WISE 23/24 ALGEBRAIC TOPOLOGY I EXERCISE SHEET 3 (DUE NOVEMBER 10)

Exercise 3.1 (π_1 of a filtered union). Let X be a topological space and let $(X_i)_{i \in I}$ be a filtered family of subspaces, i.e., (I, \leq) is a filtered partially ordered set and $X_i \subset X_j$ whenever $i \leq j$. Suppose that X is the union of the interiors of the X_i 's:

$$X = \bigcup_i X_i^{\circ}.$$

- (a) Show that $\Pi_1(X) \cong \operatorname{colim}_{i \in I} \Pi_1(X_i)$.
- (b) If $x \in \bigcap_{i \in I} X_i$, deduce that $\pi_1(X, x) \cong \operatorname{colim}_{i \in I} \pi_1(X_i, x)$.

Exercise 3.2 (π_1 of a wedge). If $(X_i, x_i)_{i \in I}$ is a collection of pointed spaces, we denote by $\bigvee_{i \in I} (X_i, x_i)$ their coproduct in Top_* , also called their *wedge*, which is explicitly the quotient space

$$\bigvee_{i \in I} (X_i, x_i) = \prod_{i \in I} X_i / \prod_{i \in I} \{x_i\}.$$

A pointed topological space (X, x) is called *well-pointed* if there exists a neighborhood U of x such that the inclusion $U \hookrightarrow X$ is homotopic rel $\{x\}$ to the constant map with value x. Show that the functor $\pi_1 \colon \mathsf{Top}_* \to \mathsf{Grp}$ preserves coproducts of well-pointed spaces.

Hint. For finite coproducts, use the Seifert–van Kampen theorem. Deduce the general case by a judicious use of Exercise 3.1(b).

Remark. In the literature, "well-pointed" usually refers to the condition that $X \vee I$ is a retract of $X \times I$, which is stronger than the above.

Exercise 3.3 (π_1 of the projective plane). Use the Seifert–van Kampen theorem to compute $\pi_1(\mathbb{RP}^2, *)$.

Hint. The description of \mathbb{RP}^2 from Exercise 1.2 may be useful.

Exercise 3.4 (Higher homotopy groups are abelian). The goal of this exercise is to prove that the homotopy groups π_n are abelian for $n \ge 2$.

(a) Let S be a set equipped with two binary operations * and \circ . Suppose that they have a common neutral element $e \in S$ and satisfy the interchange law

$$(a * b) \circ (c * d) = (a \circ c) * (b \circ d).$$

Show that $* = \circ$ and that a * b = b * a. This is called the *Eckmann-Hilton argument*.

- (b) Let (X, e) be a pointed topological space and $\mu: X \times X \to X$ a pointed map such that $\mu(e, -) \simeq_* \operatorname{id}_X \simeq_* \mu(-, e)$. Show that the group $\pi_1(X, e)$ is abelian.
- (c) Recall that $\pi_n(X, x)$ is the set of pointed homotopy classes of map $I^n/\partial I^n \to (X, x)$. For each $1 \leq i \leq n$, there is a group operation $*_i$ on $\pi_n(X, x)$ induced by concatenating in the *i*th direction:

$$(\alpha *_i \beta)(s_1, \dots, s_n) = \begin{cases} \alpha(s_1, \dots, 2s_i, \dots, s_n) & \text{if } s_i \in [0, 1/2] \\ \beta(s_1, \dots, 2s_i - 1, \dots, s_n) & \text{if } s_i \in [1/2, 1] \end{cases}$$

If $n \geq 2$, show that all these group operations on $\pi_n(X, x)$ coincide and are abelian.