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1. Recollection

Definition 1.1.

• Let Poly denote the category of finitely generated polynomial rings over Z.
• Let PolyMod denote the category of pairs (R,M) where R ∈ Poly and M is a finitely generated

free R-module. A map (R,M) → (R′,M ′) is a pair (f, ϕ) where f : R → R′ is a map of rings and
ϕ : M → f∗M ′ is a map of R-modules.

• The category of derived rings dRing is the non-abelian derived category of Poly that is dRing =
PΣ(Poly).

• Given a derived ring A, we write dAlgA for the category of derived A-algebras, i.e., the slice category
dRingA/.

• The category dModcn is the non-abelian derived category of PolyMod. This is the category whose
objects are pairs (R,M) where R is a derived ring and M is an R-module.

• Let R be a derived ring. Then the category of connected derived R-modules is defined via the
following pullback

dModcn
R dModcn

{R} dRing .

2. Derivations and cotangent complex: affine case

Example 2.1. Let A be a commutative ring and let M be a discrete A-module. Then the direct sum A⊕M
admits the structure of a commutative ring, with multiplication given by

(a,m)(a′,m′) = (aa′, am′ + a′m).

We will refer to A⊕M as the trivial square-zero extension of A by M .

We can extend this construction to the world of derived rings as follows.

Construction 2.2 (Trivial square-zero extension). The construction (A,M) 7→ A⊕M determines a functor
from PolyMod to the category of commutative rings, which we regard as a full subcategory of dRing . By
the theory of non-abelian derived functor, there exists an essentially unique functor F : dModcn → dRing
which commutes with sifted colimits and is given by (A,M) 7→ A⊕M on PolyMod. We denote the value of
F on a pair (A,M) by A⊕M and call this the trivial square-zero extension of A by M .
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Example 2.3. There is a functor Poly→ PolyMod sending A to (A, 0). Note that the composite

Poly→ PolyMod
F−→ dRing, A 7→ A⊕ 0 = A

agrees with the the forgetful functor U : dModcn → dRing on Poly. By uniqueness of the derived functors we
see that F agrees with U on the subcategory of dModcn spanned by the pairs (A,M) with M ' 0. Therefore
if M ' 0, then A⊕M ' A.

For any A-module M , we have a map M → 0 which induces a map A ⊕M → A. So we can see A ⊕M
as an object of dRing/A.

Definition 2.4. Let A be a derived ring and M a connective A-module. We let Der(A,M) denote the
mapping space MapdRing/A

(A,A ⊕M) and call this the space of derivations of A into M . A derivation is

then a morphism A→ A⊕M together with a commutative diagram

A A⊕M

A .
1

The canonical map 0→M gives a preferred based point for Der(A,M), the zero derivation.

Example 2.5. Let A be a commutative ring and M an A-module. An element φ ∈ MapRing/A
(A,A⊕M)

can be thought as a derivation by the following observation. For all a ∈ A, we put φ(a) = (a, da) ∈ A⊕M .
The condition that φ is a ring homomorphism over A forces the relation d(aa′) = a′da+ ada′ and d1 = 1.

Lemma 2.6. Let A be a derived ring. Then there exists a connective A-module LA and a universal derivation
η ∈ Der(A,LA) such that evaluation at η gives an equivalence

MapModA
(LA,M) ' Der(A,M) = MapdRing/A

(A,A⊕M)

for any connective A-module M .

Proof. The construction M 7→ Der(A,M) determines an accessible functor Modcn
A → S which preserves

small limits. Therefore it is corepresentable. �

Definition 2.7. The connective A-module LA is the cotangent complex of A.

Example 2.8. Let A be a polynomial ring Z[xs] generated by a possibly infinite set of variables {xs}s∈S . Let
ΩA/Z denote the module of Kahler differentials of A: the free A-module generated by the symbols {dxs}s∈S .
The construction

(f ∈ A) 7→ (f,
∑ ∂f

∂xs
dxs)

determines a derivation η of A into ΩA/Z. Moreover, for every connective A-module M , evaluation on η
determines a homotopy equivalence

MapModA
(ΩA/Z,M)→ Der(A,M) = MapdRing/A

(A,A⊕M)

since both sides can be identified with
∏
s∈S Ω∞M . Therefore η is an universal derivation and LA ' ΩA/Z;

in particular, LA is a discrete A-module.

There is a functor
dRing→ dModcn A 7→ (A,LA).

Definition 2.9. Any map of derived rings φ : A→ B induces a map of B-modules

B ⊗A LA → LB

whose cofibre is denoted by LA/B and refer to as the relative algebraic cotangent complex of B over A.

This is another characterization of the relative cotangent complex.

Proposition 2.10. Let φ : A → B a morphism of derived rings. For every connective B-module M , we
have a canonical equivalence

MapModB
(LB/A,M) ' MapdAlgA/B

(B,B ⊕M).
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Proof. There is a fibre sequence

MapModB
(LB/A,M)→ MapModB

(LB ,M)→ MapModB
(B ⊗A LA,M).

Which we claim we can rewrite as

MapModB
(LB/A,M)→ MapdRing/B

(B,B ⊕M)
φ∗−→ MapdRing/B

(A,B ⊕M)

giving the result. The equivalence in the middle term follows by definition of LB so let us discuss the right
most equivalence. We have

MapModB
(B ⊗A LA,M) ' MapModA

(LA, φ
∗M) ' Der(φ∗M,A) =: MapdRing/A

(A,A⊕ φ∗M).

Now we note that we have a pullback square of derived rings

A⊕ φ∗M B ⊕M

A B.
φ

From this description it is clear that

MapdRing/A
(A,A⊕ φ∗M). ' MapdRing /B(A,B ⊕M).

�

Example 2.11. Consider the projection map A = Z[x1, . . . , xn] → Z which geometrically corresponds to
the inclusion {0} → An. Note that LZ = 0 since Z is initial and L preserves initial objects as it is a left
adjoint. Thus L{0}/An = Z⊗A ΩA/Z[1] = Zn[1].

Recall that we have a functor

dAlgA → Modcn
A (φ : A→ B) 7→ φ∗B.

This has a left adjojnt functor

Modcn
A → dAlgA M 7→ LSym∗A(M)

the symmetric A-algebra on M .

Example 2.12. Let A be a derived ring and M a connective A-module and put B = LSym∗A(M) and
φ : A→ B. We claim that LB/A ' B ⊗AM . For any B-module N , we have equivalences

MapModB
(LB/A, N) ' MapdAlgA/B

(B,B ⊕N) = fib(MapdAlgA
(B,B ⊕N)→ MapdAlgA

(B,B))

then we use the fact that LSym∗A is left adjoint so see that

MapModB
(LB/A, N) ' fib(MapModA

(M,φ∗(B ⊕N))→ MapModA
(M,φ∗B)) ' MapModA

(M,φ∗N).

Let us list some of the properties that the cotangent complex satisfy.

Proposition 2.13.

(a) Given a pushout diagram of derived rings

A′ B′

A B

there is a canonical equivalence LB/A ' B ⊗B′ LB′/A′ .
(b) For every composable pair of morphisms of derived rings A → B → C, there is a canonical cofibre

sequence

C ⊗B LB/A → LC/A → LC/B .

(c) Let ϕ : A → B be a morphism of derived rings. Then ϕ is an equivalence iff π0(ϕ) is an iso and
LB/A ' 0.
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3. Derivations and cotangent complex: derived schemes

Let f : Y → X be a morphism of derived schemes and let y : Spec(R) → Y be an R-point. For any
M ∈ Modcn

R we have a commutative square

Y (R⊕M) Y (R)

X(R⊕M) X(R)

pr∗

f

pr∗

where pr : R⊕M → R is the canonical projection, which determines a canonical map

Y (R⊕M)→ Y (R)×X(R) X(R⊕M).

The point y ∈ Y (R) and the point

(dtriv)∗(f(y)) : Spec(R⊕M)
dtriv−−−→ Spec(R)

y−→ Y
f−→ X

together the canonical isomorphism

pr∗((dtriv)∗(f(y))) = f(y) ∈ X(R)

defines a point in Y (R)×X(R) X(R⊕M). We then define

Dery(Y/X,M) = fib(Y (R⊕M)→ Y (R)×X(R) X(R⊕M)).

Example 3.1. Let X = Spec(A) and Y = Spec(B) be affine and consider f : Spec(B) → Spec(A). The
space of derivations at the identity of Y into M is given by the fiber

MapdRing(B,B ⊕M)→ MapdRing(B,B)×MapdRing(A,B) MapdRing(A,B ⊕M)

which coincides with

MapdAlgA/B
(B,B ⊕M).

So LY/X = LB/A by Proposition 2.10.

Definition 3.2. We say that Ly ∈ Modcn
R is a cotangent complex of f at y if Ly corepresents the functor

M 7→ Dery(Y/X,M) so that there is an equivalence

MapModR
(Ly,M) ' Dery(Y/X,M).

When Ly exists we say that f admits a cotangent complex at y and denote it as y∗LY/Xor y∗Lf .

Example 3.3. Let X = Spec(A) and Y = Spec(B) be affine. Then any morphism f : Y → X admits a
cotangent complex at any point y : Spec(R)→ Y given by

y∗LY/X = R⊗B LB/A

Definition 3.4. Let L be a connective quasi-coherent sheaf on Y . We say that L is a cotangent complex
for f : Y → X if for every points y ∈ Y (R), the inverse image y∗L is a cotangent complex of f at y. If L
exists we say that f admits a cotangent complex and write Lf or LY/X .

The following properties follow from the definitions.

Proposition 3.5. Let Z
g−→ Y

f−→ X be morphisms of derived schemes. Suppose that f admits a cotangent
complex. Then g admits a cotangent complex if and only if g ◦ f does so. In either cases we have a triangle

g∗LY/X → LZ/X → LZ/Y
in Qcoh(Z).

Proposition 3.6. Let j : U → X be an open immersion of derived schemes. Then j admits a cotangent
complex and LU/X = 0.
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Proof. It suffices to show that u∗LU/X = 0 for all points u ∈ U(R). This amount to the claim that for any
M ∈ Modcn

R the map

U(R⊕M)→ U(R)×X(R) X(R⊕M)

as contractible fibre at the point (u, (dtriv)∗(j(u))). Since j is a monomorphism, it is easy to see that this
map is also a monomorphism, i.e., it has empty or contractible fibres. Note that the point (dtriv)∗(j(u)) ∈
U(R⊕M) lives in the fibre so we are done. �

Theorem 3.7. Let f : Y → X be a morphism of derived schemes. Then f admits a cotangent complex
LY/X ∈ Qcoh(Y ).

Proof. If both X and Y admits cotangent complexes over Spec(Z), denoted LY and LX respectively, then
we can set

LY/X = cof(f∗LX → LY )

in view of Proposition 3.5. Therefore we can assume X = Spec(Z).
Recall that

Qcoh(Y ) = lim
(U,y)

Qcoh(U)

where the limit is taken over the pairs (U, y) with U = Spec(R) affine and y an open immersion. Therefore
it suffices to construct a compatible system of quasi-coherent sheaves (y∗LY )y for all such pairs (U, y).
According to the exact triangle

y∗LY → LU → LU/Y
and Proposition 3.6, we must have

(1) y∗LY ' LU
if LY and LU exists. Note that LU exists and it coincides with LR. Given a morphism j : U → V over X
we see that LU/V ' 0 by the proof of Proposition 3.6 so j∗LV ' LU showing that this defines an object in
the limit and so a quasi-coherent sheaves. �

4. Smoothness and quasi-smoothness

Definition 4.1. Let φ : A→ B be a morphism of derived rings.

• We say that φ is locally of finite presentation if MapdAlgA
(B,−) preserves filtered colimits.

• We say that φ is formally smooth if the B-module LA/B is projective (=retract of a sum of B’s) and
if the morphism B ⊗A LA → LB has a retraction.

• We asy that φ is formally etale if the morphism B ⊗A LA → LB is an equivalence, or equivalently
LB/A ' 0.

• We say that φ is smooth if it is locally of finite presentation and formally smooth.
• We say that φ is etale if it is locally of finite presentation and formally etale.

Theorem 4.2 (Toen-Vezzosi). A morphism of derived rings φ : A→ B is etale (resp., smooth) if and only
if π0(B) ⊗π0(A) π∗(A) → π∗(B) is an isomorphism and moreover the map π0(A) → π0(B) is etale (resp.,
smooth).

Proposition 4.3. The (formally) smooth and (formally) etale morphisms are stable under composition,
pushout and equivalence.

Proof. This is a consequence of Proposition 2.13. �

Definition 4.4. We say that a morphism of derived schemes p : Y → X is etale (smooth, locally of finite
presentation) if there exists Zariski covers (Yα → Y ) and (Xβ → X) such that for each α, there exists β and
a morphism of affine derived schemes Yα → Xβ which is etale (smooth, locally of finite presentation) which
fit in the following commutative diagram

Yα Xβ

X X.
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Proposition 4.5. Let p : Y → X be a morphism of derived schemes which is locally of finite presentation.
Then p is etale (resp., smooth) if and only if the cotangent complex LY/X is zero (resp., locally free of finite
rank).

Construction 4.6. Let A be a derived ring and let f1, . . . , fn ∈ A be a sequence of elements. Let
A//(f1, . . . fn) denote the derived ring defined by the pushout

Z[x1, . . . , xn] Z[x1, . . . , xn]/(x1, . . . , xn)

A A//(f1, . . . , fn).

xi 7→fi

We have π0(A//(f1, . . . , fn)) = π0(A)/(f1, . . . , fn).

Example 4.7. IfA is discrete and the sequence (f1, . . . , fn) is regular, then the canonical mapA//(f1, . . . , fn)→
A/(f1, . . . , fn) is an isomorphism.

Definition 4.8. Let i : Z → X be a closed immersion of derived schemes (i.e., the underlying morphism of
classical scheme is a closed immersion). We say that i is quasi-smooth if Zariski locally on X, there exists a
morphism f : X → An and a cartensian quare

Z X

{0} An.

in the category of derived schemes. In other works, i is locally of the form Spec(A//(f1, . . . , fn))→ Spec(A).

Example 4.9. Let i : Z → X be a closed immersion of classical schemes. Then Zariski locally i is of the
form Spec(A/I) → Spec(A) for some ideal I. Then i is regular if and only if I is generated by a regular
sequence f1, . . . , fn. Note that in this case A//(f1, . . . , dn) = A/(f1, . . . , fn). Therefore we deduce that i is
regular if and only if it is quasi-smooth.

Proposition 4.10. Let i : Z → X be a closed immersion of derived schemes. Then i is quasi-smooth if and
only if it is locally of finite presentation and the shifted cotangent complex LZ/X [1] is locally free OZ-module
of finite rank.

Proof. Suppose that i is quasi-smooth. Since everything is Zariski local and stable under base change, we
can assume that i is the inclusion {0} → An in which case L{0}/An [−1] is free of rank n by Example 2.11.

Conversely, suppose that X = Spec(A) and Z = Spec(B) are affine, and the shifted cotangent complex
LB/A[−1] ∈ ModB is free of rank n. Let F be the fibre of ϕ : A→ B in ModA so that there exists a canonical
isomorphism of π0(B)-module

π1(LB/A) = π0(F ⊗LA B)

induced by Hurewitz map. Choose a basis df1, . . . , dfn ∈ π1(LB/A) and note that the corresponding elements

of π0(F ⊗LAB) lift to elements f̃1, . . . , f̃n ∈ π0(F ) since ϕ is surjective on π0. Moreover by Nakayama Lemma

we can assume that f̃i generates π0(F ) as a π0(A)-module. Lifting them to points in F , we get points
fi ∈ A equipped with paths ϕ(fi) ' 0 in B. One check that this gives a map A//(f1, . . . , fn)→ B which by
construction is an iso on π0. To check that this is an isomorphism we can use that the cotangent complex
detects isomorphisms. In order words we need to check that the relative cotangent complex vanishes, which
follows from the triangle

L(A//(fi)i)/A ⊗A//(fi)i B → LB/A → LB/(A//(fi)i).

�

Example 4.11. If X and Z are smooth over some base S, then any closed immersion i : Z → X is quasi-
smooth. This follows from the exact triangle

i∗LX/S → LZ/S → LZ/X
and Proposition 4.5.
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Definition 4.12. A morphism of derived schemes f : Y → X is called quasi-smooth if it admits, Zariski
locally on Y , a factorization

Y
i−→ X ′

p−→ X

where i is a quasi-smooth closed immersion and p is smooth.

Recall that a B-module has Tor-amplitude ≤ n if for all B-module N , the homotopy groups πi(M ⊗B N)
vanish for i > n.

Proposition 4.13. Let f : Y → X a morphism of derived schemes. Then f is quasi-smooth if and only if
f is locally of finite presentation and the cotangent complex LY/X is of Tor-amplitude ≤ 1.

Proof. Lurie tells us that the question is local on Y . If f admits a factorization as above, then f is locally
of finite presentation. The exact triangle

i∗LX′/X → LY/X → LY/X′
shows that LY/X is also of Tor-amplitude ≤ 1.

For the converse direction, let ϕ : A → B be a morphism of derived ring which is locally of finite pre-
sentation and LB/A has Tor-amplitude ≤ 1. Then π0(A) → π0(B) is of finite presentation so we can find
a homomorphism A′ = A[x1, . . . , xn] → B that extends ϕ and is surjective on π0. The homomorphism
A → A′ is smooth so it will suffices to show that LB/A′ [−1] is locally free of finite rank. Or equivalently,

since π0(LB/A′) = Ω1
π0(B)/π0(A′) = 0 that LB/A′ is of Tor-amplitude ≤ 1. This follows from the triangle

LA′/A ⊗A′ B → LB/A → LB/A′ .

�
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