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1 Introduction

1.1 Overview

This report accompanies a talk given as part of a seminar on A1-invariance in algebraic
geometry, held in the summer term 2025 at the University of Regensburg. In the previous
talk, we saw that by Quillen–Suslin–Lindel Theorem (see [Aso19, Thm. 8.4.3.1]) the
functor

Vectn : AffSmop
k → Set,

which assigns to a smooth affine scheme X over a base field k the set of isomorphism
classes Vectn(X) of rank n algebraic vector bundles on X and is given on morphisms
by pullback, is A1-invariant. The goal of the present talk is to classify isomorphism
classes of rank n algebraic vector bundles on a smooth affine scheme X over k in terms
of morphisms from X to a suitable Grassmannian Grn up to naive A1-homotopy.

In algebraic topology isomorphism classes of real topological vector bundles of a given
rank n on a paracompact topological space X are up to homotopy precisely given by
pullbacks of a certain canonical real vector bundle En → Gn to X.1 This space Gn is
constructed as the filtered colimit over all finite-dimensional Grassmannian manifolds
Gn(RN ) with n ≤ N , where the transition map N  N + 1 is induced by the inclusion
RN ↪→ RN+1 into the first N entries.

There turn out to be many parallels between the topological and the algebro-geometric
settings. Accordingly, we begin in section 2 by studying Grassmannians as objects in
scheme theory. After giving a concrete definition of finite-dimensional Grassmannian
schemes in 2.1, we proceed in 2.2 and 2.3 towards understanding the functor of points
represented by a Grassmannian scheme. For an affine scheme Spec(R) this Grassman-
nian functor parametrizes direct summands of Rn of a fixed rank, which generalizes the
classical definition of Grassmannians when R is a field. In the spirit of the seminar, we
focus hereby on the affine case, though many results hold more generally.
In close analogy with the topological construction, the ∞-Grassmannians Grn will be
then defined in 2.4 as the filtered colimit over all finite-dimensional Grassmannians with
fixed parameter n. Here the functor of points perspective is essential, since this colimit
exists only in the category PSh(Aff) of Set-valued presheaves on the category of affine
schemes Aff.
Next we revisit in 3.1 the notion of naive A1-homotopies introduced in earlier talks and
extend it to the setting relevant for this paper, where the target of the morphism is
an arbitrary presheaf on affine schemes. In 3.2 we finally prove the above mentioned
A1-homotopical classification theorem for algebraic vector bundles.

1.2 Literature

The primary source for the introduction to Grassmannian schemes in Section 2 is [EH00].
For the main result of this report - the classification of algebraic vector bundles up to
naive A1-homotopy in Section 3 - we follow [Aso19].
Basic facts from algebraic geometry are referenced throughout from [GW10] and [Stacks].
Some results on exterior powers from commutative algebra are recalled from [Bou74].

1See for example [Hat17, Thm. 1.16].
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2 Grassmannians

2.1 Grassmannians by gluing affine charts

Notation 2.1.1. Let R be a ring and n,m ∈ N with 1 ≤ m ≤ n. Given a matrix
M ∈ Matm×n(R) and an index set I = {i1 < · · · < im} ⊆ {1, . . . , n}, we denote by
MI := (Mi,ik

)1≤i,k≤m the I-th maximal quadratic submatrix of M .

Motivation 2.1.2 (classical Grassmannian varieties). Let K be a field and n,N ∈ N
natural numbers with 1 ≤ n < N . In its simplest form, the Grassmannian Gn(KN ) is
defined as the set of n-dimensional linear subspaces of KN . This set admits a structure of
a projective variety. For a comprehensive treatment of this standard result from classical
algebraic geometry, the reader is referred to [Gat24, Ch. 8]. In order to motivate the
subsequent definition of the Grassmannians in the scheme theoretic context, which in
fact mirrors the classical construction, we outline the main ideas.
The most natural way to view Gn(KN ) as a variety is by identifying it with its image
under the so called Plücker embedding

Gn(KN ) → P(
∧n(KN )), SpanK(v1, . . . , vn) 7→ [v1 ∧ · · · ∧ vn],

where
∧n(KN ) denotes the n-th exterior power of KN . It follows from linear algebra

that the Plücker embedding is well-defined and injective and its image is cut out by
polynomial equations. The vector space

∧n(KN ) admits a canonical basis consisting of
the tensors eI := ei1 ∧ · · · ∧ ein , indexed by subsets I = {i1 < · · · < in} ⊆ {1, . . . , N},
where ei is the i-th standard basis vector ofKN . The eI -coordinate of a vector v1∧· · ·∧vn

is exactly the I-th maximal minor of the n×N -matrix with rows v1, . . . , vn. The standard
cover of P(

∧n(KN )) by the affine open subsets

UI := {[x] ∈ P(
∧n(KN )) | eI − coordinate of x is nonzero}

gives rise to an affine open cover (Gn(KN ) ∩ UI)I of Gn(KN ). For later on, it is useful
to obtain a more explicit description of these open subsets. Denote by Matmax

n×N (K) the
set of n × N -matrices over K of maximal rank. Mapping such a matrix to the linear
subspace of KN spanned by its rows, yields a well-defined bijection

f : Matmax
n×N (K)/GLn(K) ∼−→ Gn(KN ),

where the quotient on the left-hand side is taken with respect to the natural left-action
of GLn(K) on Matmax

n×N (K) by left-multiplication. Given I ⊆ {1, . . . , N} with #I = n,
the map f restricts to a bijection

{[M ] ∈ Matmax
n×N (K)/GLn(K)| det(MI) 6= 0} ∼−→ Gn(KN ) ∩ UI .

On the left-hand side left-multiplication with M−1
I yields a unique representative of [M ],

which has the identity matrix as its I-th submatrix. We thus obtain a bijection

fI : Kn(N−n) ∼= {M ∈ Matmax
n×N (K) | MI = En} ∼−→ Gn(KN ) ∩ UI .

In fact this is even an isomorphism of varieties: The coordinates of the image of an
n× (N − n)-matrix M under fI are given as the maximal minors of the n×N -matrix
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obtained by expanding M by the n × n-identity matrix En at the I-th columns. The
inverse is given by multiplying the matrix, whose rows consist of a basis of the given
n-dimensional subspace of KN , with the inverse of its I-th submatrix and afterwards
deleting the columns indexed by I. Both operations are defined by polynomial functions.
Thus, in the classical setting, the Grassmannian variety Gn(KN ) admits an open cover
by charts isomorphic to affine n(N − n)-spaces. In the language of schemes, this de-
scription can be directly replicated via gluing and will serve as our definition of the
Grassmannians as a scheme.

The upcoming Lemma formally establishes the technique of gluing schemes. In this, we
follow [GW10, Section (3.5)].

Definition 2.1.3 (gluing datum of schemes). For an index set I we define a gluing
datum of schemes as a tripple ((Ui)i∈I , (Ui,j)i,j∈I , (ϕi,j)i,j∈I), consisting of a family of
schemes (Ui)i∈I and for all i, j ∈ I an open subscheme Ui,j ⊆ Ui and an isomorphism
ϕj,i : Ui,j → Uj,i, such that the following conditions are satisfied:

(1) For all i ∈ I we have Ui,i = Ui.

(2) For all i, j, k ∈ I we have ϕj,i(Ui,j ∩ Ui,k) ⊆ Uj,k.

(3) For all i, j, k ∈ I the cocycle condition (ϕk,j ◦ ϕj,i)|Ui,j∩Ui,k
= ϕk,i|Ui,j∩Ui,k

holds.

Lemma 2.1.4 (gluing schemes). Let ((Ui)i∈I , (Ui,j)i,j∈I , (ϕi,j)i,j∈I) be a gluing datum
of schemes. There exists a pair (X, (ψi)i∈I), consisting of a scheme X and for all i ∈ I
an open immersion ψi : Ui → X, such that:

- The family (ψi(Ui))i∈I covers X.

- For all i, j ∈ I we have ψj ◦ ϕj,i = ψi|Ui,j .

- For all i, j ∈ I we have ψi(Ui) ∩ ψj(Uj) = ψi(Ui,j).

The pair (X, (ψi)i∈I) is unique up to unique isomorphism.

Proof. See [GW10, Prop. 3.10].

One of the two equivalent definitions of Grassmannian schemes in [EH00, III.2.7] mainly
capitalizes on the following technical lemma.

Lemma 2.1.5. Let n,N ∈ N with 1 ≤ n < N . Let A be a ring and consider the ring
S := A[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ N ] such that SpecS = AnN

A . Write

X := (xi,j)1≤i≤n,1≤j≤N ∈ Matn×N (S).

For subsets I = {i1 < · · · < in}, J = {j1 < · · · < jn} ⊆ {1, . . . , N} consider the closed
subschemes

WI := V (xi,ik
− δi,k | 1 ≤ i, k ≤ n) ⊆ AnN

A

and the open subschemes
VJ := D(det(XJ)) ⊆ AnN

A .
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Define WI,J := WI ∩ VJ . Then the morphism of rings

µJ,I : (S/(xi,jk
− δi,k | 1 ≤ i, k ≤ n))det(XI)

∼−→ (S/(xi,ik
− δi,k | 1 ≤ i, k ≤ n))det(XJ )

given by “X 7→ X−1
J X” (by abuse of notation of X for ([xi,j ])1≤i≤n,1≤j≤N ) is an isomor-

phism. The induced isomorphism

ϕJ,I := Spec(µJ,I) : WI,J
∼−→ WJ,I

gives rise to a gluing datum of schemes ((WI)I , (WI,J)I,J , (ϕI,J)I,J). Moreover, for any
I ⊆ {1, . . . , N} with #I = n, there exists a canonical isomorphism An(N−n)

A
∼−→ WI .

Definition 2.1.6 (Grassmannian schemes). Let n,N ∈ N with 1 ≤ n < N .

(i) Let A be a ring. Then the Grassmannian scheme GrA(n,N) is defined as the
scheme, which is obtained by Lemma 2.1.4 from the respective gluing datum con-
structed in Lemma 2.1.5.

(ii) Let S be a scheme. Then we define the Grassmannian scheme GrS(n,N) as the
fibered product GrZ(n,N) ×Z S.

After recalling basic properties of the functor of points of a scheme in 2.2, we will
return to this very concrete, though at times technical, definition in Example 2.2.5
from a slightly different perspective and observe that some aspects of it appear more
intuitively then.

Remark 2.1.7. Let n,N ∈ N with 1 ≤ n < N . It is easy to verify that for any ring
A, the two definitions GrA(n,N) and GrSpec(A)(n,N) from Definition 2.1.6 agree up to
unique isomorphism: Let I = {i1 < · · · < in}, J = {j1 < · · · < jn} ⊆ {1, . . . , N} be
index sets and write WA

I and WA
I,J for the affine schemes constructed in Lemma 2.1.5.

The open subschemes WZ
I ×Z Spec(A) cover GrSpec(A)(n,N) (see [GW10, Cor. 4.19])

and we have

WZ
I ×Z Spec(A) ∼= Spec((Z/(xi,jk

− δi,k | 1 ≤ i, k ≤ n)) ⊗Z A)
∼= Spec(A/(xi,jk

− δi,k | 1 ≤ i, k ≤ n)) = WA
I

and analogously WZ
I,J ×Z Spec(A) ∼= WA

I,J by unique isomorphisms. Since these isomor-
phisms are compatible with the gluing morphisms from Lemma 2.1.5, the statement
follows from the uniqueness part in Lemma 2.1.4.

Proof of Lemma 2.1.5. Let I = {i1 < · · · < in} ⊆ {1, . . . N} be an index set. There
exists a unique bijection σI : {1, . . . , N} \ I ∼−→ {1, . . . , N − n} of ordered sets. This
induces a surjective morphism of rings

µI : S → A[ti,j | 1 ≤ i ≤ n, 1 ≤ j ≤ N − n]

given by

xi,j 7→
{
δi,k, if ∃k ∈ {1, . . . , n} : j = ik,

ti,σI(j), otherwise

with kernel aI := (xi,ik
− δi,k | 1 ≤ i, k ≤ n).
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This yields the desired isomorphism of schemes

An(N−n)
A

∼−→ Spec(S/aI) = WI .

Let J ⊆ {1, . . . , N} with #J = n. We now construct the morphism µJ,I . Write shortly
dJ for det(XJ) ∈ S. Since dJ is invertible in SdJ

, so is the matrix XJ over SdJ
. Hence

“X 7→ X−1
J X”, which we read as xi,j 7→ (X−1

J X)i,j for all (i, j) ∈ {1, . . . , n}×{1, . . . , N},
defines an endomorphism fJ,I of SdJ

. Let k ∈ {1, . . . , n}. We have

fJ,I(xi,jk
− δi,k) = (X−1

J X)i,jk
− δi,k = (En)i,k − δi,k = 0.

Hence by exactness of localization and since dJ ≡ 1 mod aJ , we get a unique induced
morphism

SdJ
SdJ

SdJ
/(aJ)dJ

(S/aJ)dJ

S/aJ

fJ,I

pr

∃!

Composing with the projection

SdJ
→ SdJ

/(aI)dJ
∼= (S/aI)dJ

gives a map f̃J,I : S/aJ → (S/aI)dJ
. It remains to verify that dI is mapped to an

invertible element under f̃J,I . We have

f̃J,I([dI ]) = [det((X−1
J X)I)] = [det(X−1

J XI)] = [det(X−1
J ) det(XI)]

= [dJ ]−1 · 1 ∈ (S/aI)×
dJ
.

By the universal property of localization we obtain the desired map

µJ,I : (S/aJ)dI
→ (S/aI)dJ

,

which corresponds to the morphism

ϕJ,I := Spec(µJ,I) : WI,J → WJ,I

of schemes. We have to verify that the conditions from Definition 2.1.3 are satisfied.
First of all, dI ≡ 1 mod aI ensures (1), which we have already seen above. Moreover,
it is clear by definition that µI,I is just the identity on S/aI . Choose another index set
K ⊆ {1, . . . , N} with #K = n. Condition (2) corresponds to the statement that the
composition

(S/aJ)dI

µJ,I−−→ (S/aI)dJ

”localization”−−−−−−−−→ ((S/aI)dJ
)dK

factors through the localization map (S/aJ)dI
→ ((S/aJ)dI

)dK
.
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This is true, since under the above map

[dK ] 7→ [det((X−1
J X)K)] = [det(X−1

J XK)] = [det(X−1
J ) det(XK)]

= [dJ ]−1[dK ] ∈ ((S/aI)dJ
)×
dK
.

The cocycle condition (3) now corresponds to the commutativity of the diagram

((S/aK)dJ
)dI

((S/aJ)dK
)dI

((S/aI)dJ
)dK

µK,I

µK,J

µJ,I

This is fulfilled, since in “matrix notation”, the composition (µJ,I ◦ µK,J)|((S/aK)dJ
)dI

in
the diagram is determined by

X
µK,J7−−−→ X−1

K X
µJ,I7−−→ (X−1

J X)−1
K (X−1

J X) = (XJ(X−1
J X)K)−1X

= ((XJX
−1
J )XK)−1X = X−1

K X,

which exactly describes the morphism µK,I . Since we already have seen that ϕI,I is the
identity on WI , the cocycle condition for K := I yields by symmetry that ϕJ,I is an
isomorphism with inverse ϕI,J . This finishes the proof.

Remark 2.1.8. In [EH00, III.2.7] it is also explained how one can characterize the
Grassmannian scheme GrA(n,N) for a ring A and n,N ∈ N with 1 ≤ n < N in a more
intrinsic way. Consider the ring S := A[XI | I ⊆ {1, . . . , N} with #I = n] and define
the Plücker ideal J as the kernel of the ringhomomorphism

S → A[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ N ], XI 7→ det((xi,j)1≤i≤n,1≤j≤N )I .

As the name suggests, this reflects the classical construction in Motivation 2.1.2. There
the coordinates of a subspace with respect to the Plücker embedding are given by the
maximal minors of a maximal rank n × N -matrix. If we view the variables XI in S
as the I-th maximal submatrix of such a matrix, the Plücker ideal J encodes precisely
the relations between the maximal minors, which are known from determinant calculus.
The ideal J is homogenous, so we may view the Grassmannians as the projective scheme

Proj(S/J) ↪→ ProjS = P(N
n
)−1

A .

In order to show that this leads to the same definition of the Grassmannian scheme as
Definition 2.1.6, one covers Proj(S/J) by the affine opens D+(XI) ∩ Proj(S/J). There
exist canonical isomorphisms WI

∼−→ D+(XI)∩Proj(S/J) of affine schemes, which match
the conditions in Lemma 2.1.4. We omit the details, since this global characterization
of the Grassmannian scheme will not play a role later on.
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2.2 Functor of points and a representability criterion

This subsection begins by revisiting the functor of points of a scheme and some basic
related results. At the end we introduce a criterion for when a Set-valued presheaf on
Aff is representable by a scheme. We start by stating the all-important Yoneda lemma.

Definition 2.2.1 (Yoneda embedding). Let C be a locally small category. The functor

h : C → PSh(C),
C 7→ hC := HomC(−, C),

(f : C → D) 7→ (f∗ : hC → hD, g 7→ f ◦ g)

is called the Yoneda embedding.

Proposition 2.2.2 (Yoneda lemma). Let C be a locally small category.

(i) Let C be an object of C and F : Cop → Set a Set-valued presheaf on C. The map
of sets

HomPSh(C)(hC , F ) → F (C),
α 7→ αC(idC)

is a bijection and natural in C and F . The inverse map assigns to an element
x ∈ F (C) the natural transformation αx, which is valued at an object D ∈ C given
by

αx
D : hC(D) → F (D), (f : D → C) 7→ F (f)(x).

(ii) The Yoneda embedding is fully faithful.

Proof. For (i) one checks that the two given maps are inverse and (ii) follows directly
from (i), see for example [EH00, Lemma VI-1].

Notation 2.2.3 (functor of points). Let F be either a presheaf on Sch or Aff. We write
F aff for the functor F |Aff in PSh(Aff) and F ∗ for the functor F ◦ Spec: CRing → Set. By
abuse of notation, we call for a scheme X, depending on the context, the functor hX

(resp. haff
X or h∗

X) the functor of points of X.

The following proposition expresses the fact that schemes are built up from affine
schemes in terms of the Yoneda embedding.

Proposition 2.2.4. The functor

haff : Sch → PSh(Aff), X 7→ haff
X ,

and equivalently the functor

h∗ : Sch → Fun(CRing, Set), X 7→ h∗
X ,

is fully faithful.

Proof. This is a consequence of the fact that a scheme X is already determined by the
open immersions from affine schemes into X. A reference is [EH00, Prop. VI-2].
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When returning to the definition of the Grassmannian scheme via Lemma 2.1.5, it
becomes clear why the functor of points perspective is a very natural way of thinking
about schemes.

Example 2.2.5 (Grassmannian schemes revisited). Let n,N ∈ N with 1 ≤ n < N and
S := SpecZ[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ N ]. We use the notation from Notation 2.1.1
and the proof of Lemma 2.1.5. Given index sets I, J ⊆ {1, . . . , N} with #I = #J = n,
consider the functors

FI : CRing → Set, R 7→ {M ∈ Matn×N (R) | MI = En}

and

FI,J : CRing → Set, R 7→ {M ∈ Matn×N (R) | MI = En and det(MJ) ∈ R×}

with the obvious assignments for morphisms, where we use that a morphism of rings
sends units to units. It follows from the universal property of the rings S/aI and (S/aI)dJ

that for a ring R the maps

h∗
WI

(R) = HomCRing(S/aI , R) → FI(R),
f 7→ (f([xi,j ]))1≤i≤n,1≤j≤N

and

h∗
WI,J

(R) = HomCRing((S/aI)dj
, R) → FI,J(R),
f 7→ (f([xi,j ]))1≤i≤n,1≤j≤N

are bijections and natural in R. The diagram

h∗
WI

(R) FI(R)

h∗
WI,J

(R) FI,J(R)

∼

∼

commutes. Moreover, the map

FI,J(R) → FJ,I(R), M 7→ M−1
J ·M

is bijective and natural in R. Recalling how the morphism µJ,I : (S/aJ)dI
→ (S/aI)dJ

from Lemma 2.1.5 was given by the rule “X 7→ X−1
J X”, we see that it precicely induces

the composition
h∗

WI,J

∼−→ FI,J
∼−→ FJ,I

∼−→ h∗
WJ,I

.

The conditions for gluing from Definition 2.1.3 now translate via the functors of points
and the Yoneda lemma naturally into basic facts from matrix calculus.

A central term for the rest of the report is the representability of functors Schop → Set
or Affop → Set. Often, we are also interested in “representing” a functor in PSh(Aff) by
a (not necessarily affine) scheme via restriction of the functor of points.
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Definition 2.2.6 (in Sch representable functors). Let F ∈ PSh(Aff).

(i) A representation of F in Sch is a pair (X,α) consisting of a scheme X and an
isomorphism of functors haff

X
∼−→ F . We say that X represents F in Sch.

(ii) The presheaf F is called representable in Sch if there exists a representation of F
in Sch.

In the same way as representations of a functor Cop → Set by an object in C are unique,
this also holds for in Sch representable presheaves on affine schemes as a consequence of
Proposition 2.2.4.

Proposition 2.2.7 (uniqueness of representations in Sch). Given an in Sch repre-
sentable presheaf F ∈ PSh(Aff) with representations (X,α) and (Y, β), there exists
a unique isomorphism f : X ∼−→ Y such that β ◦ haff(f) = α.

Proof. The natural isomorphism γ := β−1 ◦ α : haff
X → haff

Y is unique with β ◦ γ = α.
By Proposition 2.2.4 the restricted Yoneda embedding haff is fully faithful. Thus there
exist unique f : X → Y and g : Y → X such that haff(f) = γ and haff(g) = γ−1. Since

haff(g ◦ f) = idhaff
X

and haff(f ◦ g) = idhaff
Y

by functoriality, we get g ◦ f = idX and f ◦ g = idY using that haff is faithful. Hence f
is an isomorphism and unique with the property β ◦ haff(f) = α.

We conclude that a scheme X is uniquely determined by its functor of points on Aff.
It still remains the question, when a functor Affop → Set can be represented in Sch.
With the criterion in [EH00, Thm. VI-14], we attain, after going through a few basic
definitions, a suitable criterion, which allows us in the upcoming section to determine
the functor represented by Grassmannians.

Notation 2.2.8. Let F be a presheaf on (affine) schemes and ι : U ↪→ X the inclusion
of an (affine) open subscheme U into an (affine) scheme X. Let f ∈ F (X). Then we
write f |U for the element F (ι)(f) in F (U).

Definition 2.2.9 (Zariski sheaf). A Zariski sheaf on Aff is a sheaf on the big affine
Zariski site, i.e. a presheaf F ∈ PSh(Aff) such that for every affine scheme X and affine
open covering (Ui)i∈I of X the diagram

F (X)
∏
i∈I

F (Ui)
∏

(i,j)∈I2

F (Ui ∩ Uj)
f 7→(f |Ui

)i∈I (fi)i∈I 7→(fj |Ui∩Uj
)(i,j)∈I2

(fi)i∈I 7→(fi|Ui∩Uj
)(i,j)∈I2

is an equalizer diagram.

The following lemma is essential when dealing with presheaves valued in Set.

Lemma 2.2.10 ((co)limits of presheaves). Let C be a category. The category Fun(C, Set)
admits all small limit and colimits. Valued at any object of C, the limit (resp. colimit)
of a small diagram in Fun(C,Set) is the limit (resp. colimit) of the resulting diagram
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in Set. By considering the opposite category of C, we get the dual statements for the
category PSh(C) instead of Fun(C, Set).

Proof. Since Set admits all small limits and colimits, this is derived as a special case
from [Sch23, Prop. 2.5.1].

Lemma 2.2.11. Let C be either Sch or Aff and let X, Y and S be schemes. Write hX

for the functor of points of X on Cop. Let α : hX → hS and β : hY → hS be natural
transformations. Then there exist unique morphisms f : X → S and g : Y → S such
that the resulting fibered product X ×S Y represents the fibered product hX ×hS

hY of
presheaves on C.

Proof. Applying Proposition 2.2.2 (resp. Proposition 2.2.4) yields the unique morphisms
f : X → S and g : Y → S with α = h(f) and β = h(g). Since for any object T of C the
functor HomC(T,−) preserves limits (see [Rie16, Thm. 3.4.6]), the claim follows from
Lemma 2.2.10.

Convention 2.2.12. Let X be a scheme. For the rest of the report, we write hX for
the functor of points of X, considered as a functor on Affop rather than Schop.

See [EH00, VI.1.1] and [Bej20, Def. 2.9] for the following definitions.

Definition 2.2.13 ((open) subfunctors, open covers). Let F : Affop → Set be a presheaf.

(i) A pair (G,α) consisting of presheaf G ∈ PSh(Aff) and a natural transformation
α : G → F is called a subfunctor of F if for every affine scheme T the map
αT : G(T ) → F (T ) is injective.

(ii) A subfunctor G of F is called open if for every affine scheme T and morphism
hT → F there exists a representation (X,ϕ) of the fibered product G×F hT , where
X is an open subscheme of T via an open immersion ι : X ↪→ T and h(ι) = pr2 ◦ϕ
holds.

(iii) A family of open subfunctors (Fi)i∈I is called an open cover of F if for every
affine scheme T and morphism hT → F the family of open subschemes (Ti)i∈I

of T , which consists for every i ∈ I of a representation Ti of the fibered product
Fi ×F hT , forms an open cover of T .

Here are some basic facts about this new notions.

Lemma 2.2.14. (i) Let ι : X ↪→ Y be an open immersion of schemes. Then the map
of functors h(ι) : hX → hY defines an open subfunctor.

(ii) Let X be a scheme and (Xi)i∈I an open cover of X. Then the family of open
subfunctors (hXi)i∈I covers hX .

Being an open subfunctor and being an open cover are properties, which are stable under
base change:

(iii) If F ∈ PSh(Aff) is a presheaf and G an open subfunctor of F , then for any map
F ′ → F of presheaves on Aff, the map pr2 : G ×F F ′ → F ′ defines an open
subfunctor.
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(iv) Let F ∈ PSh(Aff) be a presheaf with an open cover (Fi)i∈I by open subfunctors
and let F ′ → F be a map of presheaves. Then the family of open subfunctors
(Fi ×F F ′)i∈I covers F ′.

Proof. Let T be an affine scheme.

(i) The map hX(T ) → hY (T ) given by composition with ι is injective, since ι is injec-
tive. Hence h(ι) defines a subfunctor. Given a map hT → hY , by Lemma 2.2.11
the functor hX ×hY

hT is represented by X ×Y T , where T → Y is the unique
morphism induced by Proposition 2.2.4. The canonical map hX×Y T → hT is the
morphism given by the projection X ×Y T → T . It follows by [GW10, Prop. 4.32]
that this is an open immersion, showing (i).

(ii) Suppose that there exists a map hT → hX . According to (i), the induced map
hXi ×hX

hT → hT is represented by Xi ×X T → T . Since (Xi)i∈I is an open cover
of X, the statement now follows from [GW10, Cor. 4.19].

(iii) Suppose that there exists a map hT → F ′. We have

(G×F F ′) ×F ′ hT
∼= G×F hT

by a unique isomorphism. Using that G → F is an open subfunctor, we get that
the functor (G ×F F ′) ×F ′ hT is representable by the same open subscheme X
of T , which represents G ×F hT , and that the subscheme inclusion induces the
projection onto hT .

(iv) Suppose that there exists a map hT → F ′. As seen in (iii), for every i ∈ I the
functor (Fi ×F F ′) ×F ′ hT is represented by the open subscheme Xi ↪→ T , which
represents the functor Fi ×F hT . These form an open cover of T , since the family
(Fi)i∈I covers F . This proves (iv).

We now prove the representability criterion from [EH00, Thm. VI-14].

Theorem 2.2.15 (representability criterion). Let F : Affop → Set be a presheaf. Then
F is representable in Sch if and only if it satisfies the following conditions:

(1) F is a Zariski sheaf.

(2) F admits a cover by affine representable open subfunctors.

Moreover, a representation in Sch of a presheaf F ∈ PSh(Aff), which satisfies the con-
dition (1) and (2), is obtained by gluing affine representations of the open subfunctors
covering F along representations of their fibered products.

Proof. “⇒”: Let X be a scheme. Let T be any scheme with open cover U . A family of
morphisms (fU )U∈U ∈

∏
U∈U hX(U) with the property that for all U, V ∈ U the identity

fU |U∩V = fV |U∩V

holds, glues by [GW10, Prop. 3.5] to a unique morphism f : T → X such that f |U = fU

for every U ∈ U . Hence hX satisfies the sheaf property for all schemes. Especially hX

is a Zariski sheaf on Aff.
Any affine open cover (Xi)i∈I of X gives by Lemma 2.2.14(ii) rise to an open cover
(hXi)i∈I of hX by affine representable open subfunctors. Hence hX satisfies the condi-
tions (1) and (2).
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“⇐”: Let F : Affop → Set be a Zariski sheaf, and without loss of generality assume
that F is covered by a family of open subfunctors (αi : hXi → F ), where Xi is for any
i ∈ I an affine scheme.

Strategy for the remainder of the proof. We proceed in three steps: We first show that the
family (Xi)i∈I gives rise to a gluing datum for schemes in the sense of Definition 2.1.3,
which provides us with a candidate X for a representative of F in Sch. This is a stan-
dard argument, see for instance [GW10, Thm. 8.9]. Since X is in general not affine and
F is a priori not defined on Sch, we cannot directly use the Zariski sheaf property of
F to obtain the desired isomorphism hX → F . Instead, we define in a next step this
natural transformation “manually” by choosing a suitable affine cover in the domain of
a morphism f : T → X such that the sheaf property of F applies. Finally we check that
this natural transformation is indeed an isomorphism of presheaves.

Step 1: For i, j ∈ I consider the open subscheme Xi,j ⊆ Xi, which represents the functor
hXj ×F hXi in Sch. Since hXj ×F hXi

∼= hXi ×F hXj by a unique isomorphism, we
get a unique isomorphism of schemes

ϕj,i : Xi,j
∼−→ Xj,i

by Proposition 2.2.7. It is not hard to verify that this defines a gluing datum of
schemes (see [GW10, Thm. 8.9]). We thus obtain a scheme X together with a
family of open immersions (ψi : Xi → X)i∈I such that for Ui := ψi(Xi) for i ∈ I,
it holds that X =

⋃
i∈I Ui and such that for all i, j ∈ I we have

ψi(Xi,j) = Ui ∩ Uj and ϕj,i = (ψ−1
j ◦ ψi)|Xi,j ,

see Lemma 2.1.4.

Step 2: Let T be an affine scheme with a morphism f : T → X. For each i ∈ I, we choose
an affine open cover Vi of f−1(Ui). Note that for i, j ∈ I the intersection of two
affine schemes V ∈ Vi and W ∈ Vj is again affine, since T is affine. Hence these
intersections make for an affine open cover of f−1(Ui ∩ Uj). Let i, j ∈ I, V ∈ Vi

and W ∈ Vj and set
f i

V := ψ−1
i ◦ (f |V ) : V → Xi

and
f i,j

V,W := ψ−1
i ◦ (f |V ∩W ) : V ∩W → Xi,j .

This yields elements

(αi)V (f i
V ) ∈ F (V ) and (αi)V ∩W (f i,j

V,W ) ∈ F (V ∩W )

such that, by naturality of αi, we get

((αi)V (f i
V ))|V ∩W = (αi)V ∩W (f i

V |V ∩W ) = (αi)V ∩W (f i,j
V,W ) = (αj)V ∩W (ϕj,i(f i,j

V,W ))
= (αj)V ∩W ((ψ−1

j ◦ ψi)|Xi,j ◦ ψ−1
i ◦ (f |V ∩W ))

= (αj)V ∩W (ψ−1
j ◦ (f |V ∩W )) = (αj)V ∩W (f j,i

W,V )

= (αj)V ∩W (f j
W |V ∩W ) = ((αj)W (f j

W ))|V ∩W .

Therefore, the sheaf property of F yields a unique element αT (f) ∈ F (T ) which
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satisfies
αT (f)|V = (αi)V (f i

V )

for every i ∈ I and V ∈ Vi. Since for each i ∈ I the map αi : hXi → F is objectwise
injective and since the sheaf property of F yields the same element in F (T ) for
refinements of the open cover of T , this construction gives rise to a well-defined
map

αT : hX(T ) → F (T ).

We claim that this map is natural in T . Let g : S → T be a morphism of affine
schemes and again let f ∈ hX(T ). Now suppose that W ⊆ S and V ⊆ T are affine
open subsets such that g(W ) ⊆ V and f(V ) ⊆ Ui for some i ∈ I. Then

(αS(f ◦ g))|W = ((αi)W (ψ−1
i ◦ (f |V ) ◦ (g|W )) = ((αi)W ◦ hXi(g|W ))(ψ−1

i ◦ (f |V ))
= (F (g|W ) ◦ (αi)V )(ψ−1

i ◦ (f |V )) = F (g|W )((αT (f))|V )
= (F (g)(αT (f)))|W .

Since we can cover S by affine open subsets W of this form and F is a Zariski
sheaf, this shows naturality.

In the final step we verify that the resulting map of presheaves

α : hX → F

is an isomorphism, which finishes the proof.

Step 3: Let T be an affine scheme. We construct an inverse to αT . Let a ∈ F (T ). By
Yoneda, this corresponds uniquely to a natural transformation hT → F and we
get schemes (Ti)i∈I such that for every i ∈ I the fibered product hXi ×F hT is
represented by Ti and the projection hTi → hT is induced by an open immersion
ιi : Ti ↪→ T . By assumption, the family (ιi(Ti))i∈I is an open cover of T . Let
i ∈ I and V ⊆ ιi(Ti) an open subset. The induced morphism hV → hXi in the
commutative diagram

hι−1
i (V ) hV

hTi hT

hXi F

∼=

yields by Yoneda a unique morphism ai
V : V → Xi, which satisfies

(αi)V (ai
V ) = a|V .

For another affine open subset W ⊆ ιi(Ti), the intersection V ∩ W = V ×T W is
an affine scheme and we get that

(αi)V ∩W (ai
V |V ∩W ) = (a|V )|V ∩W = (a|W )|V ∩W = (αi)W (ai

W |V ∩W )

holds. This shows ai
V |V ∩W = ai

W |V ∩W and we can use [GW10, Prop. 3.5] to glue
these morphisms to a unique map ai : ιi(Ti) → Xi such that ai|V = ai

V for every
affine open subset V ⊆ Ti.
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Moreover, for i, j ∈ I and V ⊆ ιi(Ti) ∩ ιj(Tj) affine open, we have

(αi)V (ai
V ) = a|V = (αj)V (aj

V ),

such that the universal property of the fibered product hXj (V )×F (V )hXi(V ) yields
a unique ai,j

V : V → Xi,j , which satisfies

(Xi,j ↪→ Xi) ◦ ai,j
V = ai

V = ai|V .

As before, for another affine open subset W ⊆ ιi(Ti)∩ιj(Tj) the intersection V ∩W
is affine and we have

((Xi,j ↪→ Xi) ◦ ai,j
V )|V ∩W = ai

V |V ∩W = ai
W |V ∩W = ((Xi,j ↪→ Xi) ◦ ai,j

W )|V ∩W .

Again, we use [GW10, Prop. 3.5] to glue this datum to a unique morphism of
schemes ai,j : ιi(Ti) ∩ ιj(Tj) → Xi,j . For every affine open V ⊆ ιi(Vi) ∩ ιj(Vj) we
get ai,j |V = ai,j

V and the universal property of the fibered product ensures, that

(ϕj,i ◦ ai,j)|V = ϕj,i ◦ ai,j
V = aj,i

V = aj,i|V .

holds. This shows ϕj,i ◦ ai,j = aj,i. We summarize that the conditions

(ai)−1(Xi,j) = ιi(Ti) ∩ ιj(Tj) and aj |ιi(Ti)∩ιj(Tj) = ϕj,i ◦ (ai|ιi(Ti)∩ιj(Tj))

are satisfied. The mapping properties of glued schemes (see [Stacks, Tag 01JB])
yield a unique morphism βT (a) : T → X with βT (a)|ιi(Ti) = ψi ◦ ai for every
i ∈ I. Moreover, the construction of βT (a) did not depend on the choice of the
representatives (Ti)i∈I of hXi ×F hT , such that

βT : F (T ) → hX(T ), a 7→ βT (a)

is a well-defined map. We claim that βT is inverse to αT .
Let a ∈ F (T ) and let (Ti)i∈I be as before. For i ∈ I and an affine open subset
V ⊆ ιi(Ti) we get the identity

αT (βT (a))|V = (αi)V (ψ−1
i ◦ (βT (a)|V )) = (αi)V (ai|V ) = (αi)V (ai

V ) = a|V .

This implies αT ◦ βT = idF (T ).
Consider now a morphism f : T → X. Let i ∈ I and let Ti be a representation of
hXi ×F hT with respect to the by αT (f) induced morphism hT → F . Given an
affine open subset V ⊆ f−1(Ui), the element ψ−1

i ◦ (f |V ) ∈ hXi(V ) satisfies

(αi)V (ψ−1
i ◦ (f |V )) = αV (f |V ) = αT (f)|V .

Using Yoneda and the universal property of the fiber product, this yields a unique
element t ∈ hTi(V ), which satisfies

t ◦ ιi = (V ↪→ T ).

This shows that V ⊆ ιi(Ti), which allows us to compute

(αi)V (ψ−1
i ◦ ((βT (αT (f)))|V )) = αT (f)|V = (αi)V (ψ−1

i ◦ (f |V )).

https://stacks.math.columbia.edu/tag/01JB
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Since (αi)V is injective, we obtain

(βT (αT (f)))|V = f |V

and finally βT ◦ αT = idhX(T ).

Remark 2.2.16. (i) If one is familiar with the statement that the restriction of
Zariski sheaves on Sch to Zariski sheaves on Aff is an equivalence of categories
(see [Stacks, Tag 020W]), the criterion in [GW10, Thm. 8.9] can be used to derive
Theorem 2.2.15 and vice versa.

(ii) The version in [EH00, Thm. VI-14] can be obtained from Theorem 2.2.15 by
applying the following criterion for open covers: Let F : Affop → Set be a presheaf.
A family (αi : Fi → F )i∈I of open subfunctors is an open cover of F if and only if
for every field K the identity⋃

i∈I

(αi)Spec(K)(F ∗
i (K)) = F ∗(K)

holds. For “⇒”, let f ∈ F ∗(K) and choose i ∈ I such that Fi ×F hSpec(K) is
represented by Spec(K). Then f is in the image of (αi)Spec(K).
The direction “⇐” follows basically from [GW10, Prop. 4.8 and Rem. 4.9].

2.3 Representability of the Grassmannian functor

In commutative algebra, the generalization of finite dimensional vector spaces (of di-
mension n) from linear algebra are finitely generated projective modules (of constant
rank n). This leads to the following definition, of what “the Grassmannians” over an
arbitrary commutative ring should be:

Definition 2.3.1 (Grassmannian functor). Let n,N ∈ N with 1 ≤ n < N . We call the
functor

g∗
n,N : CRing → Set,

R 7→
{

(P,ϕ)
∣∣∣∣∣ P fin. gen. projective R-module of rank n

and ϕ : RN � P epimorphism

}
/ ∼,

(f : R → S) 7→
(
gn,N (f) : g∗

n,N (R) → g∗
n,N (S),

[(M,ϕ)] 7→ [(M ⊗R S, ϕ⊗ idS)]

)
,

where (P,ϕ) ∼ (P ′, ϕ′) if and only if there exists an R-linear isomorphism µ : P → P ′

such that ϕ′ = µ ◦ ϕ, the Grassmannian functor. Often we also mean

gn,N := g∗
n,N ◦ Γ: Affop → Set

by the Grassmannian functor.

https://stacks.math.columbia.edu/tag/020W
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Remark 2.3.2. Let n,N ∈ N with 1 ≤ n < N and let R be a ring. A rank n direct
summand of RN is a fin. gen. projective R-submodule of RN of rank n.
Note that the map

g∗
n,N (R) → {rank N−n direct summands of RN }, [(P,ϕ)] 7→ ker(ϕ)

is a natural bijection. Hence the Grassmannian functor is defined to describe rank N−n,
instead of rank n, direct summands of RN . However, one can show that for a field K, the
obvious bijection of sets Gn(KN ) ∼−→ GN−n(KN ), given by mapping a subspace of KN

to its orthogonal complement with respect to the standard bilinear form on KN , is an
isomorphism of varieties (see [Gat24, Prop. 8.21]). Hence considering rank n quotients
instead of rank n subspaces also fits the classical picture Motivation 2.1.2.

Theorem 2.3.3 (representability of the Grassmannian functor). Let n,N ∈ N with
1 ≤ n < N . The Grassmannian functor gn,N : Affop → Set is represented by the scheme
GrZ(n,N).

Before proving the theorem in the general case, we recall the special case n = 1, in which
we already know a representation of the Grassmannian functor from a previous talk.

Theorem 2.3.4 (functor of points of projective space). Let N ∈ N≥1.

(i) The Grassmannian functor g1,N+1 is represented by the projective N -space PN
Z .

(ii) Given i ∈ {0, . . . , N}, the standard affine open chart Ui := D+(xi)
ιi
↪−→ Pn

Z repre-
sents the functor

Fi : Affop → Set, X 7→ {[(P,ϕ)] ∈ g∗
1,N+1(Γ(X,OX)) | 〈ϕ(ei)〉R = P}

such that the diagram
hPN

Z
gn,N+1

hUi Fi

∼

∼

h(ιi)

commutes.

Proof. For (i), we refer to [EH00, Thm. III-37]. Let i ∈ {0, . . . , N} and let X be an
affine scheme. The map

hUi(X) → Fi(X),

f 7→
[(

Γ(X,OX),
(

Γ(X,OX)N+1 → Γ(X,OX),
ej 7→ f#(Ui)(xj/xi)

))]

is natural. It follows from the fact that being a module isomorphism is a “prime-local”
property, that all finitely generated modules of rank 1, which are generated by a single
element, are free. This ensures that the map is bijective. Hence we get the desired
isomorphism of functors hUi

∼−→ Fi.
To verify commutativity of the diagram in (ii), we quickly recall the construction of the
natural bijection hPN

Z
(SpecR) ∼−→ g∗

1,N+1(R) from [EH00, Cor. III-42] for a ring R.
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Given a map of schemes f : SpecR → PN
Z , we pull it back along the inclusion morphisms

ιj : Uj ↪→ PN
Z to maps

fj : Xj := Spec(R) ×PN
Z
Uj → Uj

for every j ∈ {0, . . . , N}. Then there exists a unique representative of the image of
fj under above natural isomorphism in Fj(Xj) with ej 7→ 1. This gives rise to a
unique epimorphism O(N+1)

Xj
→ OXj of OXj -modules (see [GW10, Eq. (7.4.5)]) such

that precomposition with the j-th inclusion is the identity on OXj . By gluing, we
obtain a unique epimorphism O(N+1)

Spec(R) → L of OSpec(R)-modules, where L is invertible.
Now the equivalence of category described in [GW10, Cor. 7.17] tells us, that this exactly
corresponds to an element in g∗

1,N+1(R).
Now if f : Spec(R) → PN

Z factors as f = ιi ◦ f ′ for a morphism f ′ : Spec(R) → Ui, the
pullback fi : Xi → Ui is just f ′ and the induced epimorphism

O(N+1)
Spec(R) = O(N+1)

Xi
→ OXi = OSpec(R)

is already the morphism of OSpec(R)-modules obtained by gluing. By applying the global
section functor, we see that the image of f in g∗

1,N+1(R) thus agrees with the image of
f ′ in F ∗

i (R).

Next we prove representability of the Grassmannian functor by the scheme constructed
in Definition 2.1.6. Basic facts about exterior powers of modules can be found for
example here [Bou74, Ch. III § 7].

Proof of Theorem 2.3.3. In order to apply Theorem 2.2.15, we verify in a first step that
gn,N is a Zariski sheaf. A considerable part of the proof will then be to verify that the
two gluing constructions in Lemma 2.1.5 and Theorem 2.2.15 indeed yield up to unique
isomorphism the same scheme.

Zariski sheaf property: Let T be an affine scheme with an affine open cover V. Using
the equivalence of categories in [GW10, Cor. 7.17] and [GW10, Prop. 7.24], we refor-
mulate the situation in terms of the associated sheaves: The Zariski sheaf property is
fulfilled for gn,N if and only if, given for every V ∈ V a representative (PV , ϕV ) of a class
in gn,N (V ) such that

P̃V |V ∩W
∼= P̃W |V ∩W

holds for all V,W ∈ V and this isomorphism is compatible with the associated morphisms
ϕ̃V and ϕ̃W , there exists a unique class in gn,N (T ) with a representative (P,ϕ) such that
P̃ |V ∼= P̃V holds and this isomorphism is compatible with the associated morphisms ϕ̃|V
and ϕ̃V for all V ∈ V. Given V1, V2, V3 ∈ V, the two lower and the outer triangle
commute in the following diagram

P̃V1 |V1∩V2∩V3 P̃V3 |V1∩V2∩V3

P̃V2 |V1∩V2∩V3

O(N)
V1∩V2∩V3

ϕ̃V1
ϕ̃V2

ϕ̃V3
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This implies that also the upper triangle commutes. Hence [Stacks, Tag 00AL] applies
and we obtain by gluing a unique OT -module F together with isomorphisms F|V ∼= P̃V

for all V ∈ V, which are compatible with the isomorphisms on restrictions to intersec-
tions. This implies with [Stacks, Tag 04TN] that the family of epimorphisms

(O(N)
V

ϕ̃V−−→ P̃V
∼−→ F|V )V ∈V

glues to a unique morphism O(N)
T → F . Now without loss of generality we can write

F = P̃ for a Γ(T,OT )-module P such that the epimorphism O(N)
T → F is given by an

epimorphism ϕ : Γ(T,OT )N → P of Γ(T,OT )-modules. It remains to check that P is
fin. gen. projective of rank n. This follows from the fact that locally on V, the sheaf P̃
is given by the P̃V ’s and [GW10, Cor. 7.41].

Application of Theorem 2.2.15: Set r :=
(N

n

)
− 1 and consider

Pr
Z = Proj(Z[xI | I ⊆ {1, . . . , N} with #I = n]).

For I ⊆ {1, . . . , N} with #I = n, we set UI := D+(xI) ⊆ Pr
Z. We identify hPr

Z
with

g1,r+1 and hUI
with FI as in Theorem 2.3.4. Let R be a ring and [(P,ϕ)] ∈ g∗

n,N (R).
Then by [Bou74, Ch. III § 7.8 Cor. 2] the R-module

∧n P is projective and the map∧n ϕ :
∧nRN →

∧n P

is an epimorphism by [Bou74, Ch. III § 7.2 Prop. 3]. Especially
∧n P is finitely generated.

Moreover [Bou74, Ch. III § 7.5 Prop. 8 and § 7.8 Thm. 1] yields that
∧n P is of constant

rank
(n

n

)
= 1. This shows [(

∧n P,
∧n ϕ)] ∈ h∗

Pr
Z
(R).

By [Bou74, Ch. III § 7.5 Prop. 8] exterior powers commute with scalar extensions. This
implies that the induced map

g∗
n,N (R) → h∗

Pr
Z
(R), [(P,ϕ)] 7→ [(

∧n P,
∧n ϕ)]

is natural in R and we obtain a map of functors gn,N → hPr
Z
. It follows now directly

from Lemma 2.2.14(ii) and (iv) that the induced maps of functors

gI
n,N := hUI

×hPr
Z
gn,N → gn,N

for I ⊆ {1, . . . , N} with #I = n form an open cover of gn,N . We still have to verify that
these open subfunctors are representable by affine schemes.
For I = {i1 < · · · < in} ⊆ {1, . . . , N} write eI := ei1 ∧ · · · ∧ ein ∈

∧nRN for the I-th
standard basis element of

∧nRN . Then

(gI
n,N )∗(R) = h∗

Ui
(R) ×h∗

Pr
Z

(R) g
∗
n,N (R) = {[(P,ϕ)] ∈ g∗

n,N (R) | 〈(
∧n ϕ)(eI)〉 =

∧n P}

holds by Lemma 2.2.10. Hence by [Bou74, Ch. III § 7.2 Prop. 3] any [(P,ϕ)] ∈ g∗
n,N (R)

with 〈ϕ(ei) | i ∈ I〉 = P lies in (gI
n,N )∗(R). Conversely, if [(P,ϕ)] ∈ (gI

n,N )∗(R), it is true
by [Bou74, Ch. III § 7.9 Thm. 2] that locally for any prime p of R, the family (ϕp(ei))i∈I

is an Rp-basis of the free module Pp. Hence we deduce that P is already a free module
with basis (ϕ(ei))i∈I . This shows

(gI
n,N )∗(R) = {[(P,ϕ)] ∈ g∗

n,N (R) | 〈ϕ(ei) | i ∈ I〉 = P} (∗)

https://stacks.math.columbia.edu/tag/00AL
https://stacks.math.columbia.edu/tag/04TN
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and if we consider for a class [(P,ϕ)] ∈ (gI
n,N )∗(R) the unique isomorphism

µ : RI ∼−→ P, ei 7→ ϕ(ei),

this yields a unique representative (Rn, µ−1 ◦ ϕ), for which the map µ−1 ◦ ϕ is given by
a unique matrix M ∈ Matn×N (R) with MI = En. This gives us bijections

(gI
n,N )∗(R) ∼= {ϕ : RN → RI epimorphism with ei 7→ ei for i ∈ I}

∼= {M ∈ Matn×N (R) | MI = En} ∼= h∗
WI

(R), (∗∗)

where WI is defined as in Lemma 2.1.5 and the last bijection was discussed in Exam-
ple 2.2.5. All these bijections are natural in R, so that we get an isomorphism of functors
hWI

∼−→ gI
n,N , which shows that the subfunctors given by the composition

hWI

∼−→ gI
n,N → gn,N

is an cover of gn,N by affine representable open subfunctors.
This ensures that we are in the setting of Theorem 2.2.15. Hence there exists a scheme
X, which represents gn,N and which is obtained by gluing the WI ’s along the induced
isomorphisms between representations of the canonically isomorphic fibered products
hWI

×gn,N hWJ
and hWJ

×gn,N hWI
.

Comparison with Definition 2.1.6: We still have to verify that the so obtained scheme
X agrees with our initial definition of the Grassmannian scheme. For I, J ⊆ {1, . . . , N}
with #I = #J = n, we again write

WI,J := UJ ×Pr
Z
WI

ιI,J
↪−−→ WI

for the affine open subscheme introduced in Lemma 2.1.5 and ϕJ,I : WI,J
∼−→ WJ,I for

the canonical isomorphism of schemes. There exists a canonical isomorphism of functors

hWI,J
= hUJ ×Pr

Z
WI

∼−→ hUJ
×hPr

Z
hWI

∼−→ (hUJ
×hPr

Z
gn,N ) ×gn,N hWI

∼−→ hWJ
×gn,N hWI

.

In order to see that the gluing datum obtained from Theorem 2.2.15 coincides with the
gluing datum defined in Lemma 2.1.5, we have to take a closer look at what maps we
obtain by postcomposing this isomorphism with the canonical projections.
Let R be a ring. We have a commutative diagram

h∗
WI,J

(R) h∗
WJ

(R) ×g∗
n,N (R) h

∗
WI

(R)

{
M ∈ Matn×N (R)

∣∣∣∣∣ MI = En and
det(MJ) ∈ R×

} {
[(P,ϕ)] ∈ g∗

n,N (R)
∣∣∣∣∣ 〈ϕ(ei) | i ∈ I〉 = P,

〈ϕ(ej) | j ∈ J〉 = P

}

{M ∈ Matn×N (R) | MI = En} {[(P,ϕ)] ∈ g∗
n,N (R) | 〈ϕ(ei) | i ∈ I〉 = P}

h∗
WI

(R)

∼

2.2.5 ∼ ∼ 2.2.10 + (∗)

∼
(∗) + (∗∗)

∼
(∗) + (∗∗)

2.2.5
∼ ∼

(∗)
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where the composition of the morphisms on the left hand-side is by Example 2.2.5 the
morphism h∗(ιI,J) : h∗

WI,J
(R) ↪→ h∗

WI
(R) and the composition of the morphisms on the

right hand-side is just the projection on the second component. Similarly, the diagram

h∗
WI,J

(R) h∗
WJ

(R) ×g∗
n,N (R) h

∗
WI

(R)

{
M ∈ Matn×N (R)

∣∣∣∣∣ MI = En and
det(MJ) ∈ R×

} {
[(P,ϕ)] ∈ g∗

n,N (R)
∣∣∣∣∣ 〈ϕ(ei) | i ∈ I〉 = P,

〈ϕ(ej) | j ∈ J〉 = P

}

{M ∈ Matn×N (R) | MJ = En} {[(P,ϕ)] ∈ g∗
n,N (R) | 〈ϕ(ej) | j ∈ J〉 = P}

h∗
WJ

(R)

∼

2.2.5 ∼ ∼ 2.2.10 + (∗)

(−)−1
J ·(−)

∼
(∗) + (∗∗)

∼
(∗) + (∗∗)

2.2.5
∼ ∼

(∗)

commutes and the composition of the morphisms on the left hand-side is by Exam-
ple 2.2.5 the morphism h∗(ιJ,I ◦ ϕJ,I) : h∗

WI,J
(R) ↪→ h∗

WJ
(R) and the composition of the

morphisms on the right hand-side is just projection on the first component.
Combining these two results, we conclude that the diagram

hWI,J

hWJ
×gn,N hWI

hWI

hWJ
gn,N

∼

h(ιJ,I◦ϕJ,I)

h(ιI,J )

pr1

pr2

commutes.
This means that WI,J represents the fibered product hWJ

×gn,N hWI
in the sense of

Definition 2.2.13(ii). Moreover, the diagram

hWJ,I

hWI,J
hWI

hWJ
gn,N

∼
h(ϕI,J )

h(ιJ,I)

h(ιI,J ◦ϕI,J )

h(ιJ,I◦ϕJ,I)

h(ιI,J )

commutes, which shows that the unique isomorphism from hWJ,I
to hWI,J

induced by
the universal property of the fibered product, is exactly given by the map h(ϕI,J).
In view of Theorem 2.2.15, this suffices to conclude that X agrees up to unique isomor-
phism with the Grassmannian scheme Grn,N (Z) from Definition 2.1.6.
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Remark 2.3.5 (non-affine Grassmannian functor). Let N > n ≥ 1 be natural numbers.
The definition of the Grassmannian functor gn,N in Definition 2.1.6 has an obvious
generalization to non-affine schemes as well: Since for any ring R, rank n projective
R-modules correspond precisely to rank n locally free OSpec(R)-modules, we may define
for a scheme X, the Grassmannian functor of X as

gn,N (X) :=
{

(Q, ϕ)
∣∣∣∣∣ Q finite locally free OX -module of rank n

and ϕ : O⊕N
X � Q epimorphism

}
/ ∼

with “∼” as in Definition 2.1.6. In a similar fashion as in Theorem 2.3.3 it is shown here
[GW10, Prop. 8.14] that GrZ(n,N) also represents gn,N as a presheaf on schemes.
An advantage of this approach is that we can apply gn,N to Grn,N itself and thereby
obtain an exceptional element [ϕuniv : O⊕N

GrZ(n,N) � Quniv] in gn,N (GrZ(n,N)) which
corresponds under Proposition 2.2.2 to the identity on GrZ(n,N). By functoriality of
gn,N , any morphism of schemes f : X → GrZ(n,N) corresponds now to the pullback
[(f∗Quniv, f

∗ϕuniv)] ∈ gn,N (X), which explains the name universal bundle for this ex-
ceptional class. This point of view is convenient for many computations.
For the remainder of the report, however, we again concentrate on the affine case and
work with our original definition of gn,N in Definition 2.3.1.

2.4 ∞-Grassmannians

At the beginning of the report, it was already mentioned that in topology, the functor
sending a paracompact topological space X to the set of isomorphism classes of real
vector bundles on X of a fixed finite rank n is represented up to homotopy by an
infinite dimensional Grassmannian manifold, which is defined as the colimit over all
finite dimensional Grassmannian manifolds (Gn(RN ))N≥n. An analogous construction
is also feasible in the algebro-geometric setting.

Lemma 2.4.1. Let n ∈ N≥1.

(i) For natural numbers N,M > n with M ≥ N and a ring R, the map

(fn
N,M )∗

R : g∗
n,N (R) → g∗

n,M (R),

[(P,ϕ)] 7→ [(P,RM ∼−→ RN ⊕RM−N ϕ⊕0−−→ P ⊕ 0 ∼−→ P )]

is well-defined and natural in R. Therefore, it gives rise to a map of functors
fn

N,M : gn,N → gn,M .

(ii) The family ((gn,N )N>n, (fn
N,M )M≥N>n) is a direct system.

Proof. Let N > n. For N = M , the definition yields the identity on gn,N . Let R
be a ring. Suppose M = N + 1. For well-definedness, let (P,ϕ) and (P ′, ϕ′) be two
representatives of the same class in g∗

n,N (R) and let µ : P → P ′ be an isomorphism of
R-modules with ϕ′ = µ ◦ ϕ.
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Then the diagram
RN ⊕R

P ⊕ 0 RN P ′ ⊕ 0

P P ′

ϕ⊕0 ϕ′⊕0

∼ ϕ ϕ′
∼

∼
µ

commutes. This shows

(P,RN+1 ϕ⊕0−−→ P ) ∼ (P ′, RN+1 ϕ′⊕0−−−→ P ′).

Moreover, since direct sums commute with scalar extensions, it is clear that the map
(fn

N,N+1)∗
R : g∗

n,N (R) → g∗
n,N+1(R) is natural in R. For arbitrary M > N we can write

(fn
N,M )∗

R = (fn
M−1,M )∗

R ◦ · · · ◦ (fn
N,N+1)∗

R

such that the statement follows from the special case M = N + 1. This shows (i) and
yields that for N ≤ M ≤ K it is true that

fn
M,K ◦ fn

N,M = fn
N,K ,

which implies also (ii).

Definition 2.4.2 (∞-Grassmannians). Let n ∈ N≥1. In view of Lemma 2.2.10, we
define the ∞-Grassmannian as the filtered colimit

Grn := colimN>n gn,N

in PSh(Aff) with respect to the direct system ((gn,N )N>n, (fn
N,M )M≥N>n), which was

constructed in Lemma 2.4.1.

Remark 2.4.3 (∞-Grassmannians as ind-schemes). Following [Ric19, Def. 1.1], we call
a filtered colimit of in Sch representable presheaves on affine schemes, for which the
transition maps are given by closed immersions, an ind-scheme.

The transition map fn
N,N+1 : gn,N → gn,N+1 is by Proposition 2.2.4 and Theorem 2.3.3

represented by a unique morphism of schemes

tnN,N+1 : GrZ(n,N) → GrZ(n,N + 1).

We can check on the standard affine open cover of GrZ(n,N + 1) that tnN,N+1 is a closed
immersion:
Let R be a ring. For J ⊆ {1, . . . , N} with #J = n, denote by WN

J ⊆ GrZ(n,N) the
affine open subscheme from Lemma 2.1.5. Recalling the proof of Theorem 2.3.3 (more
precicely the equations (∗) and (∗∗)), the open subfunctor h∗

W N
J

⊆ g∗
n,N is given by

h∗
W N

J
(R) ∼= {[(P,ϕ)] ∈ g∗

n,N (R) | 〈ϕ(ej) | j ∈ J〉 = P},

where (e1, . . . , eN ) is the standard basis of RN .
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Analogously, for I ⊆ {1, . . . , N + 1} with #I = n, we write WN+1
I for the respective

affine open subscheme of GrZ(n,N + 1) and get

h∗
W N+1

I

(R) ∼= {[(P,ϕ)] ∈ g∗
n,N+1(R) | 〈ϕ(ei) | i ∈ I〉 = P},

where, by abuse of notation, we denote with ei the i-th standard basis vector in RN+1.
It suffices to check that the restriction of tnN,N+1 to the preimage of WN+1

I is a closed
immersion. Therefore, one distinguishes two cases:
Suppose N+1 ∈ I. Let [(P,ϕ)] ∈ im((fn

N,N+1)∗
R). By construction we have ϕ(eN+1) = 0.

Hence if we assume

P = 〈ϕ(ei) | i ∈ I〉 = 〈ϕ(ei) | i ∈ I \ {N + 1}〉,

we get that P is finitely generated projective of rank n and admits at the same time
#(I \ {N + 1}) = n− 1 generators. This is a contradiction, which implies

im((fn
N,N+1)∗

R) ∩ h∗
W N+1

I

(R) = ∅

and equivalently (tnN,N+1)−1(WN+1
I ) = ∅. Hence (tnN,N+1)|∅ = ∅ is trivially a closed

immersion.
Now suppose that N + 1 /∈ I, i.e. that I is contained in {1, . . . , N}. Then it is obvious
by construction that

((fn
N,N+1)∗

R)−1(h∗
W N+1

I

(R)) = h∗
W N

I
(R)

holds such that tnN,N+1 (co)restricts to a morphism

t : WN
I → WN+1

I .

Consider the diagram

{M ∈ Matn×N (R) | MI = En} {M ∈ Matn×(N+1)(R) | MI = En}

h∗
W N

I
(R) h∗

W N+1
I

(R)

{[(P,ϕ)] ∈ g∗
n,N (R) | 〈ϕ(ei) | i ∈ I〉 = P} {[(P,ϕ)] ∈ g∗

n,N+1(R) | 〈ϕ(ei) | i ∈ I〉 = P}

”M 7→ (M | 0)”

∼ ∼
h∗(t)R

∼ ∼
(fn

N,N+1)∗
R

with the upper map given by adding a zero column at the end of the matrix and the
other arrows as in the proof of Theorem 2.3.3. By construction of (fn

N,N+1)∗
R it is clear

that the diagram commutes. Moreover, the map ”M 7→ (M | 0)” in the diagram clearly
factors bijectively through the inclusion{

M ∈ Matn×(N+1)(R)
∣∣∣∣∣ MI = En and

(Mi,N+1)1≤i≤n = 0

}
↪→ {M ∈ Matn×(N+1)(R) | MI = En}.
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This map is represented by the inclusion of the closed subscheme

Z := WN+1
I ∩ V (xi,N+1 | 1 ≤ i ≤ n) ↪→ WN+1

I ⊆ An(N+1)
Z ,

where we identify An(N+1)
Z with SpecZ[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ N+1] as in Lemma 2.1.5.

This yields by Proposition 2.2.4 that t : WN
I → WN+1

I factors isomorphically through
the closed subscheme Z ⊆ WN+1

I , proving that t is a closed immersion. Hence Grn is
an ind-scheme.

In the more general setting of Remark 2.3.5, one could alternatively argue as follows:
Write ιN+1 : OGrZ(n,N+1) ↪→ O⊕(N+1)

GrZ(n,N+1) for the inclusion into the last component. Then
for any scheme X, considering the obvious analog of the map (fN,N+1)X in the non-affine
case, we easily check that there exists a commutative diagram of natural maps

gn,N (X) {g ∈ HomSch(X,GrZ(n,N + 1)) | g∗(ϕuniv ◦ ιN+1) = 0}

gn,N+1(X) HomSch(X,GrZ(n,N + 1))

∼

(fN,N+1)X

∼

Since the universal bundle is a finite locally free OGrZ(n,N+1)-module, it is a general
fact from algebraic geometry (see [GW10, Prop. 8.4]) that the vertical map on the right
hand-side in the diagram is as a natural transformation represented by the inclusion of
a closed subscheme.
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3 Naive A1-homotopical Classification of Algebraic Vector
Bundles

3.1 Naive A1-homotopy revisited

In order to classify algebraic vector bundles up to naive A1-homotopy in terms of maps
into the ∞-Grassmannian from the previous subsection, we have to make sense of what
we mean by naive A1-homotopies between morphisms, where the target is a presheaf on
affine schemes. Therefore, we extend the notions in [Aso19, Def. 2.2.2.1 and Def. 2.2.2.4],
which are already known from the earlier talks, by translating them into the language
of functors of points.

Notation 3.1.1. Let k be a field and X = Spec(R) an affine k-scheme. For any r ∈ R,
there exists a unique evaluation map evr : R[x] → R with x 7→ r. We write εr for the
composition

X = Spec(R) Spec(evr)−−−−−−→ A1
R

∼−→ X ×k A1
k.

Definition 3.1.2 (Naive A1-homotopies). Let k be a field, X an affine k-scheme and
F : Affop → Set a presheaf on affine schemes. Let f, g : hX → F be two maps of functors.
A naive A1-homotopy from f to g is a natural transformation H : hX×kA1

k
→ F , which

satisfies
H ◦ h(ε0) = f and H ◦ h(ε1) = g.

We also write H : f ⇒ g, if H is a naive A1-homotopy from f to g.

Remark 3.1.3. Let k be a field, X an affine k-scheme and F a presheaf on affine
schemes. Let f, g : hX → F be maps of functors.

(i) By Proposition 2.2.2 it is clear that in the case F = hY for an affine k-scheme
Y , a naive A1-homotopy from f to g in the sense of Definition 3.1.2 is precicely a
naive A1-homotopy in the sense of [Aso19, Def. 2.2.2.1].

(ii) The relation given by “existence of a naive A1-homotopy from f to g” is reflexive
and symmetric. The proof of this is a straighforward adaption of the arguments
in [Aso19, p. 27]. However, as demonstrated here [Aso19, Ex. 2.2.2.3], transitivity
fails by part (i) already in the case, where F is represented by an affine k-scheme.

Definition 3.1.4 (Naive A1-homotopy equivalence). Let k be a field, let X be an affine
k-scheme and F : Affop → Set a presheaf on affine schemes. We write “∼N ” for the
equivalence relation on HomPSh(Aff)(hX , F ) generated by the relation

f ∼ g :⇐⇒ ∃ naive A1 − homotopy from f to g

and we write
[X,F ]N := HomPSh(Aff)(hX , F )/ ∼N

for the quotient set. Two maps f, g : hX → F are called naively A1-homotopic if f ∼N g.
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Remark 3.1.5. Let k be a field, X an affine k-scheme and F a presheaf on affine
schemes. By Remark 3.1.3(ii), two natural transformations f, g : hX → F are naively
A1-homotopic if and only if there exists an n ∈ N≥2 and morphisms f1, . . . , fn : hX → F
such that f1 = f , fn = g and there exists a naive A1-homotopy Hi : fi ⇒ fi+1 for any
i ∈ {1, . . . , n− 1}.

Recall the definition of naive A1-invariance from [Aso19, Def. 2.2.1.1]:

Definition 3.1.6. Let k be a field, C a category and F : Affop
k → C a functor. Then F

is called naively A1-invariant if F(pr1) : F(X) → F(X ×k A1
k) is an isomorphism.

Let us establish the following essential result.

Proposition 3.1.7. Let k be a field and F : Affop
k → Set a presheaf.

(i) The functor
[−, F ]N : Affop

k → Set, X 7→ [X,F ]N ,

which is given on morphisms by pullback, is naively A1-invariant.

(ii) The natural transformation

η : HomPSh(Affk)(h( − ), F ) → [−, F ]N ,

which, valued at an affine k-scheme X, sends a map of functors hX → F to its
naive A1-homotopy class, has the following property: Given a naively A1-invariant
functor F : Affop

k → Set together with a natural transformation

θ : HomPSh(Affk)(h( − ), F ) → F ,

there exists a unique natural transformation θ : [−, F ]N → F with θ ◦ η = θ.

Proof. Note that by Proposition 2.2.2 for any affine k-schemeX, natural transformations
from hX to F form a set. Especially we get that [X,F ]N is a set.

(i) First of all, note that [−, F ]N is indeed a functor: Let X and Y be affine k-schemes,
f, f ′ : X → Y morphisms of schemes and g, g′ : hY → F maps of functors. Suppose
that f ∼N f ′ and g ∼N g′. It suffices to check that g ◦ h(f) and g′ ◦ h(f ′) are
naively A1-homotopic.
The case where F is represented by an affine k-scheme, is already known from
[Aso19, Lem. 2.2.2.2]. First of all suppose, that there exist naive A1-homotopies
H : f ⇒ f ′ and H ′ : g ⇒ g′. By the universal property of the fibered product, we
get a map H × pr2 : X ×k A1

k → Y ×k A1
k. Set

K := H ′ ◦ h(H × pr2).

By construction, the diagram

hX hY

hX×kA1
k

hY ×kA1
k

h(εX
0 )

h(f)

h(εY
0 )h(H)

h(H×pr2)

commutes.
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This implies that

K ◦ h(εX
0 ) = H ′ ◦ h(H × pr2) ◦ h(εX

0 ) = H ′ ◦ h(εY
0 ) ◦ h(f) = g ◦ h(f).

An analogous argument shows that

K ◦ h(εX
1 ) = g′ ◦ h(f ′).

For the general case, we choose finite sequences of naive A1-homotopies

f = f1 ⇒ · · · ⇒ fn = f ′ and g = g1 ⇒ · · · ⇒ gm = g′.

From the special case, we obtain naive A1-homotopies

g ◦ h(f) = g ◦ h(f1) ⇒ · · · ⇒ g ◦ h(fn) = g1 ◦ h(f ′) ⇒ · · · ⇒ gm ◦ h(f ′) = g′ ◦ h(f ′).

Hence [−, F ]N is a functor.

The proof of naive A1-invariance is essentially the same as [Aso19, Lemma 2.2.3.2].
Let X = Spec(R) be an affine k-scheme. For any r ∈ R, the map εr : X → X×kA1

k

is a splitting of the canonical projection onto the first component. Hence by
functoriality the map pr∗

1 : [X,F ]N → [X ×k A1
k, F ]N is injective. For the proof of

surjectivity, suppose that f : hX×kA1
k

→ F is any morphism of functors. We show
that f is naively A1-homotopic to f ◦ h(ε0 ◦ pr1). In the case of (X ×k A1

k) ×k A1
k,

we write

ε′
i : X ×k A1

k
∼−→ A1

R → A1
R ×k A1

k
∼−→ (X ×k A1

k) ×k A1
k

for the respective maps for i ∈ {0, 1}. Denote by m : A1
k ×A1

k → A1
k the morphism

associated to the “multiplication map”

k[t] → k[x] ⊗k k[y], t 7→ x⊗ y.

The claim is that the composition of natural transformations

H : h(X×kA1
k

)×kA1
k

h(idX ×m)−−−−−−−→ hX×kA1
k

f−→ F

defines a naive A1-homotopy from f ◦ h(ε0 ◦ pr1) to f . This follows from

H ◦ h(ε′
0) = f ◦ h((idX ×m) ◦ ε′

0)

= f ◦ h∗
(
k[t] t7→xy−−−→ k[x, y] (x,y)7→(t,0)−−−−−−−→ k[t]

)
= f ◦ h∗

(
k[t] t7→0−−→ k[t]

)
= f ◦ h∗

(
k[t] t7→0−−→ k ↪→ k[t]

)
= f ◦ h(ε0 ◦ pr1)

and
H ◦ h(ε′

1) = f ◦ h((idX ×m) ◦ ε′
1)

= f ◦ h∗
(
k[t] t7→xy−−−→ k[x, y] (x,y)7→(t,1)−−−−−−−→ k[t]

)
= f ◦ h∗

(
k[t] t7→t−−→ k[t]

)
= f.

Since f ◦ h(ε0 ◦ pr1) = pr∗
1(f ◦ h(ε0)), this shows surjectivity.
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(ii) It is obvious that η defines a natural transformation, which is surjective valued at
any point. Let F : Affop

k → Set be a naively A1-invariant functor and θ as in (ii). If
we manage to show that a natural transformation θ : [−, F ]N → F with θ ◦ η = θ
exists, it is clear by surjectivity of η that it has to be unique.
Let X = Spec(R) ∈ Affk. Suppose f, g : hX → F are maps of functors, which are
connected by a naive A1-homotopy H : f ⇒ g. Since F is naively A1-homotopy
invariant, we get that pr1 : X×k A1

k → X is sent under F to a bijection. This map
of schemes is induced by the inclusion ι : R ↪→ R[x], which satisfies for any r ∈ R
that evr ◦ι = idR. By functoriality, this implies

F(εr) = F(pr1)−1

for all r ∈ R. Hence the diagram

HomPSh(Aff)(hX , F ) F(X)

HomPSh(Aff)(hA1
X
, F ) F(A1

X)

θX

h(ε0)∗

θA1
X

h(ε1)∗ F(pr1)−1

commutes. This means that

θX(f) = θX(H ◦ h(ε0)) = (θX ◦ h(ε0)∗)(H)
= (F(pr1)−1 ◦ θA1

X
)(H) = (θX ◦ h(ε1)∗)(H)

= θX(H ◦ h(ε1)) = θX(g).

By induction, we get that θX(f) = θX(g) also holds for naively A1-homotopic
f, g : hX → F . Hence

θX : [X,F ]N → F(X), [f ] 7→ θX(f)

is well-defined and yields the natural transformation with the desired properties.

3.2 The classification theorem

For the final subsection of the report, we recall the definition of algebraic vector bundles
of a finite fixed rank.

Definition 3.2.1 (Algebraic vector bundles). Let n ∈ N. We call the functor

Vectn : Affop → Set,

Spec(R) 7→
{
P ∈ Mod(R)

∣∣∣∣∣ P fin. gen. projective
R-module of rank n

}
/ ∼=

(Spec(S) Spec(µ)−−−−−→ Spec(R)) 7→
(
µ∗ : Vectn(Spec(R)) → Vectn(Spec(S)),

[P ] 7→ [P ⊗µ S]

)

the (rank n) algebraic vector bundle functor.
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In several previous talks we layed the groundwork for and proved the following difficult
theorem.

Theorem 3.2.2 (Quillen-Suslin-Lindel Theorem). Let k be a field and n ∈ N≥1. The
restricted algebraic vector bundle functor

Vectn : AffSmop
k → Set

is naively A1-invariant.

Proof. Any smooth affine scheme over k is regular and of finite type - and therefore
especially essentially of finite type - over k. Hence the statement follows directly from
[Aso19, Thm. 8.4.3.1].

Remark 3.2.3. Let n ∈ N≥1 and X an affine scheme. For M ≥ N > n, recall from
Lemma 2.4.1 the map fn

N,M and from Remark 2.4.3 the associated map tnN,M . Since our
goal is to classify algebraic vector bundles in terms of maps into the ∞-Grassmannians,
it is convenient to once unpack the definition of this Hom-Sets by means of Proposi-
tion 2.2.2 and Lemma 2.2.10:

HomPSh(Aff)(hX ,Grn) ∼= Grn(X) = colimN>n gn,N (X)

=
( ∐

N>n

gn,N (X)
)/(

(N, x) ∼ (M,y)
:⇐⇒

(
fn

N,max(N,M)

)
X

(x) =
(
fn

M,max(N,M)

)
X

(y)

)
,

where we use in the last step that the transition maps are injective. The representability
of the finite dimensional Grassmannian functor Theorem 2.3.3 allows us to further make
the identification

HomPSh(Aff)(hX ,Grn) ∼=
∐

N>n HomPSh(Aff)(X,GrZ(n,N))
(N, f) ∼ (M, g) :⇐⇒

(
tnN,max(N,M) ◦ f = tnM,max(N,M) ◦ g

) .
The bijections in both displays are natural in X. For the rest of the report we will
frequently switch between these explicit descriptions.

The next two lemmata help us to better understand when two maps f, g : hX → Grn

are naively A1-homotopic.

Lemma 3.2.4. Let k be a field and n ∈ N≥1. Let X = Spec(R) be an affine k-scheme
and f, g : hX → Grn be maps of functors. Suppose that f is given as the equivalence
class of the map fr : X → GrZ(n, r) and g is given as the equivalence class of the map
gs : X → GrZ(n, s) for natural numbers r, s > n. Then f and g are naively A1-homotopic
if and only if there exists a natural number N ≥ max(r, s) such that tnr,N ◦fr and tns,N ◦gs

are naively A1-homotopic.

Proof. Consider any map HN : A1
R → GrZ(n,N) for some N > n and the induced map

H = [HN ] : hA1
R

→ Grn. For all r ∈ R, we have

H ◦ h(εr) = h(εr)∗([HN ]) = [ε∗
r(HN )] = [HN ◦ εr].

This already implies “⇐”.
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For the opposite direction, note that any naive A1-homotopy H : f ⇒ g is of the form
[HN ] for some N > n and without loss of generality we may assume that N ≥ max(r, s).
Then by construction, the identity

[tnr,N ◦ fr] = f = H ◦ h(ε0) = [HN ◦ ε0]

means that
tnr,N ◦ fr = HN ◦ ε0.

Analogously also
tns,N ◦ gs = HN ◦ ε1

holds. Thus HN is a naive A1-homotopy from tnr,N ◦ fr to tns,N ◦ gs. We use this to show
the general case: For a given chain of naive A1-homotopies

f = f (1) H(1)
===⇒ f (2) =⇒ . . .

H(k−1)
=====⇒ f (k) = g,

where for all i ∈ {1, . . . , k} the map f (i) : hX → Grn is given by f
(i)
ri : X → GrZ(n, ri)

for an ri > n, we obtain for each i ∈ {1, . . . , k − 1} an Ni ≥ max(ri, ri+1) such that the
naive A1-homotopy H(i) : hA1

R
→ Grn is given by a naive A1-homotopy

H
(i)
Ni

: tnri,Ni
◦ f (i)

ri
=⇒ tnri+1,Ni

◦ f (i+1)
ri+1 .

Set N := max{Ni | 1 ≤ i ≤ k − 1}. For every i ∈ {1, . . . , k − 1}, we obtain a naive
A1-homotopy

tnNi,N ◦H(i)
Ni

: tnri,N ◦ f (i)
ri

=⇒ tnri+1,N ◦ f (i+1)
ri+1 ,

which shows “⇒”.

Lemma 3.2.5. Let k be a field and n ∈ N≥1. Let X = Spec(R) be an affine k-scheme,
N > n a natural number and f, g : X → GrZ(n,N) morphisms of schemes such that
f is given by [(P,ϕ)] and g is given by [(P, ψ)] in gn,N (X). Let [(P [t],Φ)] ∈ gn,N (A1

R)
and H : X×k A1

k → GrZ(n,N) the corresponding map. Then H is a naive A1-homotopy
from f to g if and only if the identities

[(P,Φ ⊗ev0 R)] = [(P,ϕ)] and [(P,Φ ⊗ev1 R)] = [(P, ψ)]

hold.

Proof. This is a consequence of the commutativity of the diagram

HomSch(A1
X ,GrZ(n,N)) gn,N (A1

X)

HomSch(X,GrZ(n,N)) gn,N (X)

ε∗
r

∼

ε∗
r

∼

for all r ∈ R. Write ι : R → R[t] for the canonical inclusion. Then evr ◦ι = idR implies
that P [t] ⊗evr R = P holds. Hence we get for any [(P [t],Φ)] ∈ gn,N (A1

X), that

ε∗
r([(P [t],Φ)]) = [(P,Φ ⊗evr R)].
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Thus for H : A1
X → GrZ(n,N) given by [(P [t],Φ)] ∈ gn,N (A1

X), we obtain equivalences

H is a naive A1-homotopy from f to g
⇐⇒ ε∗

0(H) = f and ε∗
1(H) = g

⇐⇒ [(P,Φ ⊗ev0 R)] = [(P,ϕ)] and [(P,Φ ⊗ev1 R)] = [(P, ψ)]

This shows the claim.

The following corollary serves both as an example of how the previous two lemmata
apply together in practice and as an important step in the proof of the classification
theorem.

Corollary 3.2.6. Let k be a field and n ∈ N≥1. Let X = Spec(R) be some affine
k-scheme, s > n a natural number and [(P, ψ)] ∈ gn,s(X). Let r ∈ N and set N := r+ s.
The maps f : hX → Grn, given by [(P, ψ ⊕ 0r)] ∈ gn,N (X), and g : hX → Grn, given by
[(P, 0r ⊕ ψ)] ∈ gn,N (X), are naively A1-homotopic.

Proof. By assumption, we can consider representation fN+s : X → GrZ(n,N + s) of f
and gN+s : X → GrZ(n,N + s) of g. We construct a chain of homotopies from fN+s to
gN+s. Define therefore the following epimorphisms of R[t]-modules:

h1 : R[t]N+s → P [t], ei 7→


ψ(ei), if 1 ≤ i ≤ s,

0, if s+ 1 ≤ i ≤ N,

tψ(ei−N ), if N + 1 ≤ i ≤ N + s,

h2 : R[t]N+s → P [t], ei 7→


(1 − t)ψ(ei), if 1 ≤ i ≤ s,

0, if s+ 1 ≤ i ≤ N,

ψ(ei−N ), if N + 1 ≤ i ≤ N + s,

h3 : R[t]N+s → P [t], ei 7→


0, if 1 ≤ i ≤ r,

tψ(ei−r), if r + 1 ≤ i ≤ N,

ψ(ei−N ), if N + 1 ≤ i ≤ N + s,

h4 : R[t]N+s → P [t], ei 7→


0, if 1 ≤ i ≤ r,

ψ(ei−r), if r + 1 ≤ i ≤ N,

(1 − t)ψ(ei−N ), if N + 1 ≤ i ≤ N + s.

It is now easy to check that

h1 ⊗ev0 R = ψ ⊕ 0r ⊕ 0s,

hi ⊗ev1 R = hi+1 ⊗ev0 R for 1 ≤ i ≤ 3 and
h4 ⊗ev1 R = 0r ⊕ ψ ⊕ 0s.

Denote for all i ∈ {1, . . . , 4} by Hi the map A1
R → GrZ(n,N + s) corresponding to

[(P [t], hi)] ∈ gn,N+s(A1
R). By Lemma 3.2.5 this defines a chain of naive A1-homotopies

fN+s
H1==⇒ H1 ◦ ε1

H2==⇒ H2 ◦ ε1
H3==⇒ H3 ◦ ε1

H4==⇒ gN+s.

Hence by Lemma 3.2.4, f and g are naively A1-homotopic.
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Theorem 3.2.7 (Classification Theorem). Let k be a field and n ∈ N≥1. There exists
a natural transformation

HomPSh(Aff)(h( − ),Grn) → Vectn,

which induces, restricted to AffSmk, an isomorphism of presheaves

[−,Grn]N → Vectn .

Proof. Let X be an affine scheme. From the description of morphisms into Grn in
Remark 3.2.3, we obtain an assignment

βX : HomPSh(Aff)(hX ,Grn) → Vectn(X),

which sends a morphisms, given by a class [(P,ϕ)] ∈ gn,N (X) for some N > n, to
the isomorphism class of the module P . If (Q,µ) is another representative of [(P,ϕ)]
in gn,N (X), there exists especially an isomorphism between P and Q such that βX is
independent of the choice of this representative. Moreover, since for any M ≥ N > n in
N and [(P,ϕ)] ∈ gn,N (X), by definition

(fn
N,M )X([(P,ϕ)]) = [(P,ϕ⊕ 0M−N )]

holds, βX is also independent of the choice of representative in HomPSh(Aff)(hX ,Grn).
Hence βX is indeed a well-defined map.
The class β := (βX)X∈Aff defines a natural transformation: Consider a morphism of
affine schemes f : X = Spec(S) → Y = Spec(R) and [(P,ϕ)] ∈ gn,N (Y ). then we obtain
the identity

(f∗ ◦ βY )([(N, [(P,ϕ)])]) = f∗([P ]) = [P ⊗R S] = βX([(N, [(P ⊗R S, ϕ⊗R S)])])
= (βX ◦ h(f)∗)([(N, [(P,ϕ)])]).

The statement of Proposition 3.1.7 remains true if we add a smoothness condition.
Hence the natural transformation

β : HomPSh(Aff)(h( − ),Grn) → Vectn

induces by Theorem 3.2.2 and Proposition 3.1.7(ii) a natural transformation

β : [−,Grn]N → Vectn

between the restrictions of the functors to AffSmop
k , which satisfies β ◦ η = β.

Since any finitely generated projective R-module P of rank n admits for some natural
number N > n an epimorphism ϕ : RN � P , its isomorphism class has a preimage
under βSpec(R). Thus we get from the condition β ◦ η = β, that for any smooth affine
k-scheme X, the map βX is surjective.

It remains to show injectivity. Let X = Spec(R) be a smooth affine k-scheme and
consider two maps f, g : hX → Grn with βX(f) = βX(g). Let r, s > n such that f is
given by [(P,ϕ)] ∈ gn,r(X) and g is given by [(Q,ψ)] ∈ gn,s(X). This means that there
exists an isomorphism Q

∼−→ P of R-modules. Thus without loss of generality we can
replace Q by P and ψ by (Q ∼−→ P ) ◦ ψ.
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Set N := r + s and consider the R[t]-linear epimorphisms

h1 : R[t]N → P [t], ei 7→
{
ϕ(ei), if 1 ≤ i ≤ r,

tψ(ei−r), if r + 1 ≤ i ≤ N,

h2 : R[t]N → P [t], ei 7→
{

(1 − t)ϕ(ei), if 1 ≤ i ≤ r,

ψ(ei−r), if r + 1 ≤ i ≤ N.

Write fN : X → GrZ(n,N) for the map representing f and gN : X → GrZ(n,N) for the
map representing g. Moreover, write g′ for the map X → Grn and g′

N for the map
X → GrZ(n,N), both determined by [(P, 0r ⊕ ψ)] ∈ gn,N (X). Since

h1 ⊗ev0 R = ϕ⊕ 0s,

h1 ⊗ev1 R = h2 ⊗ev0 R and
h2 ⊗ev1 R = 0r ⊕ ψ,

it is true by Lemma 3.2.5 that the maps Hi : A1
R → GrZ(n,N) given by [(P [t], hi)] for

i ∈ {1, 2} yield a chain of naive A1-homotopies

fN
H1==⇒ H1 ◦ ε1

H2==⇒ g′
N .

Thus by Lemma 3.2.4, we conclude that f and g′ are naively A1-homotopic. By Corol-
lary 3.2.6 also g′ and g are naively A1-homotopic, which shows [f ] = [g] in [X,Grn]N .
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