

WiSE 25/26 ALGEBRAIC GEOMETRY I
EXERCISE SHEET 12 (DUE JANUARY 22)

Exercise 12.1. (6 points) Let $\varphi: R \rightarrow S$ be a map of rings and let $X = \text{Spec}(R)$, $Y = \text{Spec}(S)$, and $f = \text{Spec}(\varphi): Y \rightarrow X$.

(a) Show that, for any $x \in |X|$, the map

$$|Y \times_X \text{Spec}(\kappa(x))| \rightarrow |Y| \times_{|X|} \{x\}$$

is a homeomorphism.

Suppose now that φ is integral (i.e., that every element of S satisfies a monic polynomial equation over R).

(b) If φ is also injective, show that f is surjective.

Hint. First show that if S is a field, then R is also a field. Deduce that $|f|$ sends maximal ideals to maximal ideals. Using localization at prime ideals, deduce that $|f|$ is surjective.

(c) Deduce from (b) that f is universally closed.

Exercise 12.2. (3 points) Let k be any ring, let $C = \text{Spec}(k[x, y]/(y^2 - x^3))$ be the affine cuspidal cubic over k , and let $f: \mathbb{A}_k^1 \rightarrow C$ be induced by the k -algebra map

$$k[x, y]/(y^2 - x^3) \rightarrow k[t], \quad x \mapsto t^2, \quad y \mapsto t^3.$$

Show that f is a universal homeomorphism.

Hint. Use Exercise 12.1(a,c).

Exercise 12.3. (4 points) Let k be a field, let $N = \text{Spec}(k[x, y]/(y^2 - x^3 - x^2))$ be the affine nodal cubic over k , and let $f: \mathbb{A}_k^1 \rightarrow N$ be induced by the k -algebra map

$$k[x, y]/(y^2 - x^3 - x^2) \rightarrow k[t], \quad x \mapsto t^2 - 1, \quad y \mapsto t(t^2 - 1)$$

(see Exercise 6.1).

(a) Show that $|f|$ identifies $|N|$ with the quotient of $|\mathbb{A}_k^1|$ obtained by identifying the points 1 and -1 , and hence that f is open.

Hint. Compute the fibers of $|f|$ using Exercise 12.1(a), which gives the desired result for the underlying set. Use Exercise 12.1(c) to show that $|N|$ has the quotient topology.

(b) Suppose $\text{char}(k) \neq 2$. Show that f is not universally open.

Hint. Consider the pullback of f along itself.

Exercise 12.4. (4 points) Let \mathcal{C} be a category and τ a Grothendieck topology on \mathcal{C} . Prove the following statements:

(a) If $R \subset S \subset \wp(X)$ and R is τ -covering, then S is τ -covering.
(b) If $R, S \subset \wp(X)$ are τ -covering sieves, then $R \cap S \subset \wp(X)$ is τ -covering.