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Abstract. We present some recent results in A1-algebraic topology, which means both in
A1-homotopy theory of schemes and its relationship with algebraic geometry. This refers to
the classical relationship between homotopy theory and (differential) topology. We explain
several examples of “motivic” versions of classical results: the theory of the Brouwer degree,
the classification of A1-coverings through the A1-fundamental group, the Hurewicz Theorem and
the A1-homotopy of algebraic spheres, and the A1-homotopy classification of vector bundles.
We also give some applications and perspectives.
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1. The Brouwer degree

Let n ≥ 1 be an integer and let X be a pointed topological space. We shall denote by
πn(X) the n-th homotopy group of X. A basic fact in homotopy theory is:

Theorem 1.1. Let n ≥ 1, d ≥ 1 be integers and denote by Sn the n-dimensional
sphere.

1) If d < n then πd(Sn) = 0;

2) If d = n then πn(S
n) = Z.

A classical proof uses the Hurewicz Theorem and the computation of the integral
singular homology of the sphere. Half of this paper is devoted to explain the analogue
of these results in A1-homotopy theory [54], [38].

For our purpose we also recall a more geometric proof of 2) inspired by the
definition of Brouwer’s degree. Any continuous map Sn → Sn is homotopic to a
C∞-differentiable map f : Sn → Sn. By Sard’s theorem, f has at least one regular
value x ∈ Sn, so that f −1(x) is a finite set of points in Sn and for each y ∈ f −1(x), the
differential dfy : Ty(S

n) → Tx(S
n) of f at y is an isomorphism. The “sign” εy(f ) at y

is +1 if dfy preserves the orientation and −1 else. The integer δ(f ) := ∑
y &→x εy(f )

is the Brouwer degree of f and only depends on the homotopy class of f .
Now choose a small enough open n-ball B around x such that f −1(B) is a disjoint

union of an open n-balls By around each y’s. The quotient space Sn/(Sn −⋃
By) is
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homeomorphic to the wedge of spheres∨yS
n and the quotient mapSn → Sn/(Sn−B)

is a homotopy equivalence. The induced commutative square

Sn
f

!!

""

Sn

(
""

∨yS
n = Sn/(Sn − ⋃

By) ∨yfy

!! Sn/(Sn − B)

(1.1)

expresses the homotopy class of f as the sum of the homotopy classes of the fy’s,
each of which being the one point compactification of the differential map dfy . This
proves that the degree homomorphism πn(S

n) → Z is injective, thus an isomorphism.
We illustrate the algebraic situation by a simple close example. Let k be a field,

let f ∈ k(T ) be a rational fraction and denote still by f : P1 → P1 the k-morphism
from the projective line to itself corresponding to f . Assume, for simplicity, that f

admits a regular value x in the following strong sense (which is not the generic one):
x is a rational point in A1 ⊂ P1 such that f is étale over x, such that the finite étale
k-scheme f −1(x) consists of finitely many rational points y ∈ A1 (none being ∞),
and that the differentials df

dt (y) are each units αy . Observe that P1 − {x} is isomorphic
to the affine line A1 and thus the quotient morphism P1 → P1/A1 := T a “weak
A1-equivalence”. The commutative diagram (in some category of spaces over k, see
below)

P1
f

!!

""

P1

(
""

∨yT = P1/(P1 − f −1(x)) ∨α̂y

!! T

analogous to (1.1), also expressesf , up to A1-weak homotopy, as the sum of the classes
of the morphisms α̂y : T → T induced by the multiplication by αy . The idea is that in
algebraic geometry the analogue of the “sign” of a unit u ∈ k×, or the A1-homotopy
class of û, is its class in k×/(k×)2. The set k×/(k×)2 should also be considered as the
set of orientations of the affine line over k. We observe that û is A1-equivalent to the
“1-point compactification” of the multiplication by u : P1 → P1, [x, y] &→ [ux, y].
If u = v2, the latter is [x, y] &→ [ux, y] = [vx, v−1y] which is given by the action
of the matrix

(
v 0
0 v−1

)
of SL2(k) and thus, being a product of elementary matrices, is

A1-homotopic to the identity.
Using the same procedure as in topology, we have “expressed” the A1-homotopy

class of f as a sum of units modulo the squares and the Brouwer degree of a morphism
P1 → P1 in the A1-homotopy category H(k) over k should have this flavor. Denote
by GW(k) the Grothendieck–Witt ring of non-degenerate symmetric bilinear forms
over k, that is to say the group completion of the monoid – for the direct sum – of
isomorphism classes of such forms over k, see [27]. It is a quotient of the free abelian
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group on units k×. We will find that the algebraic Brouwer degree over k takes it
values in GW(k) by constructing for n ≥ 2 an isomorphism

HomH(k)((P1)∧n, (P1)∧n) ∼= HomH•(k)((P1)∧n, (P1)∧n) ∼= GW(k)

where H•(k) is the pointed A1-homotopy category over k and ∧ denotes the smash-
product [54], [38]. For n = 1 the epimorphism HomH•(k)(P1, P1) → GW(k) has a
kernel isomorphic to the subgroup of squares (k×)2.

The ring GW(k) is actually the cartesian product of Z and W(k) (the Witt ring of
isomorphism classes of anisotropic forms) over Z/2, fitting into the cartesian square

GW(k) !!

""

Z

""

W(k) !! Z/2 .

The possibility of defining the Brouwer degree with values1 in GW(k) and the above
cartesian square emphasizes one of our constant intuition in this paper and should be
kept in mind: from the degree point of view, the (top horizontal) rank homomorphism
corresponds to “taking care of the topology of the complex points” and the projection
GW(k) → W(k) corresponds to “taking care of the topology of the real points”.
Indeed, given a real embedding k → R, with associated signature W(k) → Z, the
signature of the degree of f is the degree of the associated map f (R) : P1(R) →
P1(R). This idea of taking care of these two topological intuitions at the same time
is essential in the present work.

We do not pretend to be exhaustive in such a short paper; we have mostly empha-
sized the progress in unstable A1-homotopy theory and we will almost not address
stable A1-homotopy theory.

Notations. We fix a base field k of any characteristic; Smk will denote the category
of smooth quasi-projective k-schemes. Given a presheaf of sets on Smk , that is to
say a functor F : (Smk)

op → Sets, and an essentially smooth k-algebra A, which
means that A is the filtering union of its sub-k-algebras Aα which are smooth and
finite type over k, we set F(A) := colimitαF(Spec(Aα)). For instance, for each
point x ∈ X ∈ Smk the local ring OX,x of X at x as well as its henselization Oh

X,x are
essentially smooth k-algebras.

Some history and acknowledgements. This work has its origin in my discussions
and collaboration withV.Voevodsky [38]; I thank him very much for these discussions.

I thank J. Lannes for his influence and interest on my first proof of the Milnor
conjecture on quadratic forms in [29], relying on Voevodsky’s results and on the use
of the Adams spectral sequence based on mod. 2 motivic cohomology. Since then I
considerably simplified the topological argument in [33].

1Barge and Lannes have defined and studied a related degree from the set of naive A1-homotopy classes of
k-morphisms P1 → P1 to GW(k), unpublished.
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I also want to warmly thank M. Hopkins and M. Levine for their constant interest
in this work -as well as related works-, for discussions and comments which helped me
very much to simplify and improve some parts, and also for some nice collaborations
on and around this subject during the past years.

Finally, I want to thank very much the Mathematics Institute as well as my col-
leagues of the University of Munich for their welcome.

2. A quick recollection on A1-homotopy

A convenient category of spaces. We will always consider that Smk is endowed with
the Nisnevich topology [40], [38]. We simply recall the following characterization
for a presheaf of sets on Smk to be a sheaf in this topology.

Proposition 2.1 ([38]). A functor F : (Smk)
op → Sets is a sheaf in the Nisnevich

topology if and only if for any cartesian square in Smk of the form

W

""

⊂ V

""

U ⊂ X

(2.1)

where U is an open subscheme in X, the morphism f : V → X is étale and the
induced morphism (f −1(X − U))red → (X − U)red is an isomorphism, the map

F(X) → F(U) ×F(W) F (V )

is a bijection.

Squares like (2.1) are call distinguished squares. We denote by %opShvk the
category of simplicial sheaves of sets over Smk (in the Nisnevich topology); these
objects will be just called “spaces” (this is slightly different from [54] where “space”
only means a sheaf of sets, with no simplicial structure). This category contains the
category Smk as the full subcategory of representable sheaves.

A1-weak equivalence and A1-homotopy category. Recall that a simplicial weak
equivalence is a morphism of spaces f : X → Y such that each of its stalks

X(Oh
X,x) → Y(Oh

X,x)

at x ∈ X ∈ Smk is a weak equivalence of simplicial sets. Inverting these morphisms in
%opShvk yields the classical simplicial homotopy category of sheaves [10], [21]. The
notion of A1-weak equivalence is generated in some natural way by that of simplicial
weak equivalences and the projections X × A1 → X for any space X. Inverting the
class of A1-weak equivalence yields now the A1-homotopy category H(k) [54], [38].
We denote by H•(k) the A1-homotopy category of pointed spaces.
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The smash product with the simplicial circle S1 induces the simplicial suspension
functor & : H•(k) → H•(k), X &→ &(X). For a pointed morphism f : X → Y
we may define the A1-homotopy fiber '(f ) together with an A1-fibration sequence
'(f ) → X → Y, which moreover induces for any other pointed space Z a long
homotopy exact sequence (of pointed sets, groups, abelian groups as usual)

· · · → HomH•(k)(&(Z), X) → HomH•(k)(&(Z), Y) → HomH•(k)(Z, '(f ))

→ HomH•(k)(Z, X) → HomH•(k)(Z, Y).

In a dual way a distinguished square like (2.1) above is A1-homotopy cocartesian
and induces corresponding Mayer–Vietoris type long exact sequences by mapping its
vertices to Z.

The geometric ideas on the Brouwer degree recalled in the introduction lead in
general (for d > n) to the interpretation, due to Pontryagin, of the stable homotopy
groups of spheres in terms of parallelized cobordism groups, and even more generally
to the Thom–Pontryagin construction used by Thom to compute most of the cobordism
rings. Recall that given a closed embedding i : Z ↪→ X between differentiable
manifolds (with Z compact for simplicity) and a tubular neighborhood Z ⊂ U ⊂ X

of Z in X there is a pointed continuous map (indeed homeomorphism)

X/(X − U) → Th(νi ) (2.2)

to the Thom space (the one point compactification of the total space E(νi ) ∼= U of
the normal bundle νi) which is independent up to pointed homotopy of the choices of
the tubular neighborhood.

The choice of the topology on Smk (see [38]) was very much inspired by the
this Thom–Pontryagin construction and the definition of the A1-homotopy category
of smooth schemes over a base in [54], [38] allows to construct, for any closed
immersion i : Z → X between smooth k-schemes, a pointed A1-weak equivalence
X/(X − Z) → Th(νi ) [38], although no tubular neighborhood is available in general
in algebraic geometry. In that case we get an A1-cofibration sequence

(X − Z) → X → Th(νi ).

Let X be a space. We let πA1

0 (X) denote the associated sheaf (of sets) on Smk to
the presheaf U &→ HomH(k)(U, X). If moreover X is pointed, and n ≥ 1 we denote
by πA1

n (X) the sheaf on Smk associated to the presheaf U &→ HomH•(k)(&
n(U+), X)

(where U+ means U together with a base point added outside), a sheaf of groups for
n = 1, of abelian groups for n ≥ 2.

It is also very useful for the intuition to recall from [38] the existence of the
topological realization functors. When ρ : k → C (resp. k → R) is a complex
(resp. real) embedding there is a canonical functor H(k) → H to the usual homotopy
category of C.W.-complexes, induced by sending X ∈ Smk to the set of complex
points X(C) (resp. real points X(R)) with its classical topology.
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3. A1-homotopy and A1-homology: the basic theorems

We recall that everywhere in this paper the topology to be understood is the Nisnevich
topology.

Strictly A1-invariant sheaves

Definition 3.1. 1) A presheaf of sets M on Smk is said to be A1-invariant if for any
X ∈ Smk , the map M(X) → M(X × A1) induced by the projection X × A1 → X,
is a bijection.

2) A sheaf of groups M is said to be strongly A1-invariant if for any X ∈ Smk

and any i ∈ {0, 1} the map Hi(X; M) → Hi(X × A1; M) induced by the projection
X × A1, is a bijection.

3)A sheaf of abelian groups M is said to be strictly A1-invariant if for any X ∈ Smk

and any i ∈ N the map Hi(X; M) → Hi(X × A1; M) induced by the projection
X × A1 is a bijection.

These notions, except 2), appear inVoevodsky’s study of cohomological properties
of presheaves with transfers [55] and were extensively studied in [34] over a general
base, though very few is known except when the base is a field. Hopefully, given a
sheaf of abelian groups the a priori different properties 2) and 3) coincide.

Theorem 3.2 ([36]). A sheaf of abelian groups which is strongly A1-invariant is
strictly A1-invariant.

This result can be used to simplify some of the proofs of [55]. Let us denote by Abk

the abelian category of sheaves of abelian groups on Smk . Another easy application
is that the full sub-category AbA1

k ⊂ Abk , consisting of strictly A1-invariant sheaves,
is an abelian category for which the inclusion functor is exact. From Theorem 3.3
below, these strictly A1-invariant sheaves and their cohomology play in A1-algebraic
topology the role played in classical algebraic topology by the abelian groups and the
singular cohomology with coefficients in those.

The constant sheaf Z, the sheaf represented by an abelian variety over k are
examples of strictly A1-invariant sheaves, in fact the higher cohomology groups,
Hi

Nis(X; −), i > 0, for these sheaves automatically vanish. Another well known
example is the multiplicative group Gm = A1 − {0}. More elaborated examples
were produced by Voevodsky over a perfect field: for each A1-homotopy invariant
presheaf with transfers F its associated sheaf FNis a strictly A1-invariant sheaf [55].
In particular if F itself is an A1-homotopy invariant sheaf with transfers, it is strictly
A1-invariant. By [12] these sheaves are very closely related to Rost’s cycle modules
[46], which also produce strictly A1-invariant sheaves, like the unramified Milnor
K-theory sheaves introduced in [19]. There are other types of strictly A1-invariant
sheaves given for instance by the unramified Witt groups W as constructed in [42],
or [36], as well as their subsheaves of unramified power of the fundamental ideal In

used in [33].
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A1-homotopy sheaves

Theorem 3.3 ([36]). Let X be a pointed space. Then the sheaf πA1

1 (X) is strongly
A1-invariant, and the sheaves πA1

n , for n ≥ 2, are strictly A1-invariant.

Curiously enough, we are unable to prove that the sheaf πA1

0 (X) is A1-invariant,
though it is true in all the cases we can compute.

Remark 3.4. One of the main tool used in the proof of the Theorem 3.3 is the
presentation Lemma of Gabber [14] as formalized in [11]. Then a “non-abelian”
variant of [11] and ideas from [46] lead to the result. In fact one can give a quite
concrete description of a sheaf of groups which is strongly A1-invariant [36].

A pointed space X such that the sheaves πA1

i (X) vanish for i ≤ n will be called
n-A1-connected. In case n = 0 we simply say A1-connected.

Corollary 3.5 (Unstable A1-connectivity theorem). Let X be a pointed space and n

be an integer ≥ 0 such that X is simplicially n-connected. Then it is n-A1-connected.

This result was only known in the case n = 0 in [38], over a general base. As a
consequence, the simplicial suspension of an (n − 1)-A1-connected pointed space is
n-A1-connected.

The main example of a simplicially n-connected space is the (n+ 1)-th simplicial
suspension of a pointed space.

For n and i two natural numbers we set Sn(i) = (S1)∧(n) ∧ (Gm)∧i where ∧
denotes the smash-product. Observe that these are actually mapped to spheres (up
to homotopy) through any topological realization functors (real or complex). Note
also the following isomorphisms in H•(k) : An − {0} ∼= S(n−1)(n) and (P1)∧n ∼=
S1 ∧ (An − {0}) ∼= Sn(n).

From the previous Corollary Sn(i) is (n − 1)-A1-connected. Actually we will see
below that it is exactly (n − 1)-A1-connected, as πA1

n (Sn(i)) is always non trivial.
The A1-connectivity corresponds to the connectivity of the space of real points.

A1-fundamental group and universal A1-covering. An A1-trivial cofibration
A → B is a monomorphism between spaces which is also an A1-weak equiva-
lence. The following definition is the obvious analogue of the definition of a covering
in topology:

Definition 3.6. An A1-covering Y → X is a morphism of spaces which has the
unique right lifting property with respect to A1-trivial cofibrations. This means that
given any commutative square of spaces

A

""

!! Y

""

B !! X
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in which A → B is an A1-trivial cofibration, there exists one and exactly one mor-
phism B → Y which makes the whole diagram commutative.

Example 3.7. 1) Any finite étale covering Y → X between smooth k-varieties, in
characteristic 0, is an A1-covering. Any Galois étale covering Y → X with Galois
group of order prime to the characteristic of k is an A1-covering.

2) Any Gm-torsor Y → X is an A1-covering. Remember to think about the real
points! A Gm-torsor gives (up to homotopy) a Z/2-covering.

Theorem 3.8. Any pointed A1-connected space X admits a universal pointed A1-
covering X̃ → X in the category of pointed coverings of X. The fiber of this
universal A1-covering at the base point is isomorphic to πA1

1 (X) and X̃ → X is
(up to canonical isomorphism) the unique pointed A1-covering with X̃ being 1-A1-
connected.

Remark 3.9. A pointed A1-connected smooth k-scheme (X, x) admits no non-trivial
étale pointed covering. Thus the πA1

1 is in some sense orthogonal to the étale one
and gives a more combinatorial information, as shown by the example of the Pn’s
below. On the other hand the pointed étale coverings always come from the πA1

0 : for
instance an abelian variety X is discreet, in the sense that πA1

0 (X) = X, and have
huge étale π1. We did not try to further study the A1-fundamental groupoid which
cares about both aspects, the combinatorial and the étale.

Lemma 3.10. Let n ≥ 2. The canonical Gm-torsor

(An+1 − {0}) → Pn

is the universal covering of Pn. As a consequence the morphism πA1

1 (Pn) → Gm is
an isomorphism.

Indeed, An+1 − {0} is 1-A1-connected. For n = 1 the problem is that A2 − {0} is
no longer 1-A1-connected. See the next section for more information.

A1-derived category, A1-homology and Hurewicz Theorem. Let us denote by
Z(X) the free abelian sheaf generated by a space X and by C∗(X) its the associated
chain complex; if moreover X is pointed, let us denote by Z•(X) = Z(X)/Z and
C̃∗(X) = C∗(X)/Z the reduced versions obtained by collapsing the base point to 0.

We may perform in the derived category of chain complexes in Abk exactly the
same process as for spaces and define the class of A1-weak equivalences, rather
A1-quasi isomorphisms; these are generated by quasi-isomorphisms and collapsing
Z•(A1) to 0. Formally inverting these morphisms yields the A1-derived category
DA1(k) of k [34]. The functor X &→ C∗(X) obviously induces a functor H(k) →
DA1(k) which admits a right adjoint given by the usual Eilenberg–MacLane functor
K : DA1(k) → H(k).

As for spaces, one may define A1-homology sheaves of a chain complex C∗. An
abelian version of Theorem 3.3 implies that for any complex C∗ these A1-homology
sheaves are strictly A1-invariant [36], [34].
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Definition 3.11. For a space X and for each integer n ∈ Z, we let HA1

n (X) denote
the n-th A1-homology sheaf of C∗(X) and call HA1

∗ (X) the A1-homology of X (with
integral coefficients). In case X is pointed, we let H̃A1

∗ (X) denote the reduced version
obtained by collapsing the base point to 0.

Observe that these A1-homology sheaves are strictly A1-invariant and that
HA1

i (X) = 0 for i < 0 by the abelian analogue of Corollary 3.5. As a consequence for
a space X the sheaf HA1

0 (X) is the free strictly A1-invariant sheaf generated by X.
These sheaves play a fundamental role in A1-algebraic topology. For instance we
have suspension isomorphisms H̃A1

∗ (Sn(i)) ∼= H̃A1

∗−n((Gm)∧i ) for our spheres Sn(i).
In particular the first a priori non trivial sheaf is H̃A1

n (Sn(i)) ∼= H̃A1

0 ((Gm)∧i ). We
will compute these sheaves in the next section in terms of Milnor–Witt K-theory.

The computation of the higher A1-homology sheaves is at the moment highly non
trivial and mysterious2.

Remark 3.12. There exists a natural morphism of sheaves HA1

n (X; Z) → HS
n(X)

where the right hand side denotes Suslin–Voevodsky singular homology sheaves [52],
[55]. In general, this is not an isomorphism. More generally let DM(k) beVoevodsky’s
triangulated category of motives [56]. Then there exists a canonical functor of “adding
transfers”

DA1(k) → DM(k).

It is not an equivalence. One explanation is given by the (pointed) algebraic Hopf
map:

η : A2 − {0} → P1.

The associated morphism on HA1

1 defines a morphism3:

η : H̃A1

0 (Gm) ⊗A1 H̃A1

0 (Gm) ∼= HA1

1 (A2 − {0}) → HA1

1 (P1) ∼= H̃A1

0 (Gm).

The latter is never nilpotent (use the same argument as in the proof of Theorem 4.7).
On the other hand, the computation of the motive of P2, which is the cone of η, shows
that P1 → P2 admits a retraction in DM(k) and thus that the image of η in DM(k) is
the zero morphism.

Theorem 3.13 (Hurewicz Theorem, [36]). Let X be a pointed A1-connected space.
Then the Hurewicz morphism

πA1

1 (X) → HA1

1 (X)

2We do not know any example which does not use the Bloch–Kato conjecture.
3Here for sheaves M and N , we denote by M ⊗A1 N the HA1

0 of the sheaf M ⊗ N , and call it the A1-tensor
product.
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is the universal morphism from πA1

1 (X) to a strictly A1-invariant sheaf4. If more-
over X is (n − 1)-connected for some n ≥ 2 then the Hurewicz morphism

πA1

i (X) → HA1

i (X)

is an isomorphism for i ≤ n and an epimorphism for i = (n + 1).

We now may partly realize our program of proving the analogue of Theorem 1.1.
Given a sphere Sn(i) with n ≥ 2, we have πA1

m (Sn(i)) = 0 for m < n and

πA1

n (Sn(i)) ∼= H̃A1

0 ((Gm)∧n) ∼= H̃A1

0 (Gm)⊗A1 (n).

In the next section we will describe those sheaves.

Remark 3.14. Of course, the Hurewicz Theorem has a lot of classical consequences.
We do not mention them here, see [36].

4. A1-homotopy and A1-homology: computations involving Milnor–
Witt K-theory

Milnor–Witt K-theory of fields. The following definition was obtained in collabo-
ration with Mike Hopkins.

Definition 4.1. Let F be a commutative field. The Milnor–Witt K-theory KMW
∗ (F )

of F is the graded associative ring generated by the symbols [u], for each unit u ∈ F×,
of degree +1, and η of degree −1 subject to the following relations:

(1) (Steinberg relation) For each a ∈ F× − {1}, one has [a].[1 − a] = 0.

(2) For each pair (a, b) ∈ (F×)2 one has [ab] = [a] + [b] + η.[a].[b].
(3) For each a ∈ F×, one has [a].η = η.[a].
(4) One has η2.[−1] + 2η = 0.

This Milnor–Witt K-theory groups were introduced by the author in a different
complicated way. The previous one, is very simple and natural (but maybe the 4-th
relation which will be explained below): all the relations easily come from natural
A1-homotopies, see Theorem 4.8.

The quotient KMW
∗ (F )/η of the Milnor–Witt K-theory of F by η is the Milnor

K-theory KM
∗ (F ) of F as defined in [26]; indeed after η is killed, the symbol [a]

becomes additive and there is only the Steinberg relation.
For any unit a ∈ F×, set 〈a〉 = η[a] + 1 ∈ KMW

0 (F ). One can show that
[1] = 0, 〈1〉 = 1 and 〈ab〉 = 〈a〉〈b〉. Set ε := −〈−1〉 and h = 1 + 〈−1〉. Observe
that h = η.[−1] + 2 and the fourth relation can be written ηε = η or equivalently
η . h = 0.

4it is not yet known whether this is the abelianization nor an epimorphism
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This η will be interpreted below in term of the algebraic Hopf map (see also
Remark 3.12 above). Observe that the relation η2.[−1] + 2η = 0 is compatible with
the complex points (where [−1] = 0 and stably 2.η = 0) and the real points (where
[−1] = −1, η = 2 and −22 + 2 × 2 = 0).

It is natural to call the quotient ring KMW
∗ (F )/h the Witt K-theory of F and to

denote it by KW
∗ (F ). The mod 2-Milnor K-theory k∗(F ) := KM

∗ (F )/2 is thus also
the mod η Witt K-theory KW

∗ (F )/η = KMW
∗ (F )/(h, η).

It is not hard to check that KMW
0 (F ) admits the following presentation as an abelian

group: a generator 〈u〉 for each unit ofF× and the relations of the form: 〈u(v2)〉 = 〈u〉,
〈u〉 + 〈v〉 = 〈u + v〉 + 〈(u + v)uv〉 if (u + v) 2= 0 and 〈u〉 + 〈−u〉 = 1 + 〈−1〉.
Moreover one checks that the morphism ηn : KMW

0 (F ) → KMW
−n (F ) induces an

isomorphism KW
0 (F ) ∼= KMW

−n (F ) for n > 0. Thus in particular KMW
∗ (F )[η−1] →

KW
0 (F )[η, η−1] is an isomorphism.

Remark 4.2. In the above presentation of KMW
0 (F ) one recognizes the presentation

of the Grothendieck–Witt ring GW(F ), see [47] in the case of characteristic 2= 2
and [27] in the general case. The element h becomes the hyperbolic plane. The
quotient group (actually a ring) KW

0 (F ) = GW(F )/h is exactly the Witt ring W(F)

of F .

Let us define the fundamental ideal I (F ) of KW
0 (F ) to be the kernel of the mod 2

rank homomorphism KW
0 (F ) → Z/2. Set I ∗(F ) = ⊕

n∈Z In(F ) (with the con-
vention In(F ) = KW

0 (F ) for n ≤ 0). We observe that the obvious correspondence
[u] &→ 〈u〉 − 1 ∈ I (F ) induces an (epi)morphism

SF : KW
∗ (F ) → I ∗(F )

where η acts through the inclusions In(F ) ⊂ In−1(F ). Killing η in this morphism
yields the Milnor morphism [26]:

sF : k∗(F ) → i∗(F ) (4.1)

where i∗(F ) denotes ⊕In(F )/I (n+1)(F ).

Theorem 4.3 ([32]). For any field F of characteristic 2= 2 the homomorphism

SF : KW
∗ (F ) → I ∗(F )

is an isomorphism.

This statement cannot be trivial as it implies the Milnor conjecture on quadratic
forms that morphism (4.1) is an isomorphism. This statement is a reformulation of
[1] and thus uses the proof of the Milnor conjecture on mod 2 Galois cohomology by
Voevodsky [57], [41].
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As a consequence we obtained in [32] that the commutative square of graded rings,

KMW
∗ (F ) !!

""

KM
∗ (F )

""

KW
∗ (F ) !! k∗(F )

(4.2)

is cartesian (for a field of characteristic 2= 2).

Remark 4.4. 1) Using Kato’s proof [20] of the analogue of the Milnor conjecture in
characteristic 2, we can also show the previous result holds in characteristic 2.

2) The fiber products of the form In(F ) ×in(F ) KM
n (F ) where considered in [5]

in characteristic not 2.

For n ≥ 1 we simply set

ZA1(n) := H̃A1

0 ((Gm)∧n)

for the free (reduced) strictly A1-invariant sheaf on (Gm)∧n. The Hopf morphism
η : A2 − {0} → P1 induces on H̃A1

1 a morphism of the form η : ZA1(2) → ZA1(1).
Observe that H̃A1

0 ((Gm)∧0) = HA1

0 (Spec(k)) = Z but that we did not set ZA1(0) = Z.
We will in fact extend this family of sheaves ZA1(n)n≥1 to integers n ≤ 0 using a
construction of Voevodsky.

Given a presheaf of pointed sets M one defines the pointed Gm-loop space M−1
on M so that for X ∈ Smk , M−1(X) is the “Kernel” of the restriction through the unit
section M(X × Gm) → M(X). If M is a sheaf of abelian groups, so is M−1. We
may iterate this construction to get Mn for n < 0; we set, for n ≤ 0

ZA1(n) = ZA1(1)n−1.

The canonical morphism Z → ZA1(0) is far from being an isomorphism. The
tensor product (and internal Hom) defines natural pairings ZA1(n) ⊗ ZA1(m) →
ZA1(n + m) for any integers (n, m) ∈ Z2. The element η becomes now an element
η ∈ ZA1(−1)(k). Any unit u ∈ F× in a separable field extension F |k, viewed as an
element in Gm(F ) defines an element [u] ∈ ZA1(1)(F ).

The following result own very much to the definition of the Milnor–Witt K-theory
found with Hopkins:

Theorem 4.5 ([28]). For any separable field extension F |k, the symbols [u] ∈
ZA1(1)(F ), for any u ∈ F×, and η ∈ ZA1(−1)(F ), satisfy the 4 relations of Defini-
tion 4.1 in the graded ring ZA1(∗)(F ). We thus obtain a canonical homomorphism
of graded rings

,∗(F ) : KMW
∗ (F ) → ZA1(∗)(F ).
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The Steinberg relation (1) is a consequence of the following nice result of P. Hu
and I. Kriz [17]. Consider the canonical closed immersion A1 − {0, 1} ↪→ Gm ×Gm,
x &→ (x, 1−x). Then its (unreduced) suspension &̃1(A1 − {0, 1}) → &1(Gm ×Gm)

composed with &1(Gm × Gm) → &1(Gm ∧ Gm) is trivial in H•(k). Applying HA1

1
yields the Steinberg relation.

The last 3 relations are consequences of the following fact: let µ : Gm×Gm → Gm

denote the product morphism of the group scheme Gm, then the induced morphism
on HA1

1 , ZA1(1) ⊕ ZA1(1) ⊕ ZA1(2) → ZA1(1) is of the form IdZA1 (1) ⊕ IdZA1 (1) ⊕ η.
The relation (2) follows clearly form this fact. The relations (3) and (4) follow from
the commutativity of µ. !

Unramified Milnor–Witt K-theory and the main computation. We next define
for each n ∈ Z an explicit sheaf KMW

n called the sheaf of unramified Milnor–Witt
K-theory in weight n. To do this, let us give some recollection. For the Milnor K-
theory [26], for any discrete valuation v on a field F , with valuation ring Ov ⊂ F ,
residue field κ(v), one can define a unique homomorphism (of graded groups)

∂v : KM
∗ (F ) → KM

∗−1(κ(v))

called “residue” homomorphism, such that

∂v({π}{u2} . . . {un}) = {u2} . . . {un}
for any uniformizing element π (of v) and units ui ∈ O×

v , and where u denotes the
image of u ∈ Ov ∩ F× in κ(v).

In the same way, given a uniformizing element π , one can define a residue mor-
phism

∂π
v : KMW

∗ (F ) → KMW
∗−1(κ(v))

satisfying the formula:

∂π
v ([π ].[u2] . . . [un]) = [u2] . . . [un].

However, one important feature is that in the case of Milnor K-theory, these residues
do not depend on the choice of π , only on the valuation, but in the case of Milnor–Witt
K-theory, they do depend on the choice of π : for u ∈ O×, as one has ∂π

v ([u.π ]) =
∂π
v ([π ]) + η.[u] = 1 + η.[u].

To make this residue homomorphism “canonical” (see [5], [6], [48] for instance),
one defines for a field κ and a one dimensional κ-vector space L, twisted Milnor–Witt
K-theory groups: KMW

∗ (κ; L) = KMW
∗ (κ) ⊗Z[κ×] Z[L − {0}], where the group ring

Z[κ×] acts through u &→ 〈u〉 on KMW
∗ (κ) and through multiplication on Z[L − {0}].

The canonical residue homomorphism is of the following form

∂v : KMW
∗ (F ) → KMW

∗−1(κ(v); mv/(mv)
2)

with ∂v([π ].[u2] . . . [un]) = [u2] . . . [un]⊗π , where mv/(mv)
2 is the cotangent space

at v (a one dimensional κ(v)-vector space).
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Using these residue homomorphisms, one may define for any smooth k-scheme
X ∈ Smk , irreducible say, with function field K , and any n ∈ Z, the group KMW (X)

of unramified Milnor–Witt K-theory in weight n as the kernel of the (locally finite)
sum of the residues at points x of codimension 1, viewed as discrete valuations on K:

KMW
n (K)

&x∂x−−−→
⊕

x∈X(1)

KMW
n−1(κ(x); mx/(mx)

2)

and extends this to a sheaf X &→ KMW
n (X).

Example 4.6. 1) In [18] Kato considered first the sheaves of unramified Milnor K-
theory KM

n defined exactly in the same way on the Zariski site of X. It was turned
into a strictly A1-invariant sheaf (on Smk) by Rost in [46].

2) One may also define unramified Witt K-theory KW
n , unramified mod 2 Milnor

K-theory kn in the same way, etc.

These types of cohomology theories easily give the non nilpotence of η:

Theorem 4.7. Let n ≥ 1 and i ≥ 1 be natural numbers. The n-th suspension in
H•(k)

&n(ηi ) : Sn+1(i + 1) → Sn+1(1)

of the i-th iteration of the Hopf map η : S1(2) → S1(1), is never trivial. Thus the
algebraic Hopf map is not stably nilpotent.

This is trivial if one has a real embedding as η(R) is the degree 2 map. In general,
one uses the cohomology theory H ∗(−; KMW

∗ [η−1]), in which η induces an isomor-
phism. To conclude remember that KMW

∗ (k)[η−1] = KW
0 (k)[η, η−1] and that KW

0 (k)

is never 0 (for k algebraically closed it is Z/2).
We can now state our main computational result. Any strictly A1-invariant sheaf M

has residue homomorphisms (see [34] for instance) and one proves that the homo-
morphism of Theorem 4.8

,∗(F ) : KMW
∗ (F ) → ZA1(∗)(F )

is compatible with residues. Thus (by [33, A.1] it induces a morphism of sheaves

,∗ : KMW
∗ → ZA1(∗). (4.3)

Theorem 4.8 ([28]). The above morphism (4.3) is an isomorphism.

We observe that the product Gm ∧ KMW
n → KMW

1 ∧ KMW
n → KMW

n+1 induces an
isomorphism KMW

n
∼= (KMW

n+1)−1. We deduce the existence for each n > 0, each
i > 0, of a canonical H•(k)-morphism

Sn(i) → K(KMW
i , n). (4.4)

Some consequences and applications. The previous result and the Hurewicz Theo-
rem imply:
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Theorem 4.9. For any n ≥ 2, any i > 0 :

1) The morphism (4.4) induces an isomorphism

πA1

n (Sn(i)) ∼= KMW
i .

2) For any m ∈ N, any j ∈ N, the previous isomorphism induces canonical
isomorphisms

HomH(k)(S
m(j), Sn(i)) ∼=

{
0 if m < n,

KMW
i−j (k) if m = n.

In case i = 0, πA1

n (Sn) = Z and HomH(k)(S
m(j), Sn) =

{
0 if m < n or j 2= 0,

Z if m = n and j = 0.

In general, for n = 1 the question is much harder, and in fact unknown. We only
know πA1

1 (S1(i)) in the cases i = 0, 1, 2. For i = 0, πA1

1 (S1(i))(S1) = Z.
For i = 2, as SL2 → A2 − {0} ∼= S1(2) is an A1-weak equivalence, the sphere

S1(2) is an h-space and (by Hurewicz Theorem and Theorem 3.2) πA1

1 (S1(2)) =
HA1

1 (S1(2)) = KMW
2 . In fact the universal A1-covering given by Theorem 3.8 admits

a group structure and we thus get an extension of sheaves of groups (in fact in the
Zariski topology as well)

0 → KMW
2 → S̃L2 → SL2 → 1.

This is a central extension which also arises in the following way. Let B(SL2) de-
note the simplicial classifying space of SL2. Then the canonical cohomology class
&(SL2) ∼= S2(2) → K(KMW

2 , 2) can be uniquely extended to a H•(k)-morphism:

B(SL2) → K(KMW
2 , 2)

because the quotient B(SL2)/&(SL2) is 3-A1-connected. It is well-known that such
an element in H 2(B(SL2); KMW

2 ) corresponds to a central extension of sheaves as
above. It is the universal A1-covering for SL2.

Remark 4.10. 1) In view of [13] it should be interesting to determine the possible
πA1

1 of linear algebraic groups.
2) A. Suslin has computed in [49] the group H2(SL2(k)) for most field k and found

exactly KMW
2 (k) = I 2(k)×i2(k) KM

2 (k). This computation has clearly influenced our
work.

To understand πA1

1 (P1) we use the A1-fibration sequence

A2 − {0} → P1 → P∞ (4.5)
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which, using the long exact sequence of A1-homotopy sheaves, gives a short exact
sequence of the form:

1 → KMW
2 → πA1

1 (P1) → Gm → 1

because KMW
2 = πA1

1 (A2 − {0}) and because P∞ ∼= B(Gm) has only non-trivial πA1

1
equal to Gm. This extension of (sheaves of) groups can be completely explicited [36].
In particular πA1

1 (P1) is non abelian!

The Brouwer degree. Now we can deduce as particular case of Theorem 4.9 what
we announced in the introduction.

Corollary 4.11. For any n ≥ 2, any i > 0, the degree morphism induced by the
morphism (4.4)

HomH(k)(S
n(i), Sn(i)) → KMW

0 (k)

is an isomorphism. As a consequence, the endomorphism ring of the P1-sphere
spectrum S0, which by definition is

πA1

0 (S0) = colimn→∞ HomH(k)(S
n(n), Sn(n)),

is isomorphic to the Grothendieck–Witt ring GW(k) = KMW
0 (k) of k (see [31], [30]

for the case of a perfect field of characteristic 2= 2).

When n = 1, i = 1, S1(1) ∼= P1, using the A1-fibration sequence (4.5) one
may entirely describe HomH(k)(P1, P1) [36]. One may check the morphism P1 →
K(KMW

1 , 1) induces a degree morphism HomH•(k)(P1, P1) → KMW
0 (k), which co-

incides with the one sketched in the introduction, for an actual morphism P1 → P1

which has a regular value. However it is not an isomorphism in general: its kernel is
isomorphic to the subgroup of squares (k×)2 in k×.

Remark 4.12. 1) Transfers. It is well know that, given a finite separable field exten-
sion k ⊂ L together with a primitive element x ∈ L (which generates L|k), one can
define a transfer morphism in H•(k) of the form

trx : P1 → P1 ∧ (Spec(L)+).

This follows from the Purity Theorem of [38] (or the Thom–Pontryagin construction)
applied to the closed immersion Spec(L) → P1 determined by x. Using our compu-
tations and methods, we have been able to show that the induced morphism on HA1

1
does not depend on the choice of x. As a consequence we obtain that for any strictly
A1-invariant sheaf M the strictly A1-invariant sheaf M−1 has canonical transfers mor-
phisms for finite separable extensions between separable extensions of k. This can
be used to simplify the construction of transfers in Milnor K-theory [18], [7].

Beware however that this notion of transfers for finite extension is slightly more
general than Voevodsky’s notion. The sheaf M−1 is automatically a sheaf of modules
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over KMW
0 . Given a finite separable extension k ⊂ L as above, the composition

M−1(k) → M−1(L)
tr→ M−1(k) is precisely the multiplication by the class of L in

KMW
0 (k) (which is its Euler characteristic by the remark below). In characteristic 2= 2,

this is (up to an invertible element) the trace form of L|k in the Grothendieck–Witt
group. In the case of Voevodsky’s structure this composition is just the multiplication
by [L : k] ∈ N.

2) Using the previous computations as well as the classical ideas on Atiyah du-
ality [2] and [16] in A1-algebraic topology5 one may define for any morphism f

(in fact in H(k)) from a smooth projective k-variety X to itself a Lefschetz number
λ(f ) ∈ KMW

0 (k) which satisfies all the usual properties (like the Lefschetz fixed point
formula). In particular the Euler characteristic of X lies in KMW

0 (k).
3) In view of the cartesian diagram (4.2) and our philosophy, the part coming

from the Milnor K-theory is the one compatible with the intuition coming from
the topology of complex points (or motives), and the part coming from the Witt
K-theory is the one compatible with the intuition on the topology of real points.
For any X ∈ Smk the graded ring

⊕
n Hn(X; KMW

n ) maps surjectively to the Chow
ring CH∗(X) = ⊕

n Hn(X; KM
n ) and to the graded ring

⊕
n Hn(X; KW

n ) (how-
ever it does not inject into the product in general: one has a Mayer–Vietoris type
long exact sequence). Given a real embedding there exists a morphism of rings⊕

n Hn(X; KW
n ) → H ∗(X(R); Z). Note that it is known that the Chow ring only

maps to H ∗(X(R); Z/2).

5. Some results on classifying spaces in A1-homotopy theory

Serre’s splitting principle and HA1

0 of some classifying spaces. The Serre’s splitting
principle was stated in [15] only in terms of étale cohomology groups §24 or in terms
of Witt groups §29, but we may easily generalize it to our situation.

Let us briefly recall from [53] and also [38] the notion of geometric classifying
space Bgm(G) for a linear algebraic group G. Choose a closed immersion of k-groups
ρ : G ⊂ GLn. For each r > 0, denote by Ur ⊂ Arn the open subset where G acts
freely (in the étale topology) in the direct sum of r copies of the representation ρ.
Bgm(G) is then the union over r of the quotient k-varieties Ur/G, which are smooth
k-varieties. We proved in [38] that for G a finite group of order prime to char(k)

and X a smooth k-variety:

HomH(k)(X, Bgm(G)) ∼= H 1
ét(X; G).

For n an integer, denote by m = [n
2 ] and by (Z/2)m ⊂ &n the natural embedding.

The following result is a variation on the Splitting principle [15, §24] (using the fact

5These ideas are also present in much more elaborated form in Voevodsky formalism of cross-functors [59],
see also [3].
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that strictly A1-invariant sheaves have also residues [34] as well as [15, Appendix C,
A letter from B. Totaro to J.-P. Serre]):

Theorem 5.1 (Serre’s splitting principle). For any strictly A1-invariant sheaf M the
restriction map

H 0(Bgm(&n); M) → H 0(Bgm((Z/2)m); M)

is injective.

Corollary 5.2. The homomorphism

HA1

0 (Bgm((Z/2)m) → HA1

0 (Bgm(&n))

is an epimorphism.

We observe that Bgm((Z/2)m) is A1-equivalent to a point in characteristic 2, see
[38]. In that case we get HA1

0 (Bgm(&n)) = Z.

In characteristic 2= 2, one has an exact sequence H̃A1

0 (Gm) → H̃A1

0 (Gm) →
H̃A1

0 (Bgm(Z/2)) → 0 where the left morphism is induced by the squaring map (this
comes from the fact that Bgm(Z/2) is the union of the quotients (An − {0})/(Z/2)).
Thus H̃A1

0 (Bgm(Z/2)) = KMW
1 /h = KW

1 and HA1

0 (Bgm(Z/2)) = Z ⊕ KW
1 .

Now the A1-tensor product KW
n ⊗A1 KW

m is KW
n+m. Using this we may compute

HA1

0 (Bgm((Z/2)m)) by the Künneth formula and as the morphism of Theorem 5.1
is invariant under the action of &m we get in characteristic 2= 2 an epimorphism of
sheaves ⊕

i∈{0,...,m}
KW

i ! HA1

0 (Bgm(&n)). (5.1)

Theorem 5.3. In characteristic 2= 2 the epimorphism (5.1) is an isomorphism.

The method is to construct refined Stiefel–Whitney classes Wi : KMW
0 (F ) →

KW
i (F ) lifting the usual ones wi in ki(F ) using the same method as in [26, §3].

The composition HA1

0 (Bgm(&n)) → HA1

0 (Bgm(On))
⊕Wi−−−→ ⊕

i∈{0,...,m} KW
i is the

required left inverse.

Remark 5.4. 1) This result implies the Baratt–Priddy–Quillen Theorem in dimen-
sion 0 (at least in characteristic 2= 2), stating that the morphism induced by the stable
transfers

5n∈NBgm(&n) → QP1S0

where QP1S0 means the colimit of the iterated P1-loop spaces6, is an A1-stable group
completion7, see [37].

6colimnRHom•((P1)∧n, (P1)∧n)
7Voevodsky proved that it is not the usual group completion.
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2) The same computation holds for Suslin singular homology [52] of Bgm(&n):
one gets in characteristic 2= 2: HS

0 (Bgm(&n)) = ⊕
i∈{0,...,m} ki .

3) Using the refined Stiefel–Whitney classes Wi considered previously and [15]
we can also compute in characteristic 2= 2: HA1

0 (Bgm(On)) = ⊕i∈{0,...,n}KW
i and

HS
0 (Bgm(On)) = ⊕i∈{0,...,n}ki . We observe as a consequence that the natural map (of

sets)
H 1

ét(k; On) → HA1

0 (Bgm(On))(k)

is injective (but is not if one consider the Suslin HS
0 instead !). It is a natural question

to ask for which algebraic k-groups the analogous map is injective. It is wrong for
finite groups in general (but the abelian ones). It could be however true for a general
class of algebraic groups G, in connection with a conjecture of Serre addressing the
injectivity of the extension map H 1

ét(k; G) → H 1
ét(L1; G) × H 1

ét(L2; G) when the
finite field extensions L1 and L2 have coprime degrees over k.

A1-homotopy classification of algebraic vector bundles. Lindel has proven in [25]
that for any n and for any smooth affine k-scheme X the projection X × A1 → X

induces a bijection

H 1
Zar(X; GLn) → H 1

Zar(X × A1; GLn)

(after the fundamental cases obtained by Quillen [45] and Suslin [50] on the Serre
problem). As a consequence if one denotes by Grn the “infinite Grassmanian of
n-plans” the natural map Homk(X; Grn) → H 1

Zar(X; GLn) which to a morphism
assigns the pull-back of the universal rank n bundle, induces a map π(X; Grr ) →
H 1

Zar(X; GLn) (where the source means the set of morphisms modulo naive A1-
homotopies); it is moreover easy to show this map is a bijection.

Theorem 5.5 ([35]). For any integer n ≥ 3 and any affine smooth k-scheme X the
obvious map

H 1
Zar(X; GLn) ∼= π(X; Grr ) → HomH(k)(X, Grr )

is a bijection.

For n = 1 this is well-known [38]. The proof of this result relies on the works of
Quillen, Suslin, Lindel cited above and also on the works of Suslin [51] and Vorst [60]
on the generalized Serre problem for the general linear group. In these latter works n

has to be assumed 2= 2. We conjecture however that the statement of the previous
theorem should remain true also for n = 2.

One then observes that one has an A1-fibration sequence of pointed spaces:

An − {0} → Grn−1 → Grn (5.2)

because the simplicial classifying space B(GLm) is A1-equivalent to Grm, for any m,
and because GLn/GLn−1 → An−{0} is an A1-weak equivalence. From Theorem 4.9
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we know that the space An − {0} is (n−2)-connected and that there exists a canonical
isomorphism of sheaves: πA1

n−1(A
n − {0}) ∼= KMW

n .

Euler class and Stably free vector bundles. For a given smooth affine k-scheme X

and an integer n ≥ 4 we may now study the map:

H 1
Zar(X; GLn−1) → H 1

Zar(X; GLn)

of adding the trivial line bundle following the classical method of obstruction theory
in homotopy theory:

Theorem 5.6 (Theory of Euler class, [35]). Assume n ≥ 4. Let X be a smooth affine
k-scheme, together with an oriented algebraic vector bundle ξ of rank n (this means
a vector bundle of rank n and a trivialization of 1n(ξ)). Define its Euler class

e(ξ) ∈ Hn(X; KMW
n ) = Hn(X; πA1

n−1(A
n − {0}))

to be the obstruction class obtained from Theorem 5.5 and the A1-fibration sequence
(5.2). If dimension X ≤ n we have the following equivalence:

ξ split off a trivial line bundle ⇔ e(ξ) = 0 ∈ Hn(X; KMW
n ).

Remark 5.7. 1) In case char(k) 2= 2, the group Hn(X; KMW
n ) coincides with the

oriented Chow group C̃Hn
(X) as defined in [5] and our Euler class coincides also

with the one defined in loc. cit. There is an epimorphism from the Euler class group
of Nori [8] to ours but we do not know whether this is an isomorphism. We observe
that in [8] an analogous result is proven, and our result implies the result in [8]. If
char(k) 2= 2, in [5] the case of rank n = 2 was settled by some other method.

2) If ξ is an algebraic vector bundle of rank n over X, let λξ = 1n(ξ) ∈ Pic(X)

denotes its first Chern class. The obstruction class e(ξ) obtained by the A1-fibration
sequence (5.2) lives now in the corresponding cohomology group Hn(X; KMW

n (λξ ))

obtained by twisting the sheaf KMW
n by λξ .

3) The obvious morphism

Hn(X; KMW
n ) → Hn(X; KM

n ) = CHn(X)

maps the Euler class to the top Chern class cn(ξ). When k is algebraically closed and
dim(X) ≤ n, this homomorphism is an isomorphism. This case of the Theory is due
to Murthy [39].

4) Given a real embedding of the base field k → R, the canonical morphism from
Remark 4.12 3): Hn(X; KMW

n ) → Hn(X(R); Z) maps the Euler class e(ξ) to the
Euler class of the real vector bundle ξ(R).

The long exact sequence in homotopy for the A1-fibration sequence (5.2) (applied
to (n + 1)) also gives the following theorem (compare [9]):
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Theorem 5.8 (Stably free vector bundles, [35]). Assume n ≥ 3. Let X be a smooth
affine k-scheme. The canonical map

HomH(k)(X, An+1 − {0}) / HomH(k)(X, GLn+1) → HomH(k)(X, Grn)

is injective and its image 2n(X) ⊂ H 1
Zar(X; GLn) = HomH(k)(X, Grn) consists

exactly of the set of isomorphism classes of algebraic vector bundles of rank n over
X such that ξ ⊕ θ1 is trivial.

Moreover if the dimension of X is ≤ n, the natural map

HomH(k)(X, An+1 − {0}) → Hn(X; KMW
n+1)

is a bijection and the natural action of HomH(k)(X, GLn+1) factors trough the de-
terminant as an action of O(X)×. In that case, we get a bijection

Hn(X; KMW
n+1)/O(X)× ∼= 2n(X).

Remark 5.9. Using Popescu’s approximation result [43] it is possible, with some
care, to extend the results of this paragraph to affine regular schemes defined over a
field k.

6. Miscellaneous

Proofs of the Milnor conjecture on quadratic forms. UsingVoevodsky’s result [57]
we have produced two proofs of the Milnor conjecture on quadratic forms asserting
that for a field F of characteristic 2= 2 the Milnor epimorphism sF : k∗(F ) → i∗(F )

is an isomorphism.
The first one is only sketched in [29], however it is very striking in the context of A1-

algebraic topology. We consider theAdams spectral sequence based on mod 2 motivic
cohomology “converging” to πA1

∗ (S0). Using an unpublished work of Voevodsky on
the computation of the mod 2 motivic Steenrod algebra we showed that Es,u

2 =
ExtsAk

(H ∗(k; Z/2(∗)), H ∗(k; Z/2(∗))[s +u]) and could compute enough. First Es,u
2

vanishes for u < 0 which is compatible with the A1-connectivity result 3.5, which
implies πA1

u (S0) = 0 for u < 0. More striking is the computation of the column Es,0
2

converging to πA1

0 (S0) = GW(k) (in characteristic 2= 2). We found that E0,0
2 = Z/2

and that for s > 0
Es,0 = Z/2 ⊕ ks(k).

This is exactly the predicted form of the associated graded ring for GW(k) by the
Milnor conjecture. The terms Z/2 are detected (in the bar complex) by the tensor
powers of the Bockstein β⊗s and the mod 2 Milnor K-theory terms are detected by the
tensor powers of the Sq2-operation8 of Voevodsky (Sq2)⊗s . The proof of the Milnor

8This relationship is explained again by “taking” the real points: the operation Sq2 “induces” the Bockstein
operation on mod 2 singular cohomology of real points
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conjecture then amounts to showing that the Adams spectral sequence degenerates
from the E∗,∗

2 -term on the column u = 0.
The degenerescence was obtained by a careful study of the column E∗,1

2 from
which the potential differentials start to reach E∗,0

2 , using the Milnor conjecture on
mod 2 Galois cohomology of fields of characteristic 2 established by Voevodsky
in [57]. The idea was to observe that the groups E∗,1

2 are enough “divisible” by
some suitable mod 2-Milnor K-theory groups. We realized recently in [33] that this
argument could be made much simpler and that everything amounts to proving some
“P1-cellularity” of the sheaves kn in the A1-derived category, which again is given by
the main result of [57].

Global properties of the stable A1-homotopy category. We have unfortunately no
room available to discuss much recent developments in the global properties of the sta-
ble A1-homotopy category. Let us just mention briefly: our work (in preparation) on
the rational stable homotopy category and its close relationship with Voevodsky’s cat-
egory of rational mixed motives. The slice filtration and motivic Atiyah–Hirzebruch’s
type spectral sequence approach due to Voevodsky (see [58] for instance); we must
also mention Levine’s recent work in this direction, for instance [22]. There is also
a work in preparation by Hopkins and the author starting from the Thom spectrum
MGL, where is proven that the “homotopical quotient” MGL/(x1, . . . , xn, . . . ) ob-
tained by killing the generators of the Lazard ring is, in characteristic 0, the motivic
cohomology spectrum of Voevodsky. This gives an Atiyah–Hirzebruch spectral se-
quence for MGL (and also K-theory) and gives an other (purely homotopical) proof
of the general degree formula of [24], [23].

We must mention Voevodsky’s formalism of cross functors [59] and Ayoub’s
work [3] in which is established the analogue of the theory of vanishing cycles in
the context of Voevodsky’s triangulated category of motives.

From A1-homotopy to algebraic geometry? We conclude this paper by an ob-
servation. All the tools and notions concerning the classical approach to surgery in
classical differential topology seem now available in A1-algebraic topology: degree,
homology, fundamental groups, cobordism groups [24], [23], Poincaré complexes,
classification of vector bundles, etc. We also have natural candidates of surgery groups
using Balmer’s Witt groups [4] of some triangulated category of πA1

1 -modules. Why
not then dreaming about a surgery approach also for smooth projective k-varieties? Of
course there is no obvious analogues for surgery. There is also a major new difficulty:
we have observed that even the simplest varieties like the projective spaces are never
simply connected. This fact obstructs any hope of “h-cobordism” theorem9, but now
we also understand the reason: the A1-fundamental group of a pointed projective
smooth k-scheme is almost never trivial. A major advance would then be to find
the analogue of the “s-cobordism” theorem, the generalization of the h-cobordism
theorem in the presence of π1.

9Marc Levine indeed produced a counter-example
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