. Fixing a prime p, we say that a projective chain complex
X• is Z/pZ-acyclic if X•⊗Z/pZ is nullhomotopic: equivalently, X• is Z/pZ-acyclic
if each homotopy group Hn(X•) is a Z[ 1p ]-module. We say that X• is Z/pZ-local if
every map from a projective Z/pZ-acyclic chain complex into X• is nullhomotopic.

For any projective chain complex X•, we can define its completion X̂• to be the
homotopy limit

lim←−
n

X• ⊗ Z/pZ.

As a homotopy limit of Z/pZ-local chain complexes, we conclude that X̂• is

Z/pZ-local. On the other hand, we can show that X• → X̂• induces a quasi-

isomorphism module p, so that X̂• can be identified with the Z/pZ-localizations of
X•.

1.11. It is good to think Bousfield localization as involving a mix of above examples.
Something like, it behaves as a restriction to an open scheme and sometimes as a
completion along a closed subscheme.

1.12. (Bousfield equivalence) id→ LE depends only on NullE . Two spectra E
and F are Bousfield equivalent if NullE = NullF . The Bousfield class < E > of E
is the equivalence class of E under the following equivalence relation:

< E >≥< F >⇔ NullE ⊆ NullF

< E > ⊗ < F > =< E ⊗ F >

< E > ⊕ < F > =< E ⊕ F >

Note that if < E >≥< F > then X is E-local ⇒ X is F -local and so there is a
natural transformation LE → LF which is obtained from id→ LF by applying LE .

Theorem 1.13. (Ohkawa) The collection of Bousfield classes forms a set of car-

dinality at least 2N0 and at most 22
N0

.

We won’t be needing this cool theorem anywhere in our talk.

2. Smashing Localization

Definition 2.1. A localization functor L is called smashing if it commutes with set-
indexed direct sums or, equivalently, if the natural transformation LX → LS ⊗X
is an equivalence for all spectra X (i.e., LX ≃ LS⊗X). Further, L is finite, if there
exists a collection of finite spectra that generates the category ker(L) of L-acyclics.

A Bousfield functor L : Sp → Sp is called smashing if it preserves colimits. If
every L-acyclic spectrum is a colimit of compact L-acyclic spectra, then L is called
finite and is in particular smashing.

Definition 2.2. If G is an abelian group, then theMoore spectrum SG is particular
spectrum with properties such that,

(i) π0(SG) = G,
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(ii) π<0(SG) = 0,
(iii) H>0(SG;Z) = 0.

A special case when G = Z/pZ is called mod-p Moore spectrum.

Let SG be any Moore spectrum. We will localize a spectrum X with respect to
SG so we can yield a spectrum LSGX. An important example is localization at the
Moore spectrum S/p, also called as p-completion, in which we will be interested form
now. For any spectrum X, X is E-local if and only if [A,X] ≃ 0 as in Lemma 1.5.
A spectrum A is acyclic if A⊗ S/p = 0. As taking colimits commutes with smash

products, this is equivalent to saying that the cofiber of the map A⊗S id⊗(×p)−−−−−→ A⊗S
is trivial. In other words, A being acyclic means the multiplication by p map

A
×p−−→ A is an isomorphism in ho(Sp).

2.1. p-completeness. Observing Definition 2.1, the key points are that there is
a map S → LS for any X then X → LS is a localization and the local objects
are closed under homotopy colimits. The later statement in a consequence of the
previous statement, because

LS⊗ colimXi → colim(LS⊗Xi)

is always an equivalence and the former is always local. Conversely, the homotopy-
colimit preserving functors on spectra are all equivalent to functors of the form
X → A⊗X for some A, and the localization map S→ A is as we need it to be.

2.3. We will elaborate about p-completeness roughly.
Let us consider S to be the collection of multiplication by p maps Sn → Sn for

n ∈ Z, S-local spectra are those whose homotopy groups are Z[1/p]-modules, and
their equivalences are those maps which induce isomorphisms on homotopy groups
after inverting p. The localization of S is the homotopy colimit

S[1/p] = colim
(
S p−→ S p−→ · · ·

)
,

which is a Moore spectrum for Z[1/p]. We also see that X → S[1/p]⊗X is an S-
equivalence for all X. Now we restrict S by considering it as a set of multiplication
by m maps, where m is relatively prime to p, this replaces the ring Z[1/p] with the
local ring Z(p).

Let us consider a spectrum X is local for the maps S[1/p]⊗ Sn → ∗ if and only
if the homotopy limit

lim(· · · p−→ X
p−→ X) ∼= Map(S[1/p], X)

is weakly contractible. Looking at the fiber sequence diagram

· · · X X X

· · · X X X

· · · X/p2 X/p ∗

p2

p p

p 1

1 1

shows that X is local if and only if the map X → X∧
p = limnX/p

n is an
equivalence. We refer to a spectrum local for these maps as p-complete; a Bousfield
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localization of X will be called the p-completion; a trivial object is called p-adically
trivial; an equivalence is called p-adic equivalence.

Now taking colimits from the above diagram, we get a fiber sequence

Σ−1S/p∞ → S→ S[1/p],

We can write

S/p∞ ∼= colim
n

S/pn

so that

X∧
p
∼= Map(Σ−1S/p∞, X).

Moreover, the map X∧
p → (X∧

p )
∧
p is always an equivalence. Therefore, X∧

p is always
p-complete.

If multiplication by p is an equivalence on Y , then Y ∼= Y ⊗ S[1/p], and so maps
Y → X are equivalent to maps Y → Map(S[1/p], X). For any X which is p-adically
complete, this is trivial, so such objects Y are p-adically trivial. In particular, the
fiber of X → X∧

p is always trivial and so X → X∧
p is a p-adic equivalence. Therefore

this is a p-adic completion.
If each homotopy group of X has a bound on the order of p-power torsion, we

can further identify the homotopy groups of X∧
p as the ordinary p-adic completions

of the homotopy groups of X; if the homotopy groups of X are finitely generated,
then π∗(X

∧
p )→ π∗(X)⊗ Zp.

2.2. Rationalization. Let us consider S as defined before, but now we enlarge it
by considering the collection of multiplication by m maps Sn → Sn for m > 0. A
spectrum X is S-local if and only if multiplication by m is an isomorphism on the
homotopy groups π∗X for all m, or equivalently if the maps π∗X → π∗X ⊗ Q are
isomorphism, Such spectra are called rational.

Slogan 2.4. Due to Hurewicz and Serre, it is said to be that Rational homotopy
theory is easy and as a consequence Rational stable homotopy theory is very easy.

Recall 2.5. π∗SQ = π∗S⊗Q =

{
Q if∗ = 0

0 otherwise.

So SQ = HQ.

Proposition 2.6. Let X be a rational spectrum, then there exists an equivalence

X ≃
⊕
n∈Z

ΣnHπnX.

Proof. Since X is rational, we know that πnX is rational vector space for every n.
We now have a basis {ei}i∈In , then we have a map⊕

i∈In ΣnS X

⊕
i∈In ΣnHQ

ei

rationalization in

And ΣnHπnX =
⊕

i∈In ΣnHQ. The map in is an isomorphism to πn and zero

otherwise. And
⊕

n in is an isomorphism on homotopy and therefore an equivalence.
□
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2.2.1. Chern character. The Chern character is a ring homomorphism

ch : K∗(−)→ H∗(−;Q)⊗K∗(∗)
which induces an isomorphism K∗(−)⊗Q ≃ H∗(−;Q)⊗K∗(∗). In other words,

Corollary 2.7. (Chern character) Let X be a finite space, there is an equivalence

KU0(X)Q ≃
⊕
n∈Z

H2n(X;Q).

Proof. Since X is a finite space, Map(Σ∞X+,−) commutes with filtered colimits.
So we have

KU0(X)⊗Q = π0Map(Σ∞X+,KU)⊗Q
= π0Map(Σ∞X+,KU ⊗Q)

= π0Map
(
Σ∞X+,

⊕
n∈Z

Σ2nHQ
)

=
⊕
n∈Z

π0Map(Σ∞X+,Σ
2nHQ)

KU0(X)Q =
⊕
n∈Z

H2n(X;Q).

□

The Chern character on complex K-theory is a map from complex oriented
cohomology theory of chromatic height 1 to ordinary cohomology of chromatic
level 0. For more on higher Chern characters refer[HSS17]

Sullivan in his [Sul05] studied about arithmetic fracture techniques that allowed
simply-connected space X to be recovered from its rationalization XQ and its p-adic
completions X∧

p via a homotopy pullback diagram:

X
∏
pX

∧
p

XQ
(∏

pX
∧
p

)
Q

This allows us to reinterpret homotopy theory. We are not using p-adic com-
pletion and rationalization to understand algebraic invariant of X; but rather,
knowledge of X is equivalent to knowledge of its localization, completions and an
“arithmetic attaching map”(XQ →

(∏
pX

∧
p

)
Q).

Theorem 2.8. Let X be a simply connected space whose homotopy groups are
finitely generated. Then the above diagram is a homotopy pullback square.

Proof. Let F denote the fiber product(∏
p

X∧
p

)
×(∏

pX
∧
p

)
Q

XQ,

so we have a canonical map α : X → F and which to show this is a homotopy
equivalence. The homotopy groups of F lies in a last exact sequence

· · ·πnF → πnXQ × πn
(∏

p

X∧
p

) β−→ πn
(∏

p

X∧
p

)
Q → · · ·
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Let A denote πnX, then the map β can be identified as β : AQ ×
∏
pAp →

(
∏
pAp)Q. From the properties of p-completion this map is a surjective. The long

exact sequence can be broke into short exact sequences, and gives isomorphisms

πnF ≃ ker(β) ≃ A.
These isomorphisms are induced by the map A → πnX → πnF , so that α is a
homotopy equivalence.

□

We can also consider a completion at all primes at once. Then we say that a
spectrum is profinitely complete if it is local for

⊕
p S/p where p ranges through all

primes. So, a spectrum X is profinitely acyclic if and only if X/p = 0 for every p.

2.3. KU-localization. KU represents the topologicalK-theory. We will use arith-
metic fracture squares to simply it to a study of (LKUX)Q and (LKUX)∧p for every
p.

Lemma 2.9. Let X be a spectrum and E be a spectrum such that EQ ̸= 0. Then
the map

X → LEX

is a rational equivalence. In particular we have (LEX)Q ≃ XQ and every rational
spectrum is KU -local.

Proof. We need show that any E-acyclic spectrum is rationally trivial. Let A =
fib(X → LEX), this is a E-acyclic spectrum such that E ⊗A = 0. So,

E ⊗A = 0 = (E ⊗A)Q = EQ ⊗A
we know that EQ =

⊕
n∈Z Σ

nHQ ̸= 0. So the right hand side is a direct sum of
shifted copies of HQ⊗A ≃ AQ. By assumption EQ ̸= 0, so AQ = 0. □

Lemma 2.10. Let E and X be a spectrum. Then X∧
p is E-local if and only if X/p

is E-local.

Proof. We know that X∧
p /p ≃ X/p, if X∧

p is E-local, then so it X/p. Conversely, if
X/p is E-local, we have a fiber sequence

X/p→ X/pn → X/pn−1,

If X/p is E-local, X/pn is E-local ∀n. Since, X∧
p ≃ limnX/p

n is E-local. □

Lemma 2.11. Let E and X be spectrum. Then (LEX)∧p ≃ LE/pX.

Proof. The map X → (LEX)∧p is an E/p-equivalence, because

X
E−equiv−−−−−→ LEX

S/p−equiv−−−−−−−→ (LEX)∧p

From the previous lemma, we can say that (LEX)∧p is a E-local.
Now let us consider A a spectrum that is E/p-acyclic (i.e, E ⊗ A/p = 0). So,

Map(A/p, (LEX)∧p ) = 0. This gives us a map

p : Map(A/p, (LEX)∧p )
≃−→ Map(A, (LEX)∧p )

is an equivalence. Since, Map(A, (LEX)∧p ) is p-complete

lim
n

Map(A,LEX/p
n) = lim

n
Map(A,LEX)/pn

⇒ Map(A, (LEX)∧p ) = 0. □
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Recollecting all along with fracture square, we have a pullback square

LKUX
∏
p LKU/pX

XQ (
∏
p LKU/pX)Q

The following results are from [Bou79]. We will state some results Adams-Baird,
but won’t prove anything.

2.12. (i) (Adams operations) There exists a map of ring spectra ψr : KU∧
p →

KU∧
p for all r coprime with p. This gives an action of Z×

p on KU∧
p .

(ii) (Self-maps)Let p be odd prime(just for this point), there exists a self map
v1 on S/p as v1 : Σ2(p−1)S/p→ S/p

Let us denote the Bousfield localization with respect to S[1/p] as T (0).
From the point of view of Chromatic homotopy theory, localization at T (0)
is just the zeroth in a whole sequence of localizations depending on a fixed
prime p. By periodicity theorem of Hopkins-Smith [HS98], there exists
higher analogous of multiplication by p: A self-map v1 of S/p, a self-map
v2 of S/(p, v1), and in general a self-map vn+1 of S/(p, v1, . . . , vn). We will
denote

T (n) = S/(p, v1, . . . , vn−1)[v
−1
n ]

as the telescope of a vn self-map and LT (n) denotes its Bousfield localization
functor, and refer to LT (n) as telescopic localization (at height n). A result
of Waldhausen [Wal84] shows that v1 is aKU -equivalence. v1 is constructed
in such as way that,

Σ2(p−1)S/p S/p

Σ2(p−1)S ΣS

v1

Moreover ψr is a map of rings, then there exists a nullhomotopy of the
composition

S∧p → KU∧
p

ψr−1−−−→ KU∧
p

Therefore S/p→ KU/p
ψr−1−−−→ KU/p is a nullhomotopy as well. We get

Σ2(p−1)S/p Σ2(p−1)KU/p Σ2(p−1)KU/p

S KU/p KU/p

v1≃ v1≃ v1≃

This is an equivalence since v1 is a KU -equivalence. Now we define

S/p[v−1
1 ] = colim(S/p v1−→ Σ−2(p−1)S/p v1−→ Σ−4(p−1)S/p v1−→ Σ−6(p−1)S/p v1−→ · · · )
So we get a sequence Such that S/p[v−1

1 ] is the fiber of the map ψr − 1 :
KU/p→ KU/p.

Similarly, when p is even prime (2), an equivalent statement hold, where
we replace v1 with a map v41 : Σ8S/2→ S/2 such that S/2[v−4

1 ] is the fiber
of a map KO/2→ KO/2.

This is due to a computational statement (described below) and proper-
ties of image of J .
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Theorem 2.13. (Mahowald and Miller) The groups πiS/2[v−4
1 ] have order:

4 if i ≡ 0 mod 8 & ≡ 3 mod 8

8 if i ≡ 1 mod 8 & ≡ 2 mod 8

2 if i ≡ 4 mod 8 & ≡ 7 mod 8

1 otherwise

For a odd prime p, the groups πiS/p[v−11] have orders:{
p if i ≡ 0 mod 2(p− 1) & ≡ −1 mod 2(p− 1)

1 otherwise.

Corollary 2.14. Let X be a spectrum. Then X/p is KU -local if and only if the map
v1 : Σ2(p−1)X/p→ X/p is an equivalence. Further, we have LKUX/p ≃ X/p[v−1

1 ].

Proof. Since v1 is KU -equivalence, if X/p is KU -local then multiplication by v1
is an equivalence as well. Conversely, if v1 is an equivalence then we have an
equivalence

X/p ≃ X/p[v−1
1 ] = X ⊗ S/p[v−1

1 ]

But by earlier arguments, we can identify X ⊗ S/p[v−1
1 ] as a fiber of a map X ⊗

KU/p → X ⊗KU/p. So it it enough to prove that X ⊗KU/p is a KU -local. It
is a KU -module, so definitely KU -local. Finally the map X/p → X/p[v−1

1 ] is a
KU -equivalence since it is a composition of KU -equivalence and therefore it is a
KU -localization map since the target is KU -local. □

Definition 2.15. The map πi(O(n)) → πn+i(S
n) is called the J-homomorphism.

We are mostly interested in the stable version, so can be rewritten as J : π∗(O)→
π∗S.

We will denote Jp for the p-complete image of J spectrum, and the spectrum
LKUS is also sometimes called the image of J spectrum. This is because the map
π∗S→ π∗LKUS is split surjection for ∗ > 0 and it identifies π∗LKUS with the image
of the J-homomorphism.

Theorem 2.16. The KU -localization is smashing, that is the map

LKUX → LKUS⊗X
is an equivalence. Moreover we can write a pullback square

LKUS
∏
p Jp

HQ
(∏

p Jp

)
Q

where Jp is the fiber of the map ψr − 1 : KU∧
p → KU∧

p for p odd, and the same for
p = 2 by replacing KU with KO.

Proof. We know that the map X → LKUS⊗X is always a KU -equivalence, so it is
enough to prove that the target is KU -local. From the arithmetic square and every
rational spectrum is KU -local, it is again reduced to show that (LKUS ⊗ X)∧p is
KU -local for every prime, that is that LKUS/p⊗X is KU -local. By the previous
corollary, we have

LKUS/p⊗X ≃ S/p[v−1
1 ]⊗X ≃ X/p[v−1

1 ] ≃ LKU (X/p)
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and therefore the left hand side is KU -local.
Now we are left to prove that (LKUS)∧p ≃ Jp. Let η : S→ KU be the unit. Since

ψr : KU∧
p → KU∧

p is a map of rings, we have ψrη ≃ η, therefore we can choose a
nullhomotopy of (ψr − 1) ◦ η. So we have a map S→ Jp, moreover Jp is KU -local
and p-complete, so we get

(LKUS)∧p → Jp.

This is an equivalence after tensoring by S/p, and so it is an equivalence. □

3. Morava K-theory

The most interesting periodic self-maps occur when X is a finite p-torsion com-
plex. Also Morava found that working with MU∗(−) is tedious and provided an
algebraic setting K(n)∗(−) which is easy to work with. These are due to unpub-
lished works of Morava and discussed in [JW75].

Proposition 3.1. For each prime p there is a sequence of homology theories K(n)∗
for n ≥ 0 with the following properties.

(i) K(0)∗(X) = H∗(X;Q) and K(0)∗(X) = 0 when H∗(X) is all torsion.
(ii) K(1)∗(X) is one of p − 1 isomorphic summands of mod p complex K-

theory.
(iii) K(0)∗(pt) = Q and for n > 0, K(n)∗(pt) = Z/(p)[vn, v−1

n ] where the di-
mension of vn is 2(pn − 1). This ring is graded field inn the sense that
every graded module over it is free. K(n)∗(X) is a module over K(n)∗(pt).

(iv) There is a Künneth isomorphism

K(n)∗(X × Y ) ≃ K(n)∗(X)⊗K(n)∗(pt) K(n)∗(Y )

. This is what makes is easy to work with K(n)∗(X) than MU∗(X).

(v) Let X be a p-local finite spectrum. If K(n)∗(X) vanishes, then so does

K(n− 1)∗(X)
(vi) For X a p-local finite spectrum and n sufficiently large enough, we have

K(n)∗(X) = K(n)∗(pt)⊗H∗(X,Z/(p)).

Due to Quillen’s theorem on formal group law, we have π∗MU(p) ≃ L(p) ≃
Z(p)[t1, t2, . . . ], where we may assume that vi = tp

i−1 for each i > 0. By convention,
we set t0 = p ∈ π0MU(p).

For each integer k, we denote M(k) to be the cofiber of the map Σ2kMU(p) →
MU(p) given by multiplication by tk.

Definition 3.2. [Lur10] For a prime p and n > 0. We denote K(n) denote the
smash product (over MU(p)) of MU(p)[v

−1
n ] with

⊗
k ̸=pn−1M(k). The spectrum

K(n) is called Morava K-theory.

Since each M(k) admits a unital and homotopy associative multiplication, we
see that K(n) also has the structure of a homotopy associative MU(p)-algebra; if
p ̸= 2, we can even assume that K is homotopy commutative.

The homotopy groups of K(n) are given by

π∗K(n) ≃ (π∗MU(p))[v
−1
n ]/(t0, t1, . . . , tpn−2, tpn , . . . ) ≃ Fp[v±n ],

where vn has degree 2(pn − 1).
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We have a map of ring spectrum MU(p) → K(n), giving a complex orientation

on K(n). This determines a formal group law over the ring π∗K(n) ≃ Fp[v±n ],
which has height exactly n.

In other words Definition 3.2 can be interpreted as, a spectrum K(n) is n-th
Morava K-theory with coefficients K(n)∗ = Fp[v±n ], where vi is of degree 2(pi − 1).

There exist something called n-th Johnson-Wilson theory E(n) with coefficients
E(n)∗ = Z(p)[v1, v2, . . . , vn−1, vn][v

−1
n ], where degree of vi = 2(pi − 1).

3.3. From Proposition 3.1 we can say that, if F is a finite spectrum that is K(n)-
acyclic, then it is also K(n − 1)-acyclic; since < E(n) >=<

∨n
i=0K(i) >, so the

spectrum F is also E(n)-acyclic.

Definition 3.4. We say a p-local finite spectrum X has type n if K(n)∗(X) ̸= 0
but K(m)∗(X) ≃ 0 for m < n. For example, X has type 0 if H∗(X;Q) ≃ 0, or
equivalently if H∗(X;Z) is not a torsion group.

Every nonzero finite p-local spectrum X has type n for some unique n.
As we saw in 2.2, by the periodicity theorem in [HS98], any finite type n spectrum

F admits an vn self-map, and we write T (n) = F [v−1
n ] for the associated telescope.

It is due to the thick subcategory theorem that the Bousfield class of T (n) depends
only on n.

Definition 3.5. Let n ≥ 0, then we define two localization functors on the stable
homotopy category by

(i) Lfn = LT (0)∨T (1)∨···∨T (n) representing the finite Ln-localization and,
(ii) Ln = LE(n) ≃ LK(0)∨K(1)···∨K(n) representing the Ln-localization for a

particular n.

The functors Lfn are in fact finite localizations, with ker(Lfn) generated by any
finite type (n+ 1) spectrum.

3.6. Before we get any further, Let’s take a look at a particular case. We stated
that for every integer n ≥ 0, there exists a finite p-local spectrum X of type n. If
n = 0, this just means that the rational homology H∗(X;Q) is non-zero. We can
obtain this by taking X to be the p-local S/p.

When n = 1, we can define X to be a mod p Moore spectrum, which is defined
by the cofiber sequence

S p−→ S→ X.

The multiplication p annhilatesK(1)∗(S) ≃ Fp[v−1
1 ], the mapK(1)∗(S)→ K(1)∗(X)

is injective. In particular, K(1)∗(X) ̸= 0, so that X has type 1.

3.1. Telescopic Conjecture. We will discuss about some results for which we
won’t prove anything, but would recommend to refer [Rav92b].

It is from the thick subcategory theorem that any finite localization functor of
the category of spectra which is not equal to the identity or the zero functor must
be on of the Lfn.

Proposition 3.7. For each n, the functor Lfn is a finite and thus smashing local-
ization. If F is finite type n spectrum, then LfnF ≃ T (n).

Theorem 3.8. For every n ≥ 0, the localization functor LE(n) is smashing.
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There is a natural transformation Lfn → Ln which is an equivalence on all MU -
module spectra and all Li-local spectra for any i ≥ 0. In other words, there is a close
relationship between the functors Ln and their counterpart Lfn. If two localization
were in fact equivalent for all n, then two naturally arising filtrations on the stable
homotopy groups of spheres would coincide, making the computation of π∗S

0 more
computable using algebraic techniques. This idea gave raise to

Conjecture 3.9. For any n ≥ 0, the natural map Lfn → Ln is an equivalence.

For n = 0, both Lf0 and L0 identify with rationalization. And using Theorem 2.13
of Mahowald and Miller, Bousfield was able to state; that the telescopic conjecture
holds at height n = 1.

Theorem 3.10. For n = 1, the natural map LK(1) → (LKU )
∧
p is an equivalence

(i.e., LK(1) = (LKU )
∧
p ).

Proof. The proof directly follows from 3.6 and Corollary 2.14. Therefore saying
LK(1) is a telescopic localization. □

4. Selmer K-theory

Definition 4.1. Let C be a small stable∞-category. The Selmer K-theory KSel(C)
is defined to the homotopy pullback

K(C)

KSel(C) TC(C)

L1K(C) L1TC(C)

(4.2) KSel(C) = L1K(C)×L1TC(C) TC(C).

Applying the localization natural transformation id → L1 to the cyclotomic
trace K → TC gives rise to a natural map K → KSel which factors both the trace
K → TC and the localization K → L1K.

Example 4.3. [CM21](Rational Selmer K-theory) In Lemma 2.9 we show that
XQ → (L1X)Q is an equivalence for any spectrum X and any rational spectrum is
KU -local.

Hence when we apply rationalization to KSel(to the above formula 4.2) is simply
the rationalization of K; that is, KSel⊗Q = K⊗Q and rational algebraic K-theory
is as mysterious as ever.
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