SoSe 24 Algebraic Topology II Exercise sheet 2 (due May 17)

Exercise 2.1. Let $f: X \to Y$ be a pointed map with homotopy fiber F, and consider the exact sequence of pointed sets

$$\pi_1(Y) \xrightarrow{\partial} \pi_0(F) \to \pi_0(X).$$

Construct an action of $\pi_1(Y)$ on the set $\pi_0(F)$ such that:

- ∂ is a $\pi_1(Y)$ -equivariant map;
- two elements $a, b \in \pi_0(F)$ have the same image in $\pi_0(X)$ iff there exists $\gamma \in \pi_1(Y)$ such that $\gamma a = b$.

Exercise 2.2. Let X and Y be pointed CW complexes. Suppose that X is m-connected and Y is n-connected. How connected are the following spaces?

- (a) $X \vee Y$
- (b) $X \times Y$
- (c) $X \wedge Y$

Hint. Recall that a CW complex is *n*-connected iff it is homotopy equivalent to one with no cells in dimensions $\leq n$.

Exercise 2.3. Let A be a CW complex of dimension $\leq n$ and let $f: X \to Y$ be an (n-1)-connected map. Show that the induced map

$$f_* \colon [A, X] \to [A, Y]$$

is surjective, and that it is even bijective if f is n-connected.

Hint. Use the compression lemma.

Exercise 2.4. Let X and Y be pointed spaces.

- (a) Show that the inclusion $X \lor Y \hookrightarrow X \times Y$ admits a *section* up to pointed homotopy after taking loops.
- (b) Deduce that, for $n \ge 2$,

$$\pi_n(X \vee Y) \cong \pi_n(X) \oplus \pi_n(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y).$$

(c) Assume for simplicity that X and Y are CW complexes. What are the minimal connectivity assumptions on X and Y guaranteeing that the canonical map $\pi_{n+1}(X \times Y, X \vee Y) \to \pi_{n+1}(X \wedge Y)$ is an isomorphism?

Exercise 2.5. Let $n \ge -2$ and let X be any space. An *n*-truncation of X is an *n*-connected map $X \to X_n$ where X_n is *n*-truncated.

(a) Show that there exists a tower

where each map $X \to X_n$ is an *n*-truncation of X.

Hint. First construct an *n*-truncation $X \to X_n$ by attaching cells of dimensions $\geq n+2$. Then, show that the *n*-truncation factors through the (n+1)-truncation.

(b) Show that *n*-truncations are unique up to weak equivalence: If $t_n: X \to X_n$ and $t'_n: X \to X'_n$ are two *n*-truncations of X, then there exists a zigzag of weak equivalences under X between X_n and X'_n .

This is called the *Postnikov tower* of X and one often writes $\tau_{\leq n}X$ for the *n*-truncation of X. Note that the homotopy fibers of $X_n \to X_{n-1}$ have no nontrivial homotopy groups except in degree n; such spaces are called *Eilenberg-Mac Lane spaces* of degree n, see Problem 1.5 below.

(c) Show that $S^2 = \mathbb{CP}^1 \hookrightarrow \mathbb{CP}^\infty$ is a 2-truncation of S^2 .

Exercise 2.6. (Eilenberg–Mac Lane spaces) Let $n \ge 1$ and let A be a group (abelian if $n \ge 2$).

(a) Construct a pointed CW complex K(A, n) such that

$$\pi_i(K(A, n)) \cong \begin{cases} A & \text{if } i = n, \\ 0 & \text{otherwise} \end{cases}$$

and show that any two CW complexes with this property are homotopy equivalent.

(b) Show that $[K(A, n), K(B, n)]_* \cong \text{Hom}(A, B)$. In other words, the construction $A \mapsto K(A, n)$ is an equivalence of categories between (abelian) groups and the homotopy category of pointed Eilenberg-Mac Lane spaces of degree n.

Exercise 2.7.

- (a) Compute the homotopy groups of \mathbb{RP}^n and \mathbb{CP}^n in terms of the homotopy groups of spheres.
- (b) Let $n \geq 2$. Compute the relative homotopy group $\pi_n(\mathbb{RP}^n, \mathbb{RP}^{n-1})$ and observe that the canonical map $\pi_n(\mathbb{RP}^n, \mathbb{RP}^{n-1}) \to \pi_n(\mathbb{RP}^n/\mathbb{RP}^{n-1})$ is not an isomorphism.