SoSe 25 Algebraic K-theory. Exercise sheet 10

Exercise 1. Let \mathcal{A} be an abelian category and $\mathcal{C} \subset \mathcal{A}$ a full subcategory containing 0 and closed under extensions. Show that \mathcal{C} admits an exact structure in which a morphism is an admissible monomorphism (resp. an admissible epimorphism) if and only if it is a monomorphism (resp. an epimorphism) in \mathcal{A} whose cokernel (resp. kernel) belongs to \mathcal{C} . Moreover, the inclusion functor $\mathcal{C} \hookrightarrow \mathcal{A}$ is then exact.

Exercise 2. Let Ab^{fg} be the exact category of finitely generated abelian groups and $Ab^{fg}_{tor} \subset Ab^{fg}$ the exact subcategory of torsion abelian groups.

- (a) Show that $K_0(Ab^{fg}) \simeq \mathbb{Z}$.
- (b) Determine $K_0(Ab_{tor}^{fg})$.

Exercise 3. Let \mathcal{C} be an exact category. Construct an equivalence between $Q(\mathcal{C})$ and $Q(\mathcal{C}^{op})$.

Exercise 4. Let $p: \mathcal{E} \to \mathcal{B}$ be a Grothendieck fibration whose fibers are groupoids. Suppose that, for every morphism $u: b \to b'$ in \mathcal{B} , the pullback functor $u^*: p^{-1}(b') \to p^{-1}(b)$ is an equivalence. Show that $N(p): N(\mathcal{E}) \to N(\mathcal{B})$ is a Kan fibration.

Remark. This generalizes the fact that the nerve of a groupoid is a Kan complex (take $\mathcal{B} = *$).