

WiSE 25/26 ALGEBRAIC GEOMETRY I  
EXERCISE SHEET 14 (DUE FEBRUARY 5)

**Exercise 14.1.** (3 points) Let  $T$  be a topological space and  $S$  a set. Let  $\text{Const}_S$  be the constant presheaf on  $\text{Open}(T)$  with value  $S$ . Show that the sheafification of  $\text{Const}_S$  is the sheaf  $\text{LConst}_S$  of locally constant  $S$ -valued functions.

*Hint.* First, define the presheaf  $\text{LConst}_S$  and show that it is a sheaf on  $T$ . Then, show that the map  $\text{Const}_S \rightarrow \text{LConst}_S$  is a local isomorphism, so that it becomes an isomorphism after sheafifying.

**Exercise 14.2.** (6 points) An algebraic functor  $X$  is called *separated* if its diagonal  $\Delta_X: X \rightarrow X \times X$  is a closed immersion. Prove the following statements:

- (a) Affine schemes are separated.
- (b) If  $A$  is an  $\mathbb{N}$ -graded ring, then  $\text{Proj}(A)$  is separated.

*Hint.* By Exercise 8.2, it suffices to show that the base change of the diagonal to each affine open subscheme  $D(f) \times D(g)$  is a closed immersion.

- (c) If  $X$  is separated, any subfunctor  $Y \subset X$  is separated.
- (d) If  $X$  is separated and

$$Z \rightarrow Y \rightrightarrows X$$

is an equalizer diagram, then  $Z \rightarrow Y$  is a closed immersion.

**Exercise 14.3.** (4 points)

- (a) Let  $X$  be a scheme. Show that the diagonal map  $\Delta_X: X \rightarrow X \times X$  is an immersion.

*Hint.* Use the analogue of Exercise 8.2 for immersions, and Exercise 14.2(a,c).

- (b) Construct a scheme  $X$  for which  $\Delta_X$  is a non-closed open immersion.

*Hint.* Let  $X$  be the gluing of two copies of  $\text{Spec}(\mathbb{Z})$  along an open subscheme  $U$ . To compute  $X \times X$ , use the fact that, in any category of sheaves, products preserve colimits in each variable (since this holds in  $\text{Set}$ ).

**Exercise 14.4.** (5 points) Let  $X$  be a Zariski sheaf on  $\text{CAlg}^{\text{op}}$  and let  $A, B \subset X$  be subsheaves that are disjoint, i.e.,  $A \cap B = \emptyset$ . Prove the following statements:

- (a) The map  $A \sqcup B \rightarrow X$  is a monomorphism (where  $\sqcup$  is the coproduct of sheaves).
- (b) If  $A$  and  $B$  are closed, then  $A \sqcup B \hookrightarrow X$  is a closed immersion.
- (c) If  $A$  and  $B$  are open, then  $A \sqcup B \hookrightarrow X$  is an open immersion.

*Hint.* Statements (b) and (c) reduce by definition to the case  $X$  affine.