

WiSE 25/26 ALGEBRAIC GEOMETRY I
EXERCISE SHEET 11 (DUE JANUARY 15)

Exercise 11.1. (4 points) Let P be a complete totally ordered set (i.e., a totally ordered set in which every subset admits a supremum).

- (a) Show that P is a locale.
- (b) Describe the space of points of P , and deduce that P is spatial.

Hint. Recall that points are given by completely prime filters $F \subset P$.

Exercise 11.2. (6 points) Let T be a topological space. Recall that the unit map $\eta_T: T \rightarrow \text{Pt}(\text{Open}(T))$, which is the initial map from T to a sober space, is given by

$$T \rightarrow \{\text{irreducible closed subsets of } T\}, \quad t \mapsto \overline{\{t\}}.$$

- (a) Show that η_T is injective if and only if T is a Kolmogorov space (i.e., no two points have exactly the same collection of neighborhoods).
- (b) Let k be a field and let A be a finitely generated k -algebra. Show that every radical ideal $I \subset A$ is an intersection of maximal ideals.

Hint. First reduce to the case $A = k[x_1, \dots, x_n]$. Suppose f belongs to every maximal ideal containing I . Let \bar{k} be an algebraic closure of k . For every zero $a = (a_1, \dots, a_n) \in V(I)(\bar{k})$, the k -subalgebra $k[a_1, \dots, a_n] \subset \bar{k}$ is a field, since the a_i 's are algebraic over k . Hence, the polynomials vanishing on a form a maximal ideal of $k[x_1, \dots, x_n]$, which contains I . Conclude that $f \in I$ using Hilbert's Nullstellensatz.

- (c) Let k be a field and let A be a finitely generated k -algebra. Let $\text{Max}(A) \subset \text{Prim}(A)$ be the subspace of maximal ideals (also called the *maximal spectrum* of A). Show that the inclusion $\text{Max}(A) \hookrightarrow \text{Prim}(A)$ exhibits $\text{Prim}(A)$ as the soberification of $\text{Max}(A)$.

Hint. Since $\text{Prim}(A)$ is sober, this is equivalent to the statement that $\text{Open}(\text{Prim}(A)) \xrightarrow{\sim} \text{Open}(\text{Max}(A))$. Prove this using (b).

Remark. This gives many examples of Kolmogorov spaces that are not sober. For example, $\text{Max}(k[x])$ is an infinite set equipped with the cofinite topology, which is an irreducible space without a generic point. Its soberification $\text{Prim}(k[x])$ adds the generic point (0) , which is the only non-maximal prime ideal in $k[x]$.

Exercise 11.3. (3 points) Let A be an \mathbb{N} -graded ring and let $f \in A_d$ be a homogeneous element of degree $d \geq 1$. Show that there is a homeomorphism

$$\{\mathfrak{p} \in \text{hPrim}(A) \mid f \notin \mathfrak{p}\} \xrightarrow{\sim} \text{Prim}(A_{(f)}), \quad \mathfrak{p} \mapsto \mathfrak{p}_{(f)},$$

where the left-hand side is topologized as a subspace of the homogeneous prime spectrum $\text{hPrim}(A)$.