SoSe 24 Algebraic Topology II Exercise sheet 4 (due June 14)

Exercise 4.1.

- (a) Let $i: A \hookrightarrow B$ and $j: A \hookrightarrow C$ be embeddings such that either of the following conditions hold:
 - (i) i and j are open embeddings;
 - (ii) A, B, and C have CW structures such that i and j are subcomplexes.

Let G be any topological group. Show that the canonical functor

 $\operatorname{Bun}_G(B \sqcup_A C) \to \operatorname{Bun}_G(B) \times^h_{\operatorname{Bun}_G(A)} \operatorname{Bun}_G(C)$

is an equivalence.

Hint. By definition, $\operatorname{Bun}_G(X)$ is a full subcategory of the category $\operatorname{Top}_G(X)$ of right *G*-spaces over *X*. First prove the analogous statement for Top_G (which holds more generally whenever *i* and *j* are closed embeddings). It then remains to show that the *G*-space *E* over $B \sqcup_A C$ obtained by gluing principal *G*-bundles $P \to B$ and $Q \to C$ along an isomorphism $P_A \cong Q_A$ is locally trivial. This is obvious in case (i). In case (ii), use the fact that subcomplexes are neighborhood retracts to show that *E* is locally isomorphic to a gluing of trivial *G*-bundles over some open neighborhoods of *B* and *C* in $B \sqcup_A C$.

Remark. There is an analogous statement with pointed spaces and $Bun_{G,*}$.

(b) Show that for any pointed CW complex X, $[\Sigma X, BG]_* \cong [X, G]_*$. In particular, $\pi_{n+1}(BG) \cong \pi_n(G)$ for all $n \ge 0$.

Hint. Use the pointed version of (a) to compute $\pi_0 \operatorname{Bun}_{G,*}(\Sigma X)$ explicitly.

Exercise 4.2.

(a) Let $X, Y \in \mathsf{Top}_*$ with X well-pointed and Y path-connected. Show that the map $[X, Y]_* \to [X, Y]$ from pointed to unpointed classes induces a bijection

$$[X,Y]_*/\pi_1(Y) \cong [X,Y],$$

for an appropriate action of $\pi_1(Y)$ on $[X, Y]_*$.

Hint. Consider the map ev_{x_0} : Map $(X, Y) \to Y$, whose fiber over y_0 is Map $_*(X, Y)$, and use Exercise 2.1.

(b) Let G be a topological group and X a pointed connected CW complex. Show that the bijection

 $[X, BG]_* \xrightarrow{\sim} \pi_0 \operatorname{Bun}_{G,*}(X), \quad [f] \mapsto [f^*(EG)],$

is G-equivariant, where G acts on $[X, BG]_*$ via the action of $\pi_1(BG) \cong \pi_0(G)$ from (a) and on $\pi_0 \operatorname{Bun}_{G,*}(X)$ by changing the trivialization over the base point.

(c) Deduce from (a) and (b) that BG represents the functor $\pi_0 \operatorname{Bun}_G \colon \mathsf{hCW}^{\operatorname{op}} \to \mathsf{Set}$.

Exercise 4.3. Let hGpd denote the homotopy category of groupoids (whose morphisms are isomorphism classes of functors) and let $CW_{\leq n}$ be the category of *n*-truncated CW complexes. Show that the fundamental groupoid construction induces an equivalence of categories

$$hCW_{<1} \xrightarrow{\sim} hGpd, \quad X \mapsto \Pi_1(X).$$

Hint. One can use Exercises 2.6(b) and 4.2(a) to compute [K(G, 1), K(H, 1)].

Remark. This is called the 1-truncated homotopy hypothesis. The general homotopy hypothesis asserts that for any $-2 \leq n \leq \infty$ there is a higher category Gpd_n of *n*-groupoids and a functor $\Pi_n \colon \mathsf{Top} \to \mathsf{Gpd}_n$ inducing an equivalence $\mathsf{hCW}_{\leq n} \simeq \mathsf{hGpd}_n$.

Exercise 4.4. Let Cov(X) denote the groupoid of covering spaces over X.

(a) Show that

$$\mathsf{Top}^{\mathrm{op}} \to \mathsf{Gpd}, \quad X \mapsto \mathrm{Cov}(X),$$

is homotopy invariant, in the sense that it sends homotopy equivalences to equivalences of groupoids.

Hint. Recall that, due to I being simply connected and locally connected, every covering E of $X \times I$ is isomorphic (via path lifting) to $E_0 \times I$.

(b) Fix a set S and let $\operatorname{Cov}_S(X)$ be the groupoid of covering spaces whose fibers have cardinality |S|. Use the Brown representability theorem to show that there exists a CW complex B_S and a covering space $E_S \in \operatorname{Cov}_S(B_S)$ such that for any CW complex X, there is a bijection

$$[X, B_S] \xrightarrow{\sim} \pi_0 \operatorname{Cov}_S(X), \quad [f] \mapsto [f^*(E_S)].$$

Hint. To apply Brown representability, define an appropriate groupoid $\operatorname{Cov}_{S,*}(X)$ for $X \in \operatorname{Top}_*$. Recall also that any homotopy pushout square is isomorphic in hTop to a pushout square of open embeddings.