WISE 25/26 ALGEBRAIC GEOMETRY I EXERCISE SHEET 3 (DUE NOVEMBER 6)

Exercise 3.1. (6 points) Let $k \to k'$ be a ring map. Recall that the Weil restriction functor

$$R_{k'/k}$$
: Fun(CAlg_{k'}, Set) \rightarrow Fun(CAlg_k, Set)

is defined by $R_{k'/k}(X)(R) = X(R \otimes_k k')$.

Let $d \in \mathbb{N}$ and suppose that k' is free of rank d as a k-module (e.g., $k \to k'$ is a field extension of degree d).

- (a) Show that $R_{k'/k}(\mathbb{A}^1_{k'}) \simeq \mathbb{A}^d_k$.
- (b) Deduce that $R_{k'/k}$ sends affine k'-schemes to affine k-schemes. *Hint.* Any affine scheme is the kernel of a map between affine spaces, and Weil restriction preserves limits.
- (c) Compute the ring A such that $\operatorname{Spec}(A) \simeq \operatorname{R}_{\mathbb{Z}[\zeta_3]/\mathbb{Z}}(\operatorname{SL}_2)$.

Exercise 3.2. (4 points) Let X be an algebraic functor. Prove the following statements:

(a) For any family $(F_i)_{i\in I}$ of subsets of $\mathcal{O}(X)$, we have

$$\bigcap_{i \in I} V(F_i) = V(\bigcup_{i \in I} F_i),$$

$$\bigcup_{i \in I} D(F_i) \subset D(\bigcup_{i \in I} F_i).$$

Moreover, the inclusion is an equality on local rings.

(b) For subsets $F_1, \ldots, F_n \subset \mathcal{O}(X)$, we have

$$D(F_1) \cap \cdots \cap D(F_n) = D(F_1 \cdots F_n),$$

 $V(F_1) \cup \cdots \cup V(F_n) \subset V(F_1 \cdots F_n),$

where $F_1 \cdots F_n = \{f_1 \cdots f_n \mid f_i \in F_i\}$. Moreover, the inclusion is an equality on integral domains.

Exercise 3.3. (2 points) Let $0 \le r \le n$. Show that there exists an open subfunctor $\operatorname{Mat}_n^r \subset \operatorname{Mat}_n$ such that, for any field k, $\operatorname{Mat}_n^r(k)$ is the set of $n \times n$ matrices of rank $\ge r$.

Hint. A matrix over a field has rank $\geq r$ if and only if it contains an invertible $r \times r$ submatrix.

Exercise 3.4. (4 points) Consider the algebraic functor

$$X: \text{CAlg} \to \text{Set}, \quad R \mapsto \{(f, e) \mid f \in R, \ e \in R/(f), \text{ and } e^2 = e\},\$$

known as the affine line with doubled origin. Towards a justification of this name:

- (a) Construct two subfunctors $U_0, U_1 \subset X$, each isomorphic to \mathbb{A}^1 , such that $U_0 \cap U_1$ is isomorphic to $\mathbb{A}^1 0$.
- (b) Show that U_i is open in X.

Hint. An idempotent element is equal to 1 if and only if it is a unit.