WISE 23/24 ALGEBRAIC TOPOLOGY I EXERCISE SHEET 8 (DUE DECEMBER 15)

Exercise 8.1 (Abstract Mayer–Vietoris sequence). Consider a commutative diagram of abelian groups

$$\cdots \longrightarrow A_n \xrightarrow{f_n} B_n \xrightarrow{g_n} C_n \xrightarrow{\partial_n} A_{n-1} \longrightarrow \cdots$$

$$\downarrow^{a_n} \qquad \downarrow^{b_n} \cong \downarrow^{c_n} \qquad \downarrow^{a_{n-1}}$$

$$\cdots \longrightarrow A'_n \xrightarrow{f'_n} B'_n \xrightarrow{g'_n} C'_n \xrightarrow{\partial'_n} A'_{n-1} \longrightarrow \cdots$$

where the rows are long exact sequences and c_n is an isomorphism for all $n \in \mathbb{Z}$. Verify that the associated "abstract Mayer–Vietoris" sequence

$$\cdots \longrightarrow A_n \xrightarrow{(a_n, -f_n)} A'_n \oplus B_n \xrightarrow{(f'_n, b_n)} B'_n \xrightarrow{\partial_n^{\mathrm{MV}}} A_{n-1} \longrightarrow \cdots$$

is exact, where $\partial_n^{\rm MV} = \partial_n \circ c_n^{-1} \circ g_n'.$

Exercise 8.2 (Nerve of natural transformations). Let C and D be small categories, $f, g: C \to D$ functors, and $\varphi: f \to g$ a natural transformation.

(a) Show that φ induces a homotopy between the morphisms of simplicial sets

$$N(f), N(g): N(C) \to N(D)$$

and of spaces

$$|\mathcal{N}(f)|, \ |\mathcal{N}(g)| \colon |\mathcal{N}(C)| \to |\mathcal{N}(D)|.$$

Hint. The natural transformation φ can be viewed as a functor $C \times [1] \to D$.

- (b) Deduce that |N(-)| takes equivalences of categories to homotopy equivalences of spaces.
- (c) Suppose that C has either an initial object or a final object. Show that |N(C)| is contractible.
- (d) If Γ is a groupoid, show that the functor $\varphi_{\Gamma} \colon \Gamma \to \Pi_1(|N(\Gamma)|)$ from Exercise 7.2(a) is an equivalence.

Hint. Use (b) and Exercise 7.2(b).

Exercise 8.3 (Homology of wedges). Let $(X_{\alpha})_{\alpha \in A}$ be a family of topological spaces with base points $x_{\alpha} \in X_{\alpha}$. Recall that their coproduct in Top_* is given by the wedge sum

$$\bigvee_{\alpha \in A} X_{\alpha} = \prod_{\alpha \in A} X_{\alpha} \Big/ \prod_{\alpha \in A} \{x_{\alpha}\}.$$

Let $i_{\beta} \colon X_{\beta} \hookrightarrow \bigvee_{\alpha \in A} X_{\alpha}$ be the canonical map and let $p_{\beta} \colon \bigvee_{\alpha \in A} X_{\alpha} \twoheadrightarrow X_{\beta}$ be the pointed map such that $p_{\beta} \circ i_{\alpha}$ is the identity on X_{β} if $\alpha = \beta$ and is constant otherwise.

(a) If A is finite, show that the pointed map

$$\bigvee_{\alpha \in A} X_{\alpha} \to \prod_{\alpha \in A} X_{\alpha}$$

induced by the maps $p_{\beta} \circ i_{\alpha} \colon X_{\alpha} \to X_{\beta}$ is a homeomorphism onto its image.

(b) Suppose that, for every $\alpha \in A$, $\{x_{\alpha}\}$ is closed in X_{α} and is a neighborhood deformation retract, i.e., there exists a neighborhood N_{α} of x_{α} such that $\mathrm{id}_{N_{\alpha}}$ is homotopic rel $\{x_{\alpha}\}$ to the constant map. Show that there an isomorphism

$$\tilde{H}_*\left(\bigvee_{\alpha\in A}X_\alpha\right)\cong\bigoplus_{\alpha\in A}\tilde{H}_*(X_\alpha)$$

such that:

- the inclusion $\tilde{H}_*(X_\beta) \hookrightarrow \bigoplus_{\alpha \in A} \tilde{H}_*(X_\alpha)$ is identified with $(i_\beta)_*$,
- the projection $\bigoplus_{\alpha \in A} \tilde{H}_*(X_\alpha) \twoheadrightarrow \tilde{H}_*(X_\beta)$ is identified with $(p_\beta)_*$.

Exercise 8.4 (Pinch maps). Let $n \ge 1$. We consider the *n*-sphere $S^n \subset \mathbb{R}^{n+1}$ as a pointed topological space with base point $e_1 = (1, 0, \ldots, 0)$. Let

$$i_1, i_2 \colon S^n \hookrightarrow S^n \lor S^n$$

be the summand inclusions and

$$p_1, p_2 \colon S^n \lor S^n \to S^n$$

the projections, as in Exercise 8.3. The fold map

fold:
$$S^n \vee S^n \to S^n$$

is the unique pointed map such that fold $\circ i_1 = \mathrm{id}_{S^n}$ and fold $\circ i_2 = \mathrm{id}_{S^n}$.

(a) Construct a pointed map

pinch:
$$S^n \to S^n \lor S^n$$

such that $p_1 \circ \text{pinch} \simeq_* \text{id}_{S^n}$ and $p_2 \circ \text{pinch} \simeq_* \text{id}_{S^n}$.

(b) Let $f, g: S^n \to S^n$ be pointed maps. Show that

$$f_* + g_* = (\text{fold} \circ (f \lor g) \circ \text{pinch})_* \colon H_*(S^n) \to H_*(S^n).$$

Hint. This is a formal consequence of (a) and Exercise 8.3(b).

Remark. The pinch map makes S^n into a cogroup object in the pointed homotopy category $hTop_*$, which is commutative if $n \ge 2$. This induces the group structure on the homotopy groups of a pointed space.