SoSe 25 Algebraic K-theory. Exercise sheet 13

Exercise 1. A full subcategory \mathcal{B} of an abelian category \mathcal{A} is a *Serre subcategory* if it contains 0 and is closed under subobjects, quotients, and extensions. In this situation, \mathcal{B} is an abelian category and the quotient \mathcal{A}/\mathcal{B} exists in the 2-category of abelian categories and exact functors. The category \mathcal{A}/\mathcal{B} has the same objects as \mathcal{A} and

$$\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y) = \underset{X' \rightarrowtail X,Y \twoheadrightarrow Y'}{\operatorname{colim}} \operatorname{Hom}_{\mathcal{A}}(X',Y'),$$

where the colimit is taken over all \mathcal{B} -admissible monos $X' \mapsto X$ and epis $Y \twoheadrightarrow Y'$ (i.e., whose (co)kernels are in \mathcal{B}).

Let R be a noetherian ring and $f \in R$. Let $\operatorname{Coh}(R)_{f\text{-nil}} \subset \operatorname{Coh}(R)$ be the full subcategory of f-power torsion coherent R-modules. Show that $\operatorname{Coh}(R)_{f\text{-nil}}$ is a Serre subcategory of $\operatorname{Coh}(R)$ and that the localization functor $\operatorname{Coh}(R) \to \operatorname{Coh}(R[\frac{1}{f}])$, $M \mapsto M[\frac{1}{f}]$, induces an equivalence of categories

$$\operatorname{Coh}(R)/\operatorname{Coh}(R)_{f\text{-nil}} \simeq \operatorname{Coh}(R[\frac{1}{f}]).$$

Hint. To prove essential surjectivity, use that every R-module is the union of its coherent submodules.

Remark. More generally, we have $\operatorname{Coh}(X)/\operatorname{Coh}_Z(X) \simeq \operatorname{Coh}(X-Z)$ for any noetherian scheme X and closed subset $Z \subset X$.

Exercise 2. Let R be a noetherian ring and let $i: \operatorname{Spec}(R) \to \mathbb{A}^1_R$ be the zero section. Using the additivity theorem, show that the map

$$i_*\colon G(R)\to G(R[t])$$

is null-homotopic.

Exercise 3. Let D be a Dedekind domain with fraction field F. Show that there is a long exact sequence

$$\cdots \to K_{i+1}(F) \to \bigoplus_{\mathfrak{m} \subset D} K_i(D/\mathfrak{m}) \to K_i(D) \to K_i(F) \to \cdots \to K_0(F) \to 0,$$

where \mathfrak{m} ranges over the maximal ideals in D.

Hint. Write F as the union of the subrings $D\left[\frac{1}{f}\right]$ with $f \in D - \{0\}$.