SoSe 25 Algebraic K-theory. Exercise sheet 12

Exercise 1. Let \mathcal{C} be an exact category. A chain complex (C_*, d) in \mathcal{C} is called *exact* if each differential $d: C_{i+1} \to C_i$ factors as $C_{i+1} \twoheadrightarrow C'_i \rightarrowtail C_i$ and $C'_i \rightarrowtail C_i \twoheadrightarrow C'_{i-1}$ is an exact sequence.

Let \mathcal{C} and \mathcal{D} be exact categories and let

$$0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to 0$$

be a chain complex of exact functors $\mathcal{C} \to \mathcal{D}$ which is objectwise exact in the above sense. Show that there is a null-homotopy

$$\sum_{i=0}^{n} (-1)^{i} (F_{i})_{*} \simeq 0 \colon K(\mathcal{C}) \to K(\mathcal{D}).$$

 $\mathit{Hint}.$ First show that the functors F_i' are exact, then apply the additivity theorem.

Exercise 2. Let R be a commutative ring and let $i: P \to Q$ be a map in Proj(R). Show that the following conditions are equivalent:

- (a) i is an admissible monomorphism for the minimal exact structure, i.e., it identifies P with a direct summand of Q.
- (b) The dual map $i^{\vee} \colon Q^{\vee} \to P^{\vee}$ is surjective.
- (c) i is universally injective, i.e., for every map of commutative rings $R \to S$, $i \otimes_R S : P \otimes_R S \to Q \otimes_R S$ is injective.
- (d) For every $x \in \operatorname{Spec}(R)$, $i \otimes_R \kappa(x)$ is injective.

Remark. These characterizations of admissible monomorphisms in Proj(R) hold more generally for Vect(X) for any scheme X.

Exercise 3. Let \mathcal{C} be an exact category and $\mathcal{P} \subset \mathcal{C}$ a full subcategory containing 0 and closed under extensions. Suppose that:

- (1) for every exact sequence $X \mapsto Y \twoheadrightarrow Z$ in \mathcal{C} , if $Y, Z \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (2) for every $X \in \mathcal{C}$, there exists an admissible epimorphism $P \twoheadrightarrow X$ with $P \in \mathcal{P}$.

Let $\mathcal{P}_n \subset \mathcal{C}$ be the full subcategory of objects having a \mathcal{P} -resolution of length $\leq n$. Prove the following statements for every $n \geq 0$:

- (a) \mathcal{P}_n is closed under extensions in \mathcal{C} .
- (b) If $X \mapsto Y \twoheadrightarrow Z$ is an exact sequence in \mathcal{C} with $Y \in \mathcal{P}_n$ and $Z \in \mathcal{P}_{n+1}$, then $X \in \mathcal{P}_n$.

Exercise 4. Let X be a noetherian scheme, $i: Z \hookrightarrow X$ a closed immersion, and $j: U \hookrightarrow X$ the complementary open immersion. Let $Coh_Z(X) \subset Coh(X)$ be the full subcategory of coherent sheaves \mathcal{F} such that $j^*(\mathcal{F}) = 0$. Prove the following statements:

- (a) The functor $i_*: \operatorname{QCoh}(Z) \to \operatorname{QCoh}(X)$ is fully faithful and restricts to a functor $i_*: \operatorname{Coh}(Z) \to \operatorname{Coh}_Z(X)$.
- (b) For every sheaf $\mathcal{F} \in \mathrm{Coh}_Z(X)$, there exists a finite filtration

$$0 = \mathcal{F}_n \subset \cdots \subset \mathcal{F}_1 \subset \mathcal{F}_0 = \mathcal{F}$$

such that $\mathcal{F}_{k-1}/\mathcal{F}_k$ is in the essential image of $i_*: \operatorname{Coh}(Z) \to \operatorname{Coh}_Z(X)$.

Hint. Consider the filtration $\mathfrak{I}^k\mathfrak{F}$ where $\mathfrak{I}\subset\mathfrak{O}_X$ is the ideal of Z.