WiSe 23/24 Algebraic Topology I

Exercise sheet 6 (due December 1)

Exercise 6.1 (The Borsuk-Ulam theorem in low dimensions). The Borsuk-Ulam theorem states that if $f: S^{n} \rightarrow \mathbb{R}^{n}$ is continuous, then there exists $x \in S^{n}$ such that $f(x)=f(-x)$. Prove the Borsuk-Ulam theorem for $n=1,2$.

Hint. Let $g(x)=f(x)-f(-x)$, and suppose g has no zeros. Then there is a commutative square

where the vertical maps are coverings. Show that the pullback of p to $\mathbb{R} \mathbb{P}^{2}$ is trivial by computing its monodromy.

Exercise 6.2 (Geometric realization via nondegenerate simplices). If X is a simplicial set, denote by $X_{n}^{\text {nd }} \subset X_{n}$ the subset of nondegenerate n-simplices.
(a) Show that, for any simplex x of X, there exists a unique nondegenerate simplex x^{\sharp} and a unique sequence $i_{1} \leq \cdots \leq i_{k}$ such that $x=s_{i_{1}} \ldots s_{i_{k}}\left(x^{\sharp}\right)$.
(b) Show that there is a homeomorphism

$$
|X| \cong\left(\coprod_{n \geq 0} X_{n}^{\mathrm{nd}} \times \Delta^{n}\right) / \sim
$$

where \sim is the equivalence relation generated by $\left(x, \delta_{i}(u)\right) \sim\left(d_{i}(x)^{\sharp}, \sigma_{i_{k}} \ldots \sigma_{i_{1}}(u)\right)$, where $d_{i}(x)=s_{i_{1}} \ldots s_{i_{k}}\left(d_{i}(x)^{\sharp}\right)$.
Hint. There is an obvious map from the right-hand side to the left-hand side. Use (a) to construct a map in the other direction.

Remark. If the face maps of X preserve nondegenerate simplices, then the latter form a semisimplicial subset $X^{\text {nd }}$ and the homeomorphism (b) becomes $|X| \cong\left\|X^{\text {nd }}\right\|$.

Exercise 6.3 (Homology of semisimplicial sets). For the following semisimplicial sets X, identify the geometric realization $\|X\|$ and compute the homology groups $H_{*}(X, \mathbb{Z})$ (if X_{n} is not specified, it is empty):
(a) $X_{0}=\{v\}, X_{1}=\{e\}$.
(b) $X_{0}=\{v\}, X_{1}=\left\{e_{1}, e_{2}\right\}$.
(c) $X_{0}=\left\{v_{1}, v_{2}\right\}, X_{1}=\left\{a, b, c_{1}, c_{2}\right\}, X_{2}=\{s, t\}$, $d_{0}(a)=d_{0}(b)=v_{2}, d_{1}(a)=d_{1}(b)=v_{1}, d_{0}\left(c_{1}\right)=d_{1}\left(c_{1}\right)=v_{1}, d_{0}\left(c_{2}\right)=d_{1}\left(c_{2}\right)=v_{2}$, $d_{0,1,2}(s)=c_{2}, b, a, d_{0,1,2}(t)=b, a, c_{1}$
(d) $X_{0}=\{v\}, X_{1}=\{a, b, c\}, X_{2}=\{s, t\}$, $d_{0,1,2}(s)=a, c, b, d_{0,1,2}(t)=b, c, a$

Exercise 6.4 (Chain homotopy and semisimplicial homotopy). Let C_{*} and D_{*} be chain complexes of abelian groups and let $f, g: C_{*} \rightarrow D_{*}$ be chain maps. A chain homotopy from f to g is a collection of morphisms $h_{n}: C_{n} \rightarrow D_{n+1}$ such that

$$
f_{n}-g_{n}=d \circ h_{n}+h_{n-1} \circ d
$$

(a) Suppose there exists a chain homotopy from f to g. Show that f and g induce the same map $H_{*}\left(C_{*}\right) \rightarrow H_{*}\left(D_{*}\right)$ on homology.

Let $f, g: X \rightarrow Y$ be morphisms of semisimplicial objects in some category. A semisimplicial homotopy from f to g is a collection of morphisms $h_{n, i}: X_{n} \rightarrow Y_{n+1}$ for $0 \leq i \leq n$ such that

$$
\begin{aligned}
d_{0} h_{n, 0} & =f_{n} \\
d_{n+1} h_{n, n} & =g_{n} \\
d_{i} h_{n, j} & = \begin{cases}h_{n-1, j-1} d_{i} & \text { if } i<j, \\
d_{i} h_{n, j-1} & \text { if } i=j \neq 0, \\
h_{n-1, j} d_{i-1} & \text { if } i>j+1 .\end{cases}
\end{aligned}
$$

(b) Suppose $f, g: A \rightarrow B$ are morphisms of semisimplicial abelian groups. Show that a semisimplicial homotopy from f to g induces a chain homotopy between the induced chain maps of Moore complexes $f, g: C_{*}(A) \rightarrow C_{*}(B)$.
Hint. Let $h_{n}=\sum_{i=0}^{n}(-1)^{i} h_{n, i}$.
(c) Let $f, g: X \rightarrow Y$ be morphisms of semisimplicial sets and suppose there is a semisimplicial homotopy from f to g. Using (a) and (b), show that f and g induce the same map $H_{*}(X, A) \rightarrow H_{*}(Y, A)$ on homology with coefficients in any abelian group A.

