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CHAPTER 1. SCHEMES AND BASIC PROPERTIES

CHAPTER 1
SCHEMES AND BASIC PROPERTIES

All the rings we will consider in this talk are commutative.

Let (X,OX) a pair with X a topological space and OX a sheaf on X.

Definition 1.1: Ringed space

We say that (X,OX) is a ringed space if OX is a sheaf of rings.

A morphism between ringed spaces (X,OX) and (Y,OY ) is a pair (f, f#) where

1. f : X → Y is a continuous map

2. f# : OY → f∗OX is a morphism of sheaves of rings.

Recall that we define f∗OX to be a sheaf on Y where ∀ U ⊆ Y open f∗OX(U) = OX(f−1(U)). It
is called the push-forward of OX .

Definition 1.2: Locally ringed space

A ringed space (X,OX) is called a locally ringed space if ∀x ∈ X the stalk OX,x is a local ring.

A morphism of locally ringed spaces (f, f#) : (X,OX)→ (Y,OY ) is a morphism of ringed spaces
such that for every x ∈ X the ring morphism f#

x : OY,f(x) → OX,x is a local morphism of local
rings. In other words let mX,x and respectively mY,f(x) be the maximal ideals of OX,x and OY,f(x),
then (f#

x )−1(mX,x) = mY,f(x).

The map on stalks f#
x : OY,f(x) → OX,x comes from the following composition

OY,f(x) = colim
f(x)∈U

OY (U)→ colim
f(x)∈U

OX(f−1(U))→ colim
x∈V

OX(V ) ∼= OX,x

Definition 1.3: Affine scheme

A pair (X,OX) is called an affine scheme if it is a locally ringed space and it is isomorphic, as a
locally ringed space, to (SpecA,OSpecA) for some ring A.

Example 1.4: Construction of a sheaf on Spec(R)

Let R a ring and consider the Zariski topology on Spec(R). Then we can define for every f ∈ R:
OSpec(R)(D(f)) = Rf . Taking the restriction maps to just be the obvious ones, it gives rise to a
sheaf on Spec(R). Notice that on stalks we have get a local ring: ∀p ∈ Spec(R) the stalk is of the
form: OSpec(R),p ∼= Rp
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Remark: We define Ank = Spec(k[x1, ..., xn])

Definition 1.5: Scheme

A scheme (X,OX) is a locally ringed space, such that there exists an open cover
⋃
i∈I Ui of X

such that for every i: (Ui, OUi = OX |Ui)i∈I is an affine scheme. We write Sch for the category of
schemes.

Remark: Notice that the topology on X has a basis of affines and hence the restriction of the scheme
(X,OX) to any open subset (U,OX |U ) remains a scheme.

Definition 1.6: Schemes over a given scheme (Z,OZ)

A scheme over a given scheme (Z,OZ), is a scheme (X,OX) together with a morphism of schemes
(fX , f#

X ) : (X,OX)→ (Z,OZ).
A morphism from (X,OX) to (Y,OY ) as schemes over (Z,OZ) is a morphism of schemes φ :
(X,OX)→ (Y,OY ) such that the following diagram commutes

(X,OX) (Y,OY )

(Z,OZ)
(fX ,f

#
X

)

φ

(fY ,f
#
Y

)

We write Sch(Z) for the category of schemes over (Z,OZ).

Remark: When we talk about schemes over a ring R we actually mean schemes over (Spec(R), OSpec(R))
and we write Sch(R) for the corresponding category.

Theorem 1.7:

Given R a ring, consider the category of commutative, unital R-algebras CAlgop
R . We have a

functor Spec(−) : CAlgop
R → Sch(R) defined by A 7→ (Spec(A), OSpec(A)). It is fully faithful and

its essential image corresponds to affine R-schemes.
Furthermore, Spec(−) has a right adjoint given by the global section functor Γ : Sch(R)→ CAlgop

R .

Remark:

1. Recall that we defined in the first talk the category of affine R-schemes to be exactly CAlgop
R .

2. Fully faithfullness of Spec(−) gives us for R-algebras A and B:

HomCAlgR
(B,A) ∼= HomSch(R)(Spec(A),Spec(B))

Hence there is no new data that we can obtain from studing HomSch(R)(Spec(A),Spec(B)) instead
of HomCAlgR

(B,A).

3. In fact, we can show that we have an adjunction Spec(−) : CRingop ↔ Sch : Γ which re-
duces to see that given (X,OX) a scheme and R a ring, we have HomSch((X,OX),Spec(R)) ∼=
HomCRing(R,OX(X)). This gives us that Spec(Z) is a terminal object in Sch. Hence the category
Sch(Z) is just Sch and CAlgop

Z = CRingop. This gives us a more specific version of the previous
theorem for commutative rings.

4. For a more thorough discussion about this theorem, you can take a look at [Aso16] Chapter 7.

Theorem 1.8

There is a fully faithful functor from Sch(R) in Fun(CAlgR,Set)

Remark: The proof of this theorem uses the notion of functor of points
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Definition 1.9: Functor of points

The functor of points of a scheme X is the functor hX : Schop → Set giving for each scheme Y the
corresponding set Mor(Y,X), and for each morphism f : Y → Z the map of sets Mor(Z,X) →
Mor(Y,X) given by precomposition by f .

Since in the theorem we work with schemes over R, we can restrict the study of Mor(−, X) to the opposite
category of affine R-schemes, which as a category is the same as CAlgR. For more details you can check
out Proposition VI-2 in [EH00]

CHAPTER 2
MODULES OVER A SCHEME

Throughout this section let us set (X,OX) to be a fixed scheme.

Definition 2.1: OX-modules, locally free sheaves and quasi-coherent sheaves

Let F be a sheaf on X. We say that it is an OX -module if

1. For every open U ⊆ X: F (U) is an OX(U)-module.

2. The restriction maps of F are compatible with the module structure: ∀ V ⊆ U open in X

OX(U)× F (U) F (U)

OX(V )× F (V ) F (V )

ρ
OX
U,V
×ρF

U,V ρF
U,V

A morphism φ : F → G of OX -modules, is a morphism of sheaves such that for every open
U ⊆ X: φ(U) : F (U)→ G(U) is an OX(U)-module homomorphism.

Furthermore, F is said to be locally free, if there exists an open cover
⋃
i∈I Ui of X such that

F |Ui
is a free OUi

-module, in other words: F |Ui
∼=
⊕

j∈J OUi
.

An invertible sheaf is a locally free sheaf of rank 1.

We say that F is quasi-coherent if there exists an open cover of X by opens Ui such that F |Ui
is

the cokernel of ⊕i∈IOUi
→ ⊕i∈IOUi

.
We write QCoh(X) for the category of quasi-coherent sheaves on (X,OX).

Example 2.2: Construction of a module on Spec(R)

Let R a ring and M an R-module. We define M̃ the sheaf associated to M on Spec(R) following
a similar construction than OSpec(R). Consider ∀ f ∈ R: M̃(D(f)) = Mf . Taking the restriction
maps to just be the obvious ones, it gives rise to a sheaf on Spec(R) which is in particular a
Spec(R)-module.
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Note that ∀p ∈ Spec(R) the stalk is of the form: M̃p
∼= Mp

Theorem 2.3

The functor ∼: RMod→ Spec(R)−Modules sending M 7→ M̃ is fully faithful and exact.

Proof:
For fully faithfulness consider M,N two R-modules. We would like to show that

HomRMod(M,N) ∼= HomSpec(R)-M(M̃, Ñ)

Let φ : M → N be an R-module morphism. Then we see that for each g ∈ R we can construct a well
defined Rg-morphism Mg → Ng where m

gq 7→ φ(m)
gq and the restriction maps clearly commute. Since the

collection of the D(g) form a basis of Spec(R) this glues to a morphism φ̃ : M̃ → Ñ .
Taking any OSpec(R)-module morphism f : M̃ → Ñ , we can just evaluate it at Spec(R) getting an R-linear
morphism f(Spec(R)) : M → N .
We need to show that these two constructions are invertible. Taking global sections, we clearly see that
(φ̃)(Spec(R) = D(1)) = φ. Now we need to verify that ∼ (f(Spec(R))) = f . For this, notice that on
Spec(R) by construction these are the same morphisms. Now for g ∈ R since f is a sheaf morphism, we
have the following commutative diagram on the left

M N m f(Spec(R))(m)

Mg Ng
m
1 f(D(g))(m) = f(Spec(R))(m)

1

f(Spec(R))

f(D(g))

So we see that on D(g) both ∼ (f(Spec(R))) and f agree. Hence they must agree everywhere.

Exactness can be checked on stalks. It follows from the construction of M̃ and commutative algebra.

The following lemma now follows quite directly and will be useful for the next theorem:
Lemma 2.4

Let M an R-module. Then M̃ on Spec(R) is quasi-coherent.

Proof:
For any module M we have an exact sequence⊕

j∈J
R→

⊕
k∈K

R→M → 0

Taking∼ over the sequence, noticing that it commutes with direct sums by construction and R̃ ∼= OSpec(R),
we see that M̃ is quasi-coherent.

In the case where (X,OX) is an affine scheme, we have a very precise description of the category QCoh(X):

Theorem 2.5

The functor RMod → QCoh(SpecR) sending M 7→ M̃ induces an equivalence of categories with
inverse functor: F 7→ F (Spec(R)).

Proof:
Fully faithfullness follows from the previous theorem. So there is essential surjectivity left:
We would like to show that ˜F (X) ∼= F . For this we will proceed in three steps.

Step 1: Construct a morphism ˜F (X)→ F .
For each f ∈ R we have a morphism F (X)f → F (D(f)) coming from the restriction morphism F (X)→
F (D(f)) and using that F (D(f)) is an Rf -module. This defines a morphism on the basis D(f) and it
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clearly commutes with the restiction morphisms, so it glues to a morphism ˜F (X)→ F .

Remark: Since F is quasi-coherent on Spec(R), so there exists an open cover Ui such that F |Ui
∼=

coker(⊕i∈IOUi
→ ⊕i∈IOUi

). However, since affines form a basis of Spec(R), any Ui can be covered by
affine opens. By quasi-compactness of Spec(R) there are only finitely many. We get Spec(R) =

⋃
i∈I D(gi)

and F |D(gi) ∼= coker(⊕i∈IOD(gi) → ⊕i∈IOD(gi)). By exactness of ∼, F |D(gi) ∼= M̃i, for Mi some Rgi
-

module.

Step 2: Injectivity ˜F (X)→ F .
We can just verify this on the basis of opens {D(f)}f∈R. Let s

fq ∈ F (X)f such that 1
fq s|D(f) = 0. Since

f acts as automorphisms on F (D(f)), it implies that s|D(f) = 0. We would like to show that there exists
N > 0 such that fNs = 0 in F (X). This would prove injectivity. Using the remark, we can consider the
following diagram

F (X) F (D(gi)) ∼= Mi s si := s|D(gi)

F (D(f)) F (D(gif)) ∼= (Mi)f s|D(f) = 0 0 = si

Since si = 0 ∈ (Mi)f there exists ni such that fnisi = 0 in Mi ∀i. Taking N = maxi ni, which is well
defined since our cover is finite, we have fNsi = 0 ∀i. Since s|D(gi) = si, the collection {si}i∈I glues to
s. Hence {fNsi = 0}i∈I glues to fNs = 0. This shows injectivity.

Step 3: Surjectivity ˜F (X)→ F .
Let t ∈ F (D(f)). We would like to find a preimage in F (X)f . We can look at the restriction F (D(f))→
F (D(gif)) ∼= (Mi)f , where Mi is an Rgi-module, giving t 7→ t|D(gif) = si

fmi
for some si ∈ Mi. Taking

M = maximi, where we again use quasi-compactness of Spec(R), we get fM t|D(gif) = fM−misi ∀i.
Restricting further more, we obtain

F (D(f)) F (D(gif)) = (Mi)f F (D(gigjf)) = (Mi)fgj

F (D(f)) F (D(gjf)) = (Mj)f F (D(gigjf)) = (Mj)fgj

= ∼=

fM t fM−misi fM−misi|D(gigjf)

fM t fM−mjsj fM−mjsj |D(gigjf)

= =

In F (D(fgigj)) we have fM−misi|D(gigjf) − fM−mjsj |D(gigjf) = 0. Using the same reasoning as in Step
2 we conclude that there exists n(i, j) > 0 such that fn(i,j)(fM−misi|D(gigj) − fM−mjsj |D(gigj)) = 0.
Taking N = max(i,j) n(i, j) we still have fN (fM−misi|D(gigj)− fM−mjsj |D(gigj)) = 0 in D(gigj). By the
glueing axioms, the collection {fN+M−misi}i∈I glues to a section s in F (X) such that s|D(gi) = fN+Msi.
In particuar s|D(gif) = fN+M t|D(gif). So taking s

fN+M we proved surjectivity.
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CHAPTER 3
PROJECTIVE SPACE AND FUNCTOR OF POINTS

Let us first briefly discuss the construction of the scheme Proj(S) for S an N-graded ring.
Definition 3.1: N-graded ring

Let S be an N-graded ring. In other words, we fix a decomposition

S =
⊕
n∈N

Sn

where 1 ∈ S0, Sn is an abelian group and ∀n,m ∈ N SnSm ⊆ Sn+m.
We say that an element f ∈ S is homogeneous if f ∈ Sn for some n.
An ideal I ⊆ S is called homogeneous if we can decompose it as I =

⊕
n∈N I ∩ Sn.

We denote by S+ =
⊕

n>0 Sn the irrelevant ideal.

Definition 3.2: Proj(S) as a topological space

We set Proj(S) = {p ⊆ S|p homogeneous prime ideal and S+ 6⊆ p}.
Let I a homogeneous ideal, we define V+(I) = {p ∈ Proj(S)|I ⊆ p}. We can verify that

1. V+(S+) = ∅

2. V+(0) = Proj(S)

3. For any two homogeneous ideals I, J of S: V+(I) ∪ V+(J) = V+(IJ).

4. For any family {Ik}k∈K of homogeneous ideals
⋂
k∈K V+(Ik) = V+(

∑
k∈K Ik)

These sets define a topology on Proj(S) where they are closed.

Lemma 3.3

Let f ∈ S+ a homogeneous element, we define D+(f) = {p ∈ Proj(S)|f /∈ p}. We see that

1. D+(f) is open in Proj(S).

2. For g ∈ S homogeneous: D+(f) ∩D+(g) = D+(fg)

3. The collection of sets D+(f) forms a basis of the topology of Proj(S).

Definition 3.4: Construction of a sheaf on Proj(S)

∀f ∈ S+ homogeneous, we define S(f) =
(
Sf
)

0 = { afq | a ∈ S homogeneous & deg(a) = q ·deg(f)}.
We consider the collection of affine schemes {D+(f) ∼= Spec(S(f))}f∈S homog. and glue them along
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morphisms that we will not explicit here to obtain a scheme on Proj(S).

More specificly we will study the following scheme:
Example 3.5: PnZ

We define PnZ := Proj(Z[x0, ..., xn]), where the variables x0, ..., xn have the obvious degree 1. In
this case, notice that the collection {D+(xi)}ni=0 covers PnZ since a homogeneous prime which is
in
(⋃n

i=0 D+(xi)
)c must contain (x0, ..., xn) = Z[x0, ..., xn]+ which is impossible by definition.

PnZ can be seen as a glueing of the collection {D+(xi)}ni=0 along their intersections {D+(xixj)}ni,j=0.
By doing a quick computation we easily notice that these affines D+(xi) are just AnZ.

Definition 3.6: PnX

In general, for a scheme (X,OX) we define PnX to be the following pullback in the category of
schemes

PnX PnZ

X Spec(Z)

Recall that since Spec(Z) is terminal, we can always find maps to Spec(Z).

We would like to describe in this section, what Mor(X,PnB) is for given schemes X and B. Using the
universal property of the pullback, we see that for a given morphism X → B, it is sufficient to understand
MorB(X,PnZ).

X

PnB PnZ

B Spec(Z)

Theorem 3.7

Mor(X,PnZ) ∼= {Epimorphisms On+1
X → P with P an invertible OX-mod.}/{OX(X)× acting on P}

Remark: We follow [EH00] for the proof of this theorem.
Proof:
We can directly reduce to the case where X is affine, since morphisms from X can just be defined locally
on affines and then glued together. So let us prove following proposition:

Proposition 3.8

Let T a ring, then we have the following bijection:

Mor(Spec(T ),PnZ) ∼= {Surjections Tn+1 → P where P is an invertible T -module}/{isomorphism}

Proof:
Suppose we have a morphism φ : Spec(T ) → PnZ. We have a covering of PnZ given by D+(xi) for
i = 0, ..., n + 1. Taking preimages, we have a covering of Spec(T ) =

⋃n
i=0 Ui and morphims Ui →

Spec(Z
[
x0
xi
, ..., xn

xi

]
). Using the adjunction in the Remark of Theorem 1.7 we get a ring map Z

[
x0
xi
, ..., xn

xi

]
→

OSpec(T )(Ui). This corresponds precisely to a choice of elements (ti0, ..., tii = 1, ..., tin) in OSpec(T )(Ui)
Notice that on the intersection Ui ∩ Uj we have that tij is a unit in OSpec(T )(Ui ∩ Uj) and til = tijtjl in
OSpec(T )|Ui∩Uj

using the induced ring maps on intersections. We now need to make us of the following
result
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Theorem 3.9

Let (X,OX) a scheme and F an OX-module. Then HomOX
(OX , F ) ∼= F (X).

Remark: The idea is that OX -homomorphisms are entirely determined by the choice of the image of 1 in
OX(X), this is similar to the case where we consider R-module morphisms from R into any R-module.

Corollary 3.10

Let (X,OX) a scheme and F an OX-module. Then HomOX
(OnX , F ) ∼= {(s1, ..., sn) ∈ F (X)}.

We see that this choice of sections give us an OSpec(T )|Ui
-morphism OSpec(T )|n+1

Ui
→ OSpec(T )|Ui

. By the
properties mentionned above about the tij we see that these maps agree on intersections and glue to a
morphism On+1

Spec(T ) → F , where F is an invertible Spec(T )-module. To show that on global sections it is
an epimorphism, we can reduce to stalks and use that tii = 1 as well as the fact that any p must be in
some Ui:

OSpec(T )(Ui)n+1 OSpec(T )(Ui) 1i 1

Tn+1
p Tp α 1

The lower horizontal map must be a surjection since it is a Tp-module morphism. This shows that
On+1

Spec(T ) → F is an epimorphism. Using exactness of the global section functor on QCoh(Spec(T )) we
conclude that we have a surjection Tn+1 → P , where P is an invertible module.

Now let a sujective T -module morphism Tn+1 → P where P is locally of rank 1. Let us denote p0, ..., pn
the images of 10, ..., 1n ∈ Tn+1. Consider Ij the annihilator of P/Tpj . We can prove that the collection
of Uj = V (Ij)c forms an open cover of Spec(T ). Let p ∈ Spec(T ), since we know that P is invertible,
Tp ∼= Pp. There must be pj /∈ pPp. Indeed, otherwise pPp = Pp but then 0 = Pp/pPp

∼= Tp/pTp ∼= T/p
which cannot be the case. Furthermore, we can suppose that Pp is generated by pj . Indeed, let f be the
generator of Pp. Then t

qf = pj . Since pj /∈ pPp, t /∈ p so it is invertible and hence pj generates Pp. Since
pj generates Pp, there must be some ai ∈ T \p such that aipi is a multiple of pj . Taking a :=

∏
ai ∈ T \p

we get that aP ⊆ Tpj . Hence a ∈ Ij and so p ∈ Uj .
Consider now the map T → P such that 1 7→ pj . Sheafifying, we can see this map as a map of OSpec(T )-
modules. We can check that the restriction to Uj is an isomorphism by verifying this on stalks. Coming
back to our sheaf map T̃n+1 → P̃ , we see that on Uj we have a morphism T̃n+1|Uj → P̃ |Uj

∼= T̃ |Uj

which on Uj gives a matrix (tj0, ..., tjj = 1, ..., tjn). Going through the same steps as beofre, we get maps
Spec(T )|Uj

→ AnZ which agree on intersections, hence they glue to Spec(T )→ PnZ.
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CHAPTER 4
VECTOR BUNDLES

Definition 4.1: Vector bundle

Let X,Y be two schemes. We say that Y is a rank n vector bundle over X if there exists a
morphism f : Y → X and an open cover {Ui}i∈I of X, such that

1. For each i ∈ I we have an isomorphism of schemes φi : f−1(Ui) → AnUi
=

Spec(Z[x1, ..., xn])×Z Ui

2. For every open affine Spec(A) = V ⊆ Ui ∩ Uj the restricted composition φj ◦ φ−1
i : AnV →

AnV = Spec(A[x1, ..., xn]) is a linear map on the global sections, in the sense that we have a
linear automorphism φ on A[x1, ..., xn] such that φ(a) = a ∀a ∈ A and φ(xi) =

∑n
j=1 aijxj

for some aij ∈ A.

We write (Y, f, {Ui}, {φi}) for this vector bundle.
An isomorphism of vector bundles (Y, f, {Ui}, {φi}) and (Y ′, f ′, {U ′i}, {φ′i}) over X is an isomor-
phism g : Y → Y ′ of schemes such that f ′ ◦ g = f and (Y, f, {Ui} ∪ {U ′i}, {φi} ∪ {φ′i ◦ g}) is a
vector bundle over X.

For a scheme X, we write Vn(X) for the isomorphism classes of vector bundles of rank n over X.

Remark: When we write AnUi
we actually mean the pullback Spec(Z[x1, ..., xn]) ×Z Ui like in projective

case, see Definition 3.6:

AnUi
AnZ

Ui Spec(Z)

Lemma 4.2

There is a one to one correspondence between isomorphism classes of vector bundles of rank n
over X and isomorphism classes of locally free sheaves of rank n over X.

Proof : Hartshorne exercise II.5.18. [Har77]

We will now use this result to study vector bundles over P1
k, following the steps in [Aso16]

Step 1 :
Lemma 4.3

We have a bijection Vn(P1
k) ∼= GLn(k[t]) \GLn(k[t, t−1])/GLn(k[t−1])
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Remark:

1. The right side are classes of matrices in GLn(k[t, t−1]) up to left multiplication by GLn(k[t]) and
right multiplication by GLn(k[t−1]).

2. Since affines from a basis of P1
k, a locally free sheaf of rank n over P1

k, restricts to a locally free sheaf
on each of the two copies of A1

k in P1
k. Using the following lemma we see that any locally free sheaf

of rank n over P1
k is just the glueing of two free sheaves of rank n on A1

k along their intersection in P1
k.

Lemma 4.4

Any locally free sheaf of rank n over Ank is free.

Proof of Lemma 4.3:
Let us start by constructing a locally free sheaf of rank n over P1

k given a matrix in GLn(k[t, t−1]).
The two affines covering P1

k are D+(x0) and D+(x1). As discussed before, we know that D+(x0) ∼=
Spec(k[x0, x1](x0)) ∼= k

[
x1
x0

] ∼= k[t], D+(x1) ∼= Spec(k[t−1]) and D+(x0) ∩ D+(x1) = D+(x0x1) ∼=
Spec(k[t, t−1]). Now taking two rank n free modules P+ and P− on respectively k[t] and k[t−1] they
give rise to two free sheaves of rank n on Spec(k[t]) and Spec(k[t−1]). Since we want to glue them on
Spec(k[t, t−1]), we extend them to modules on k[t, t−1]:

P+ ⊗k[t] k[t, t−1] and P− ⊗k[t−1] k[t, t−1]

These remain free of rank n. We can choose a basis for each module: {e+
i }ni=1 and {e−i }ni=1 and use a

matrix in GLn(k[t, t−1]) to define an isomorphism

P+ ⊗k[t] k[t, t−1]→ P− ⊗k[t−1] k[t, t−1]

Just pay attention that we want to send t 7→ t−1 to respect the module structures of both sides.
Different choices of bases on both sides give different isomorphisms. However, the two different glueings
we obtain are isomorphic. This comes from the fact that if there is an open cover on which there are
isomorphisms between two sheaves and such that these morphisms agree on intersection, then the sheaves
are isomorphic. This is how we see that multiplying our matrix in GLn(k[t, t−1]) on the left by a matrix
of GLn(k[t]) or on the right by a matrix of GLn(k[t−1]) does not change the isomorphism class of our
locally free sheaf. So we get an injective map

GLn(k[t]) \GLn(k[t, t−1])/GLn(k[t−1])→ Vn(P1
k)

Now for a given locally free sheaf of rank n on P1
k, we know that on each open affine D+(x0) and D+(x1),

our sheaf corresponds to a free module P+ respectively P− of rank n. Since on D+(x0x1) they must
agree, choosing bases, we get a matrix in GLn(k[t, t−1]).

Definition 4.5: Clutching function

The matrix class associtated to a bundle is called the clutching function.

Our bijection GLn(k[t])\GLn(k[t, t−1])/GLn(k[t−1]) ∼= Vn(P1
k) gives us a first description of Vn(P1

k). It is
however not really intuitive what exactly these matrix classes are. To get a better idea, we can consider
the following lemma

Step 2:
Lemma 4.6

Any matrix A ∈ GLn(k[t, t−1]) can be written as a product V DU where V ∈ GLn(k[t−1]), U ∈
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GLn(k[t]) and D is a diagonal matrix

D =


ta1

ta2

· · ·
tan


with integers a1 > a2 > ... > an

Proof : We will not prove this here, but you can find the main steps in [Aso16] Proposition 8.1.1.4.

This result helps us give the following description of locally free sheaves of rank n over P1
k:

Step 3:
Theorem 4.7

Any vector bundle of rank n on P1
k is isomorphic to a vector bundle of the form O(a1)⊕O(a2)...⊕

O(an) for a unique sequence of integers a1 > a2 > ... > an.

Definition 4.8: Line bundle O(n)

There are several definitions we can give of O(n). We choose to present this one there: it is a line
bundle on P1

k, i.e. a vector bundle of rank 1, such that the clutching function is exactly given by
tn.

Proof: The isomorphism is direct. We should prove unicity of the integers a1 > a2 > ... > an, but this
follows by some computations we will not expand here. Feel free to check them out in [ADav] Theorem
7.3.

This is everything we wanted to say about Vn(P1
k). To conclude this talk, we would like to briefly discuss

A1
k-invariance:

Example 4.9: Pullback of vector bundles

The map V2(P1
k)→ V2(P1

k × A1
k) given by the pullback of vector bundles is not surjective.

This map uses the following pullback constructions:

P1
k × A1

k A1
k p∗(V ) V

P1
k Spec(k) P1

k × A1
k P1

k

p

p

Notice that P1
k × A1

k = Proj(k[x, t0, t1]) where x has degree 0 and t1, t2 both have degree 1. Hence
a cover of P1

k × A1
k is just given by D+(t0) ∼= Spec(k[x, t]), D+(t1) ∼= Spec(k[x, t−1]) with intersection

D+(t0, t1) ∼= Spec(k[x, t, t−1]). Repeating the same steps as in the theorem, we can see that giving a

matrix in GL2(k[x, t, t−1]) gives a vector bundle of rank 2 on P1
k×A1

k. Considering for example
[
t 0
x t−1

]
we can prove that the associated vector bundle cannot be a pullback of a vector bundle over P1

k. Indeed,
its fiber should be the same over any x, which here is not the case. See explainations below. Set x = 0
we get the bundle O(1)⊕O(−1). Take x = 1 we get a matrix equivalent to the identity, up to multipli-
cation on the left by a matrix of GLn(k[t]) or on the right by a matrix of GLn(k[t−1]), giving the bundle
O(0)⊕ = O(0).

We can show that any bundle which is a pullback, needs to have the same fibers. Let us show this for
the fibers over 0 and 1. Consider s0 : Spec(k)→ A1 coming from ev0 : k[x]→ k and s1 coming from the
evaluation at 1. We can construct maps taking pullbacks
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P1
k Spec(k)

P1
k × A1

k A1
k

P1
k Spec(k)

s0

id

s0

id

p

On the right vertical composition we obtain the identity, by just checking on rings that the composition of
the inclusion with the evaluation at 0 is really the identity on k: k → k[x]→ k. The map s0 : P1

k → P1
k×A1

k

is also the one induced by setting x = 0 on rings. We can proceed the same way for s1. Then if p∗(V ) is
a vector bundle on P1

k × A1
k pulledback from a vector bundle V on P1

k we see that

s∗0(p∗(V )) = (ps0)∗(V ) = V = (ps1)∗(V ) = s∗1(p∗(V ))

But taking s∗0 is preciely setting x to 0 in the clutching function. The sames goes for s1. This shows that
the two cluching functions should give the same vector bundle if it was pulledback from a vector bundle
on P1

k. Hence the map V2(P1
k)→ V2(P1

k × A1
k) is not surjective.
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