Exercise 12.1 (Acyclic spaces). Recall that a topological space X is acyclic if $\tilde{H}_{*}(X)=$ 0 . There exist acyclic spaces with nontrivial π_{1}, an example being the open subset of \mathbb{R}^{3} which is the complement of the Alexander horned ball. In this exercise, we will construct a more concrete example.

Let X be a 2-dimensional CW complex obtained from $S^{1} \vee S^{1}$ be attaching two 2cells whose attaching maps $S^{1} \rightarrow S^{1} \vee S^{1}$ are representatives of the elements $a^{5} b^{-3}$ and $b^{3}(a b)^{-2}$ in $\pi_{1}\left(S^{1} \vee S^{1}\right)=\langle a, b\rangle$.
(a) By computing cellular chains, show that X is acyclic.
(b) Show that $\pi_{1}(X)$ is a nontrivial group.

Hint. By Exercise 4.1, we have $\pi_{1}(X) \cong\left\langle a, b \mid a^{5} b^{-3}, b^{3}(a b)^{-2}\right\rangle$. To see that the latter group is nontrivial, observe that it acts on a regular dodecahedron, with a (resp. b) a rotation about an axis passing through the center of a face (resp. through a vertex of that face).

Exercise 12.2 (Homology and cohomology of the Klein bottle). Let K be the Klein bottle. Recall that

$$
H_{i}(K, \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} \oplus \mathbb{Z} / 2 & \text { if } i=1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Use the universal coefficient theorem to compute

$$
H_{*}\left(K, \mathbb{Z} / 2^{r}\right), H_{*}(K, \mathbb{Z} / s), H^{*}(K, \mathbb{Z}), H^{*}\left(K, \mathbb{Z} / 2^{r}\right), H^{*}(K, \mathbb{Z} / s)
$$

for any $r \geq 1$ and s odd.
(b) Use the Künneth theorem to compute $H_{*}(K \times K, \mathbb{Z})$.

Exercise 12.3 (The general Borsuk-Ulam theorem).
(a) Let $p: E \rightarrow B$ be a covering map of degree 2 . Show that there is a short exact sequence of chain complexes

$$
0 \rightarrow C_{*}(B, \mathbb{Z} / 2) \xrightarrow{\tau} C_{*}(E, \mathbb{Z} / 2) \xrightarrow{p_{*}} C_{*}(B, \mathbb{Z} / 2) \rightarrow 0 .
$$

What goes wrong if you replace $\mathbb{Z} / 2$ by \mathbb{Z} ?
(b) Let $n \geq 1$. A continuous map $f: S^{n} \rightarrow S^{n}$ is called odd if $f(-x)=-f(x)$ for all $x \in S^{n}$. Show that an odd map has odd degree.
Hint. Use (a) for the covering $p: S^{n} \rightarrow \mathbb{R}^{n}$.
(c) Deduce the general Borsuk-Ulam theorem: for any continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$, there exists $x \in S^{n}$ such that $f(x)=f(-x)$ (see Exercise 6.1).

Exercise 12.4 (Chain complexes of free modules). Let R be a principal ideal domain. A chain complex of R-modules C_{*} is called free if each C_{n} is free.
(a) Let C_{*} be a free chain complex of R-modules. Show that C_{*} is a direct sum of complexes that are concentrated in two consecutive degrees and with injective differential.
Hint. Consider the short exact sequences $0 \rightarrow Z_{n} \rightarrow C_{n} \xrightarrow{d} B_{n-1} \rightarrow 0$.
(b) Let C_{*} and D_{*} be chain complexes of R-modules with C_{*} free. Show that every map of graded R-modules $H_{*}\left(C_{*}\right) \rightarrow H_{*}\left(D_{*}\right)$ lifts to a map of chain complexes $C_{*} \rightarrow D_{*}$. Moreover, show that any two such lifts are chain homotopic.
Hint. By (a), we can reduce to the case where C_{*} is $C_{1} \hookrightarrow C_{0}$.
(c) Let C_{*} and D_{*} be chain complexes of free R-modules with isomorphic homology modules. Show that C_{*} and D_{*} are chain homotopy equivalent (i.e., there exists chain maps $f: C_{*} \rightarrow D_{*}$ and $g: D_{*} \rightarrow C_{*}$ that are inverse to one another up to chain homotopy).

