WiSe 23/24 Algebraic Topology I
 Exercise sheet 13 (due February 2)

Exercise 13.1 (Bockstein homomorphisms). Let m be a positive integer and X a topological space. The short exact sequence of abelian groups

$$
0 \rightarrow \mathbb{Z} / m \rightarrow \mathbb{Z} / m^{2} \rightarrow \mathbb{Z} / m \rightarrow 0
$$

induces upon applying $\operatorname{Hom}\left(C_{*}(X),-\right)$ a short exact sequence of chain complexes

$$
0 \rightarrow C^{*}(X, \mathbb{Z} / m) \rightarrow C^{*}\left(X, \mathbb{Z} / m^{2}\right) \rightarrow C^{*}(X, \mathbb{Z} / m) \rightarrow 0
$$

The mod m Bockstein homomorphism $\beta: H^{i}(X, \mathbb{Z} / m) \rightarrow H^{i+1}(X, \mathbb{Z} / m)$ is the connecting homomorphism in the associated long exact sequence.
(a) Show that β factors as

$$
H^{i}(X, \mathbb{Z} / m) \xrightarrow{\tilde{\beta}} H^{i+1}(X, \mathbb{Z}) \rightarrow H^{i+1}(X, \mathbb{Z} / m),
$$

for some map $\tilde{\beta}$. Deduce that $\beta^{2}=0$.
Hint. Consider the short exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow \mathbb{Z} / m \rightarrow 0
$$

which maps to the one above.
(b) Determine the mod 2 Bockstein homomorphisms on $H^{*}\left(\mathbb{R}^{n}, \mathbb{Z} / 2\right)$.

Hint. First compute $H^{*}\left(\mathbb{R} \mathbb{P}^{n}, \mathbb{Z} / 2\right)$ and $H^{*}\left(\mathbb{R}^{n}, \mathbb{Z}\right)$.

Exercise 13.2 (Vanishing of cup products). Let X be a topological space and let R be a ring.
(a) Let $A, B \subset X$ be open subspaces. Using the Alexander-Whitney map, construct a refined cup product

$$
H^{p}(X, A, R) \otimes H^{q}(X, B, R) \rightarrow H^{p+q}(X, A \cup B, R)
$$

Hint. Recall the excision quasi-isomorphism $C_{*}^{\{A, B\}}(A \cup B) \hookrightarrow C_{*}(A \cup B)$.
(b) Suppose that X admits an open covering by n contractible subspaces (e.g., $X=$ $\mathbb{R P}^{n-1}$ or $\left.X=\mathbb{C P}^{n-1}\right)$. Show that the product of any n elements of positive degree in $H^{*}(X, R)$ is zero.
(c) Deduce that the cohomology ring $H^{*}(\Sigma X, R)$ is a square-zero extension of R.
(d) Compute explicitly the cohomology rings $H^{*}\left(S^{n}\right)$ for all $n \geq-1$.

Exercise 13.3 (Künneth formula in cohomology). Let R be a principal ideal domain.
(a) Let X and Y be topological spaces such that all homology groups $H_{n}(X, R)$ and $H_{n}(Y, R)$ are finitely generated free R-modules (for example, X and Y are finite CW complexes and R is a field). Show that there is a canonical isomorphism

$$
H^{n}(X \times Y, R) \cong \bigoplus_{p+q=n} H^{p}(X, R) \otimes_{R} H^{q}(Y, R)
$$

(b) Let $n_{1}, \ldots, n_{k} \in \mathbb{N}$. Show that there is an isomorphism of graded-commutative rings

$$
H^{*}\left(S^{n_{1}} \times \cdots \times S^{n_{k}}, R\right) \cong \Lambda_{R}\left(x_{1}, \ldots, x_{k}\right),
$$

where the right-hand side is the exterior algebra with generators x_{i} in degree n_{i}.
Hint. Use Exercise 13.1(d) to define a ring homomorphism from the right-hand side to the left-hand side.

