WISE 23/24 ALGEBRAIC TOPOLOGY I EXERCISE SHEET 9 (DUE DECEMBER 22)

Exercise 9.1 (Invariance of domain).

- (a) Compute $H_*(\mathbb{R}^n, \mathbb{R}^n 0)$.
- (b) Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be nonempty opens such that $U \cong V$. Show that n = m.

Exercise 9.2 (Homology of surfaces).

- (a) Compute the homology with integral coefficients of the surfaces Σ_q and N_h .
 - *Hint.* Use the polygonal presentation of these surfaces and the Mayer–Vietoris sequence.
- (b) Compute $H_*(\mathbb{RP}^2, A)$ for every abelian group A.

Exercise 9.3 (Homology of products of spheres). Compute $H_*(S^m \times S^n)$ for all m, n.

Exercise 9.4 (The Hurewicz map). Let (X, x_0) be a pointed topological space and $n \ge 1$. Choose a generator $\sigma \in H_n(S^n, \mathbb{Z}) \cong \mathbb{Z}$. The Hurewicz map

$$h_n \colon \pi_n(X, x_0) \to H_n(X, \mathbb{Z})$$

sends a pointed homotopy class $[f: (S^n, *) \to (X, x_0)]_*$ to $f_*(\sigma) \in H_n(X, \mathbb{Z})$.

- (a) Show that h_n is a group homomorphism.
 Hint. Express the group structure on π_n(X, x₀) using the pinch map on Sⁿ; see Exercise 8.4.
- (b) If X is path-connected, show that h_1 is surjective.

Remark. The *Hurewicz theorem* states further that h_1 exhibits $H_1(X, \mathbb{Z})$ as the abelianization of $\pi_1(X, x_0)$.