SoSe 24 Algebraic Topology II Exercise sheet 5 (due June 28)

Exercise 5.1. Let $n \ge 0$ and let E be a finite-dimensional (real or complex) vector space. Denote by $\operatorname{St}_n(E) \subset E^n$ the space of linearly independent *n*-tuples of vectors in E, and by $\operatorname{Gr}_n(E) = \operatorname{St}_n(E)/\operatorname{GL}_n$ the Grassmannian of *n*-planes in E. Show that the quotient map $\operatorname{St}_n(E) \to \operatorname{Gr}_n(E)$ is a principal GL_n -bundle.

Exercise 5.2. Let \mathbb{N}_{\leq} denote the poset of natural numbers.

- (a) Show that the colimit functor colim: $\operatorname{Fun}(\mathbb{N}_{\leq}, \mathsf{Ab}) \to \mathsf{Ab}$ is exact.
- (b) Show that the limit functor lim: $\operatorname{Fun}(\mathbb{N}^{\operatorname{op}}_{<},\mathsf{Ab}) \to \mathsf{Ab}$ is not exact.
- (c) Construct a functor

$$\lim^{1}$$
: Fun($\mathbb{N}^{\mathrm{op}}_{<}, \mathsf{Ab}$) $\rightarrow \mathsf{Ab}$

such that, for every short exact sequence $0 \to A \to B \to C \to 0$ in $\operatorname{Fun}(\mathbb{N}^{\operatorname{op}}_{\leq}, \mathsf{Ab})$, there is an induced exact sequence

$$0 \to \lim A \to \lim B \to \lim C \xrightarrow{\partial} \lim^{1} A \to \lim^{1} B \to \lim^{1} C \to 0.$$

Hint. The limit of A can be written as the kernel of a certain map $\prod_n A_n \to \prod_n A_n$. Define $\lim^1 A$ to be the cokernel of the same map.

- (d) Let $A \in \operatorname{Fun}(\mathbb{N}^{\operatorname{op}}_{\leq}, \mathsf{Ab})$ be a tower of abelian groups such that each map $A_{n+1} \to A_n$ is surjective. Show that $\lim^1 A = 0$.
- (e) Let $X \in Fun(\mathbb{N}_{\leq}, \mathsf{CW}_{*})$ be a sequence of pointed CW complexes. Show that there is for all $i \geq 0$ a short exact sequence

$$0 \to \lim_{n} \tilde{H}^{i-1}(X_n) \to \tilde{H}^i(\operatorname{Tel}_*(X)) \to \lim_{n} \tilde{H}^i(X_n) \to 0.$$

This is known as the *Milnor exact sequence*.

Hint. Write the telescope as a suitable union of two subcomplexes and consider the associated long exact sequence in cohomology.

Exercise 5.3. Let $p: X \to B$ be a fibration. Construct a functor

$$\Pi_1(B) \to \mathsf{hTop}, \quad b \mapsto X_b = \mathrm{fib}_b(p).$$

Deduce that for any map $p: X \to B$ there is a functor

$$\Pi_1(B) \to \mathsf{hTop}, \quad b \mapsto \mathrm{hfib}_b(p).$$

Exercise 5.4.

- (a) Compute $H_*(\mathbb{RP}^2, \tilde{\mathbb{Z}})$ and $H^*(\mathbb{RP}^2, \tilde{\mathbb{Z}})$, where $\tilde{\mathbb{Z}}$ is the sign representation of $\pi_1(\mathbb{RP}^2)$.
- (b) Let K be the Klein bottle. Compute $H_*(K, \rho)$, where $\rho: \pi_1(K) = \langle a, b | abab^{-1} \rangle \rightarrow Aut(\mathbb{Z})$ is the representation given by $\rho(a) = -id$ and $\rho(b) = id$.

Exercise 5.5. Let A be an object of an abelian category with a filtration

 $\cdots \subset F_{t-1}A \subset F_tA \subset F_{t+1}A \subset \cdots \subset A \quad (t \in \mathbb{Z}).$

Let $F^t A = A/F_t A$ be the associated cofiltration, and define

$$F_{\infty}A = \underset{t \to \infty}{\operatorname{colim}} F_{t}A, \qquad F_{-\infty}A = \underset{t \to -\infty}{\lim} F_{t}A,$$
$$F^{\infty}A = \underset{t \to \infty}{\operatorname{colim}} F^{t}A, \qquad F^{-\infty}A = \underset{t \to -\infty}{\lim} F^{t}A.$$

The filtration F_*A is called:

- exhaustive if $F_{\infty}A \to A$ is an isomorphism;
- coseparated if $F^{\infty}A = 0$;
- complete if $A \to F^{-\infty}A$ is an isomorphism;
- separated if $F_{-\infty}A = 0$.

Prove the following statements:

- (a) In Ab, a filtration is exhaustive if and only if it is coseparated; every complete filtration is separated, but there exist separated filtrations that are not complete.
- (b) Let F_{*}A and F_{*}B be filtrations of A and B and let f: A → B be a filtered map (i.e., f(F_tA) ⊂ F_tB for all t ∈ Z) such that the induced map gr_{*}(f): gr_{*}A → gr_{*}B is an isomorphism. If both filtrations are exhaustive and complete, then f is an isomorphism.

Exercise 5.6. Let F_*C be a filtered chain complex of abelian groups

 $\cdots \subset F_{t-1}C \subset F_tC \subset F_{t+1}C \subset \cdots \subset C.$

Consider the associated spectral sequence with

$$\begin{split} E_{s,t}^r &= Z_{s,t}^r / B_{s,t}^r, \\ Z_{s,t}^r &= \text{kernel of } H_s(F_t/F_{t-1}) \xrightarrow{\partial} H_{s-1}(F_{t-1}/F_{t-r}), \\ B_{s,t}^r &= \text{image of } H_{s+1}(F_{t+r-1}/F_t) \xrightarrow{\partial} H_s(F_t/F_{t-1}). \end{split}$$

Let $F_t H_s(C) \subset H_s(C)$ denote the image of $H_s(F_tC) \to H_s(C)$.

(a) Show that $\operatorname{gr}_t H_s(C)$ is a subquotient of $E_{s,t}^{\infty}$:

$$\operatorname{gr}_t H_s(C) \ll \operatorname{gr}_t H_s(F_\infty C) \hookrightarrow E_{s,t}^\infty.$$

The filtration F_*C is called *weakly convergent* when $\operatorname{gr}_t H_s(C) = E_{s,t}^{\infty}$. It is called *strongly convergent* if moreover the filtration $F_*H_*(C)$ is exhaustive and complete.

(b) Suppose that $F_{\infty}C \to C$ is a quasi-isomorphism and that, for every *s*, there exists t_0 such that $H_s(F_tC) = 0$ for $t \leq t_0$. Show that F_*C is strongly convergent.

The point of strong convergence is the following:

(c) Let $f: C \to D$ be a filtered chain map inducing quasi-isomorphisms $\operatorname{gr}_t C \to \operatorname{gr}_t D$ for all t. If F_*C and F_*D are strongly convergent, then f is a quasi-isomorphism. Hint. Use Exercise 5.5(b).