WiSe 23/24 Algebraic Topology I

Exercise sheet 8 (Due December 15)

Exercise 8.1 (Abstract Mayer-Vietoris sequence). Consider a commutative diagram of abelian groups
where the rows are long exact sequences and c_{n} is an isomorphism for all $n \in \mathbb{Z}$. Verify that the associated "abstract Mayer-Vietoris" sequence

$$
\cdots \longrightarrow A_{n} \xrightarrow{\left(a_{n},-f_{n}\right)} A_{n}^{\prime} \oplus B_{n} \xrightarrow{\left(f_{n}^{\prime}, b_{n}\right)} B_{n}^{\prime} \xrightarrow{\partial_{n}^{\mathrm{MV}}} A_{n-1} \longrightarrow \cdots
$$

is exact, where $\partial_{n}^{\mathrm{MV}}=\partial_{n} \circ c_{n}^{-1} \circ g_{n}^{\prime}$.
Exercise 8.2 (Nerve of natural transformations). Let C and D be small categories, $f, g: C \rightarrow D$ functors, and $\varphi: f \rightarrow g$ a natural transformation.
(a) Show that φ induces a homotopy between the morphisms of simplicial sets

$$
\mathrm{N}(f), \mathrm{N}(g): \mathrm{N}(C) \rightarrow \mathrm{N}(D)
$$

and of spaces

$$
|\mathrm{N}(f)|,|\mathrm{N}(g)|:|\mathrm{N}(C)| \rightarrow|\mathrm{N}(D)| .
$$

Hint. The natural transformation φ can be viewed as a functor $C \times[1] \rightarrow D$.
(b) Deduce that $|\mathrm{N}(-)|$ takes equivalences of categories to homotopy equivalences of spaces.
(c) Suppose that C has either an initial object or a final object. Show that $|\mathrm{N}(C)|$ is contractible.
(d) If Γ is a groupoid, show that the functor $\varphi_{\Gamma}: \Gamma \rightarrow \Pi_{1}(|\mathrm{~N}(\Gamma)|)$ from Exercise 7.2(a) is an equivalence.
Hint. Use (b) and Exercise 7.2(b).

Exercise 8.3 (Homology of wedges). Let $\left(X_{\alpha}\right)_{\alpha \in A}$ be a family of topological spaces with base points $x_{\alpha} \in X_{\alpha}$. Recall that their coproduct in Top $_{*}$ is given by the wedge sum

$$
\bigvee_{\alpha \in A} X_{\alpha}=\coprod_{\alpha \in A} X_{\alpha} / \coprod_{\alpha \in A}\left\{x_{\alpha}\right\} .
$$

Let $i_{\beta}: X_{\beta} \hookrightarrow \bigvee_{\alpha \in A} X_{\alpha}$ be the canonical map and let $p_{\beta}: \bigvee_{\alpha \in A} X_{\alpha} \rightarrow X_{\beta}$ be the pointed map such that $p_{\beta} \circ i_{\alpha}$ is the identity on X_{β} if $\alpha=\beta$ and is constant otherwise.
(a) If A is finite, show that the pointed map

$$
\bigvee_{\alpha \in A} X_{\alpha} \rightarrow \prod_{\alpha \in A} X_{\alpha}
$$

induced by the maps $p_{\beta} \circ i_{\alpha}: X_{\alpha} \rightarrow X_{\beta}$ is a homeomorphism onto its image.
(b) Suppose that, for every $\alpha \in A,\left\{x_{\alpha}\right\}$ is closed in X_{α} and is a neighborhood deformation retract, i.e., there exists a neighborhood N_{α} of x_{α} such that id $N_{N_{\alpha}}$ is homotopic rel $\left\{x_{\alpha}\right\}$ to the constant map. Show that there an isomorphism

$$
\tilde{H}_{*}\left(\bigvee_{\alpha \in A} X_{\alpha}\right) \cong \bigoplus_{\alpha \in A} \tilde{H}_{*}\left(X_{\alpha}\right)
$$

such that:

- the inclusion $\tilde{H}_{*}\left(X_{\beta}\right) \hookrightarrow \bigoplus_{\alpha \in A} \tilde{H}_{*}\left(X_{\alpha}\right)$ is identified with $\left(i_{\beta}\right)_{*}$,
- the projection $\bigoplus_{\alpha \in A} \tilde{H}_{*}\left(X_{\alpha}\right) \rightarrow \tilde{H}_{*}\left(X_{\beta}\right)$ is identified with $\left(p_{\beta}\right)_{*}$.

Exercise 8.4 (Pinch maps). Let $n \geq 1$. We consider the n-sphere $S^{n} \subset \mathbb{R}^{n+1}$ as a pointed topological space with base point $e_{1}=(1,0, \ldots, 0)$. Let

$$
i_{1}, i_{2}: S^{n} \hookrightarrow S^{n} \vee S^{n}
$$

be the summand inclusions and

$$
p_{1}, p_{2}: S^{n} \vee S^{n} \rightarrow S^{n}
$$

the projections, as in Exercise 8.3. The fold map

$$
\text { fold : } S^{n} \vee S^{n} \rightarrow S^{n}
$$

is the unique pointed map such that fold $\circ i_{1}=\mathrm{id}_{S^{n}}$ and fold $\circ i_{2}=\mathrm{id}_{S^{n}}$.
(a) Construct a pointed map

$$
\text { pinch: } S^{n} \rightarrow S^{n} \vee S^{n}
$$

such that $p_{1} \circ$ pinch $\simeq_{*} \operatorname{id}_{S^{n}}$ and $p_{2} \circ$ pinch $\simeq_{*} \operatorname{id}_{S^{n}}$.
(b) Let $f, g: S^{n} \rightarrow S^{n}$ be pointed maps. Show that

$$
f_{*}+g_{*}=(\text { fold } \circ(f \vee g) \circ \operatorname{pinch})_{*}: H_{*}\left(S^{n}\right) \rightarrow H_{*}\left(S^{n}\right)
$$

Hint. This is a formal consequence of (a) and Exercise 8.3(b).

Remark. The pinch map makes S^{n} into a cogroup object in the pointed homotopy category hTop_{*}, which is commutative if $n \geq 2$. This induces the group structure on the homotopy groups of a pointed space.

