WISE 23/24 ALGEBRAIC TOPOLOGY I EXERCISE SHEET 4 (DUE NOVEMBER 17)

Exercise 4.1 (π_1 of cell attachments). Let X be a topological space. One says that Y is *obtained from* X by attaching n-cells if there are maps $\phi_i \colon S^{n-1} \to X$ and a pushout square

The maps ϕ_i are called the *attaching maps*.

Suppose X path-connected and let $x_0 \in X$.

- (a) Suppose that Y is obtained from X by attaching n-cells for some $n \ge 3$. Show that $\pi_1(X, x_0) \to \pi_1(Y, x_0)$ is an isomorphism.
- (b) Suppose that Y is obtained from X by attaching 2-cells. For each attaching map $\phi_i \colon S^1 \to X$, choose a path γ_i from x_0 to $\phi_i(1)$, and let $N \subset \pi_1(X, x_0)$ be the normal subgroup generated by the loops $\gamma_i * \phi_i * \bar{\gamma}_i$ for $i \in I$. Show that $\pi_1(Y, x_0) \cong \pi_1(X, x_0)/N$.
- (c) Prove that the functor $\pi_1: \operatorname{Top}_* \to \operatorname{Grp}$ is essentially surjective. *Hint.* Use (b) and Exercise 3.2.

Exercise 4.2 (π_1 of surfaces). Recall that every closed connected surface is homeomorphic to Σ_g for some $g \ge 0$ or to N_h for some $h \ge 1$, where Σ_g (resp. N_h) is obtained from a sphere by attaching g copies of the torus $S^1 \times S^1$ (resp. h copies of the real projective plane \mathbb{RP}^2).

For each of the following surfaces, give a presentation of the fundamental group and compute its abelianization as a direct sum of groups of the form \mathbb{Z}/n (recall that the abelianization of a group G is the abelian group $G^{ab} = G/[G, G]$).

- (a) The genus 2 surface Σ_2 .
- (b) The Klein bottle N_2 .
- (c) (Optional) The remaining closed surfaces Σ_q and N_h for $g, h \geq 3$.

Exercise 4.3 (The Brouwer fixed-point theorem in low dimensions). The Brouwer fixed-point theorem states that every continuous map $f: D^n \to D^n$ has a fixed point. Prove the Brouwer fixed-point theorem for n = 1, 2.

Hint. Suppose there exists $f: D^n \to D^n$ with no fixed points. For $x \in D^n$, let r(x) be the unique point on S^{n-1} such that f(x), x and r(x) are aligned (in this order). Show that r is a continuous retraction of the inclusion $i: S^{n-1} \hookrightarrow D^n$ and derive a contradiction.

Exercise 4.4 (Suspension). If X is a topological space, its suspension ΣX is defined by the pushout square

$$\begin{array}{cccc} X \times \{0,1\} & \longrightarrow X \times I \\ & & \downarrow & & \downarrow \\ \{0,1\} & \longrightarrow \Sigma X. \end{array}$$

- (a) Show that there is a homeomorphism $\Sigma S^n \cong S^{n+1}$ for all $n \ge -1$.
- (b) Show that X is path-connected if and only if ΣX is simply path-connected.