WISE 25/26 ALGEBRAIC GEOMETRY I EXERCISE SHEET 5 (DUE NOVEMBER 20)

Exercise 5.1. (3 points) Recall that a k-algebra A is of finite type (resp. of finite presentation) if it is isomorphic to $k[\Sigma]$ where Σ is a system of polynomial equations over k with finitely many variables (resp. finitely many variables and equations). Prove the following statements:

(a) A is of finite type if and only if, for every k-algebra R which is a filtered union of subalgebras $(R_i)_{i\in I}$,

$$\operatorname{Spec}(A)(R) = \bigcup_{i \in I} \operatorname{Spec}(A)(R_i).$$

(b) A is of finite presentation if and only if $\operatorname{Spec}(A) \colon \operatorname{CAlg}_k \to \operatorname{Set}$ preserves filtered colimits.

Exercise 5.2. (4 points) Let k be a field and $-1 \le d \le n$. A d-dimensional subspace of $\mathbb{P}^n(k)$ is a subset $S \subset \mathbb{P}^n(k)$ whose preimage in $k^{n+1} - \{0\}$ has the form $V - \{0\}$ for some (d+1)-dimensional subspace $V \subset k^{n+1}$. Note that 0-dimensional subspaces of $\mathbb{P}^n(k)$ are just points. Subspaces of $\mathbb{P}^n(k)$ of dimension 1, 2, and n-1 are also called *lines*, planes, and hyperplanes.

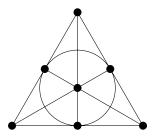
(a) Using the standard symmetric bilinear form on k^{n+1} , construct an involution

$$(-)^*$$
: {subspaces of $\mathbb{P}^n(k)$ } $\xrightarrow{\sim}$ {subspaces of $\mathbb{P}^n(k)$ },

which reverses the incidence relation (i.e., $S \subset T$ if and only if $T^* \subset S^*$) and exchanges d-dimensional subspaces and (n-1-d)-dimensional subspaces (e.g., points and hyperplanes). This is called *projective duality*.

Remark. In the familiar case $k = \mathbb{R}$ (and more generally when k is an ordered field), a subspace $S \subset \mathbb{P}^n(k)$ and its dual S^* are always disjoint. But this is not the case in general: for example, there are points $x \in \mathbb{P}^1(\mathbb{C})$ such that $\{x\}^* = \{x\}$.

(b) The following picture is called the Fano plane:



Explain how the Fano plane is a representation of points and lines in $\mathbb{P}^2(\mathbb{F}_2)$, and describe explicitly the duality between them.

Exercise 5.3. (3 points) Let R be a ring and let L be a line over R.

(a) Show that the canonical map $L^{\otimes d} \to \operatorname{Sym}_R^d(L)$ from the dth tensor power (over R) to the dth symmetric power of L is an isomorphism.

Choose an R-module L' with an isomorphism $L \otimes_R L' \simeq R$. We then define the negative tensor powers of L by $L^{\otimes (-d)} = (L')^{\otimes d}$ for any d > 0.

(b) Show that $\bigoplus_{d\in\mathbb{Z}} L^{\otimes d}$ has a structure of R-algebra with the following universal property: it is initial among R-algebras A with an R-linear map $L\to A$ whose image generates the unit ideal.

Exercise 5.4. (3 points) Let R_1, \ldots, R_n be rings and let $R = R_1 \times \cdots \times R_n$.

(a) Show that the projections $R \to R_i$ induce an equivalence of categories

$$\operatorname{Mod}_R \simeq \operatorname{Mod}_{R_1} \times \cdots \times \operatorname{Mod}_{R_n}$$

which restricts to equivalences

$$\operatorname{Vect}_R \simeq \operatorname{Vect}_{R_1} \times \cdots \times \operatorname{Vect}_{R_n},$$

 $\operatorname{Line}_R \simeq \operatorname{Line}_{R_1} \times \cdots \times \operatorname{Line}_{R_n}.$

Hint. Apply Zariski descent with the "unit vectors" $e_i \in R$, noting that $R_{e_i} \simeq R_i$ and $R_{e_i e_j} = 0$ if $i \neq j$.

(b) Deduce that, for any set I, $\mathbb{P}^I(R) \simeq \mathbb{P}^I(R_1) \times \cdots \times \mathbb{P}^I(R_n)$.