

WiSE 25/26 ALGEBRAIC GEOMETRY I
EXERCISE SHEET 13 (DUE JANUARY 29)

Exercise 13.1. (2 points) Recall that an R -module M is *faithfully flat* if the functor $M \otimes_R (-): \text{Mod}_R \rightarrow \text{Mod}_R$ is exact and conservative (i.e., detects isomorphisms). A ring map $\varphi: R \rightarrow S$ is called *faithfully flat* if S is faithfully flat as an R -module. Show that φ is faithfully flat if and only if it is flat and $\text{Spec}(\varphi)$ is surjective.

Hint. Recall the description of the fibers of $|\text{Spec}(\varphi)|$ from Exercise 12.1(a).

Exercise 13.2. (2 points) Let \mathcal{C} be a small category and let $\mathcal{E} \subset \text{P}(\mathcal{C})$ be a full subcategory admitting a left exact left adjoint $L: \text{P}(\mathcal{C}) \rightarrow \mathcal{E}$. Let τ be the collection of sieves $R \subset \mathcal{E}(X)$ such that $L(R) \xrightarrow{\sim} L(\mathcal{E}(X))$. Show that τ is a topology on \mathcal{C} .

Exercise 13.3. (8 points) In this exercise, we prove the “comparison lemma” for sheaves. Let \mathcal{C} be a small category and $\mathcal{D} \subset \mathcal{C}$ a full subcategory. Recall that the inclusion functor $u: \mathcal{D} \hookrightarrow \mathcal{C}$ induces adjunctions

$$\text{P}(\mathcal{C}) \begin{array}{c} \xleftarrow{\quad u^* \quad} \\[-1ex] \xleftarrow{\quad u_* \quad} \end{array} \text{P}(\mathcal{D}),$$

where $u^*(F) = F|_{\mathcal{D}}$ and u_* and $u_!$ are fully faithful.

Let τ be a topology on \mathcal{C} and suppose that \mathcal{D} is *dense* in (\mathcal{C}, τ) . Let $\tau|_{\mathcal{D}}$ be the collection of sieves of the form $u^*(R) \subset \mathcal{E}_{\mathcal{D}}(X)$ with $X \in \mathcal{D}$ and $R \subset \mathcal{E}_{\mathcal{C}}(X)$ τ -covering. Prove the following statements:

- (a) $\tau|_{\mathcal{D}}$ is a topology on \mathcal{D} .
- (b) u_* sends $\tau|_{\mathcal{D}}$ -sheaves to τ -sheaves.

Hint. Since u_* is right adjoint to u^* , this is equivalent to: for every τ -covering sieve $R \subset \mathcal{E}_{\mathcal{C}}(X)$, the $\tau|_{\mathcal{D}}$ -sheafification of $u^*(R) \hookrightarrow u^*(\mathcal{E}_{\mathcal{C}}(X))$ is an isomorphism. To prove this, note that $u^*(R) \hookrightarrow u^*(\mathcal{E}_{\mathcal{C}}(X))$ is a colimit of $\tau|_{\mathcal{D}}$ -covering sieves.

- (c) u^* sends τ -sheaves to $\tau|_{\mathcal{D}}$ -sheaves.

Hint. By adjunction as in (b), this is equivalent to: for every $\tau|_{\mathcal{D}}$ -covering sieve $u^*(R) \subset \mathcal{E}_{\mathcal{D}}(X)$, $u_!(u^*(R)) \rightarrow u_!(\mathcal{E}_{\mathcal{D}}(X)) = \mathcal{E}_{\mathcal{C}}(X)$ is a τ -local isomorphism. Use density to show: if f in $\text{P}(\mathcal{C})$ is such that $u^*(f)$ is a $\tau|_{\mathcal{D}}$ -local epimorphism, then f is a τ -local epimorphism. Deduce that both $u_!(u^*(R)) \rightarrow \mathcal{E}_{\mathcal{C}}(X)$ and its diagonal are τ -local epimorphisms.

- (d) The adjunction (u^*, u_*) restricts to an equivalence $\text{Shv}_{\tau}(\mathcal{C}) \simeq \text{Shv}_{\tau|_{\mathcal{D}}}(\mathcal{D})$.

Hint. By (b) and (c), (u^*, u_*) restricts to an adjunction between categories of sheaves. Since u_* is fully faithful, it remains to show that $u^*: \text{Shv}_{\tau}(\mathcal{C}) \rightarrow \text{Shv}_{\tau|_{\mathcal{D}}}(\mathcal{D})$ is conservative, i.e., that if $f: F \rightarrow G$ is a map of τ -sheaves such that $u^*(f)$ is an isomorphism, then f is an isomorphism. Given $X \in \mathcal{C}$, choose a τ -covering $(Y_i \rightarrow X)_{i \in I}$ with $Y_i \in \mathcal{D}$ and write the associated equalizer diagrams for F and G . Deduce that f is a monomorphism, and hence an isomorphism.

Exercise 13.4. (4 points) Let T be a topological space. Given a presheaf $F \in \mathbf{P}(\text{Open}(T))$ and a point $x \in T$, the *stalk* of F at x is the set

$$F_x = \operatorname{colim}_{x \in U} F(U),$$

where the colimit is indexed by the poset of open neighborhoods of x .

- (a) Show that a map $f: F \rightarrow G$ in $\mathbf{P}(\text{Open}(T))$ is a local epimorphism (with respect to the canonical topology on $\text{Open}(T)$) if and only if, for each $x \in T$, the induced map $f_x: F_x \rightarrow G_x$ is surjective.
- (b) Deduce analogous characterizations of local monomorphisms and local isomorphisms.