SoSe 25 Algebraic K-theory. Exercise sheet 11

Exercise 1. Apply Quillen's Theorem A to the inclusion of categories with one object $B\mathbb{N} \to B\mathbb{Z}$ to conclude that $|N(B\mathbb{N})|$ is homotopy equivalent to a circle.

Remark. More generally, if M is a commutative monoid with group completion G, one can use Theorem A and Exercise 2(a) below to show that their classifying spaces are homotopy equivalent (in particular, the classifying space of a commutative monoid is 1-truncated). However, this is not true for a general monoid M.

Exercise 2. Recall that a category \mathcal{C} is *filtered* if, for every finite category \mathcal{I} , every functor $f: \mathcal{I} \to \mathcal{C}$ extends to $\mathcal{I}^{\triangleright}$ (the category obtained from \mathcal{I} by formally adding a final object). We can rephrase this condition by saying that the category of "cones under f"

$$\mathfrak{C}_{f/} = \operatorname{Fun}(\mathfrak{I}^{\triangleright}, \mathfrak{C}) \times_{\operatorname{Fun}(\mathfrak{I}, \mathfrak{C})} \{f\}$$

is nonempty. A category is called weakly contractible if its nerve is weakly contractible.

- (a) Show that every filtered category \mathcal{C} is weakly contractible. Hint. Write \mathcal{C} as a filtered colimit of categories with final objects, and use the fact that the functors $\pi_n \colon \mathrm{sSet}_* \to \mathrm{Set}$ preserve filtered colimits.
- (b) Deduce that the category $\mathcal{C}_{f/}$ is in fact weakly contractible for every functor $f: \mathcal{I} \to \mathcal{C}$ from a finite category to a filtered category.

A category \mathcal{C} is called *sifted* if it is nonempty and $\mathcal{C}_{f/}$ is weakly contractible for every functor $f: \mathcal{I} \to \mathcal{C}$ where \mathcal{I} is a discrete category with two objects. By (b), every filtered category is sifted.

- (c) Show that every sifted category \mathcal{C} is weakly contractible. Hint. Apply Theorem A to the diagonal functor $\mathcal{C} \to \mathcal{C} \times \mathcal{C}$.
- (d) Show that Δ^{op} is sifted but not filtered.

Hint. Use an adjunction to reduce to the following the statement: for every $I, J \in \Delta$, the poset $\operatorname{sd}(I \times J)$ of totally ordered subsets of $I \times J$ is weakly contractible. To prove the latter, it may help to prove more generally that $\operatorname{sd}(P)$ is weakly contractible for every poset P with a final object.

Exercise 3. Let \mathcal{C} be an exact category and $\mathcal{B} \subset \mathcal{C}$ a full subcategory containing 0 and closed under extensions (with the induced exact structure). Suppose that, for every $X \in \mathcal{C}$, there exists $X' \in \mathcal{C}$ such that $X \oplus X' \in \mathcal{B}$ (one says that \mathcal{B} is *cofinal* in \mathcal{C}). Show that the induced map $K_0(\mathcal{B}) \to K_0(\mathcal{C})$ is injective.

Remark. The cofinality theorem states that furthermore $K_n(\mathfrak{B}) \simeq K_n(\mathfrak{C})$ for all $n \geq 1$.