WISE 25/26 ALGEBRAIC GEOMETRY I EXERCISE SHEET 2 (DUE OCTOBER 30)

Exercise 2.1. (7 points) Construct the left adjoints to the following forgetful functors (k is any ring):

- (a) $\operatorname{Mod}_k \to \operatorname{Set}$
- (b) $\operatorname{Mod}_k \to \operatorname{Ab}$
- (c) $CAlg_k \to CAlg$
- (d) $CAlg_k \to Mod_k$
- (e) $CAlg_k \to Ab$
- (f) $CAlg_k \to Set$
- (g) $CAlg_k \to CMon$, sending A to the multiplicative monoid (A, \cdot) .

Hint. Recall that if R and R' have left adjoints L and L', then $R \circ R'$ has left adjoint $L' \circ L$.

Exercise 2.2. (2 points) Let $f: Y \to X$ be a map of sets and let $f_{\sharp}: \operatorname{Set}_{/Y} \to \operatorname{Set}_{/X}$ be the forgetful functor. Describe explicitly the right adjoint f^* to f_{\sharp} and the right adjoint f_* to f^* .

Hint. To construct f_* , consider first the case X = *.

Exercise 2.3. (4 points) Consider the following systems of polynomial equations over \mathbb{Z} :

$$\Sigma_1: \begin{cases} x^2 + y^2 + 1 \\ x^2 - y \end{cases} \qquad \Sigma_2: \begin{cases} x^4 + x^2 + 1 \\ x - y \end{cases} \qquad \Sigma_3: \begin{cases} x^4 + x^2 + 1 \\ x^2 - xy \end{cases}$$

Determine which of their solution functors coincide as subfunctors of \mathbb{A}^2 and which are isomorphic as affine schemes. If the subfunctors are different, find an explicit finitely presented \mathbb{Z} -algebra A such that the solutions in A differ.