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Introduction

Algebraic cobordism is a generalized cohomology theory for algebraic varieties originally
introduced by V. Voevodsky, which is in many ways analogous to complex cobordism in
topology. In particular, the special role of complex cobordism in chromatic homotopy theory
was a key inspiration for Voevodsky’s celebrated proof of the Bloch–Kato conjecture.

In this seminar, we aim to study a new “elementary” construction of algebraic cobordism,
due to T. Annala, which uses derived algebraic geometry and is well-behaved over fields of
positive characteristic (unlike the previous construction of M. Levine and F. Morel, which
strongly relied on resolution of singularities). In addition to general properties such as the
bivariant functoriality and the relationship to algebraic K-theory and Chow groups, we will
prove the algebraic Spivak theorem stating that the derived cobordism groups of a perfect
field are generated, up to inverting the characteristic, by cobordism classes of smooth varietes.

Part I: Background in derived algebraic geometry

1. Derived rings and schemes (26.10). This talk should introduce the ∞-category of
simplicial comutative ring as the nonabelian derived ∞-category of polynomial rings, the
∞-category of derived schemes as topological spaces with sheaves of simplicial commu-
tative rings, and the stable ∞-category QCoh(X) of quasi-coherent sheaves on a derived
scheme X. There are various references for these definitions, for example [Lur18, Chapter
25], [Kha16, Chapter 0], [AY20, §2]. The following concepts should also be introduced:
Noetherian derived schemes, closed immersions and proper morphisms, the classical closed
subscheme of a derived scheme, flat morphisms and more generally morphisms locally of
Tor-amplitude ≤ n, and morphisms locally (almost) of finite presentation (e.g., [Lur17],
Definitions 7.2.2.10, 7.2.4.21, 7.2.4.26, 7.2.4.30).

2. Quasi-projective derived schemes (02.11). Introduce strong sheaves, vector bundles
and line bundles on derived schemes [Ann19a, §3]. Define ample line bundle and prove that
strong coherent sheaves on quasi-projective derived schemes become globally generated
after sufficiently many twists. Prove that in characteristic 0, a derived k-scheme is quasi-
projective iff it admits an ample line bundle [Ann19a, §4]. Time permitting, explain
the comparison between K0(X) (defined using perfect complexes) and Kvect

0 (X) (defined
using vector bundles) [Ann19a, §5], and talk about an example of a non-quasi-projective
derived enhancement of a quasi-projective scheme [Ann19c].

3. The cotangent complex, smoothness, and quasi-smoothness (09.11). Define
derivations of simplicial commutative rings and the (algebraic) cotangent complex Lf of a
morphism of simplicial commutative rings and of derived schemes [Lur18, §25.3], [TV08,
§1.2.1]. Define smooth morphisms and quasi-smooth morphisms and explain some of their
characterizations, in particular in terms of the cotangent complex [KR19, Propositions
2.3.8, 2.3.14], [TV08, Theorem 2.2.2.6].
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4. Derived blow-ups (16.11). Construct the blow-up BlZ(X) of a quasi-smooth closed
subscheme Z ⊂ X as the stack of virtual Cartier divisors and show that it is a quasi-
smooth derived scheme over X, following Khan and Rydh [KR19]. Introduce also the
derived deformation to the normal bundle construction [KR19, §4.1.12]. See also [Ann20,
Appendix B].

Part II: The universal property of algebraic cobordism

5. Bivariant theories (23.11). Explain the general formalism of bivariant theories and
orientations [Ann20, §2.1] and the universal bivariant theory [Ann20, §2.2]. Prove in
particular [Ann20, Proposition 2.17], which allows us to construct bivariant theories by
imposing relations in homology. Explain the meaning of “confined” and “specialized”
for derived schemes [Ann20, Definition 2.22]. Give G0 and Chow groups as examples of
homology theories in this context, and K0 as an example of a cohomology theory (see also
[Ann19b, Definition 3.6]).

6. The section, formal group law, and strict normal crossings axioms (30.11).
For an oriented bivariant theory on derived schemes, define the first Chern class of a line
bundle (more generally, the Euler class of a vector bundle). Then explain the section, fgl
and snc axioms and related results [Ann20, §2.3]. Along the way, give a crash course on
formal group laws and the Lazard ring.

7. Precobordism and precobordism with line bundles (07.12). Define precobordism
Ω∗ (denoted by B∗ in [AY20]) as the universal naive cobordism theory satisfying the
double-point cobordism relation [AY20, Definition 6.1, Proposition 6.3], and cobordism
Ω∗ as precobordism modulo the snc relation [Ann20, Construction 3.14]. Introduce also
the auxiliary variant Ω∗,1 with line bundles [AY20, Definition 6.6], and prove the structure
theorems [AY20, Theorem 6.12, 6.13].

8. The formal group law of precobordism (14.12) The main goal of this talk is to
construct the formal group law of precobordism, following [AY20, §6.3]. For this one needs
the computation Ω∗(Pn ×X) ∼= Ω∗(X)[t]/(tn+1), which follows from the weak projective
bundle formula [AY20, Theorem 6.22].

9. The universal property of precobordism and cobordism (21.12). Prove that Ω∗

satisfies the section and formal group law axioms [Ann19b, Theorem 3.4], and that it
is universal as a bivariant additive theory with these properties [Ann20, Theorem 3.13]
(via [Ann19b, Theorem 3.11]). Explain in particular the proof of [Ann19b, Lemma 3.10],
which is a derived version of [LP09, Lemma 5.3], computing the Gysin pushforward of a
projectivized line bundle in terms of the formal group law. Deduce that Ω∗ is universal
with respect to the section, fgl and snc axioms [Ann20, Corollary 3.15].

Part III: Computations of algebraic cobordism

10. Chern classes and the splitting principle (11.01). Prove that Euler classes of vector
bundles are nilpotent [Ann19b, Lemma 4.2], and explain the construction of Chern classes
of vector bundles [Ann19b, §4.1]. Then prove the splitting principle [Ann19b, Theorem
4.11] (via [Ann19b, Theorem 4.8]) and some consequences (the nilpotence of Chern classes
and the Whitney sum formula).

11. The Conner–Floyd and Riemann–Roch theorems (18.01). State and sketch the
proofs of the Conner–Floyd and Riemann–Roch theorems relating Ω∗ and K0 [Ann19b,
§5.1,5.2].
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12. The algebraic Spivak theorem (25.01). Give an overview of this result, which states
in particular that for a quasi-projective derived schemeX over a perfect field k of exponen-
tial characteristic e, the e-inverted bordism group Ω∗(X)[e−1] is generated by fundamental
classes of smooth k-schemes [Ann21, Theorem 4.12].
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