WISE 25/26 ALGEBRAIC GEOMETRY I EXERCISE SHEET 7 (DUE DECEMBER 4)

Exercise 7.1. (2 points) Let X be any vanishing locus in \mathbb{P}^n . Show that the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ induces a bijection $X(\mathbb{Z}) \xrightarrow{\sim} X(\mathbb{Q})$.

Remark. This result fails if X is an infinite-dimensional projective space.

Exercise 7.2. (4 points) Let k be $\mathbb{Z}[\frac{1}{2}]$ -algebra and let $X_2 = V(x^2 - y^2 - z^2) \subset \mathbb{P}^2_k$ be the degree 2 Fermat curve over k.

(a) Show that X_2 is isomorphic to \mathbb{P}^1_k via

$$\mathbb{P}_k^1 \xrightarrow{\sim} X_2,$$

$$[a:b] \mapsto [a^2 + b^2 : a^2 - b^2 : 2ab],$$

where [a:b] is any quotient line $(a,b): \mathbb{R}^2 \to L$.

Hint. This is not easy to prove by hand. Realize this map as Proj of a degree 2 map between graded rings and use that $\text{Proj}(A) \simeq \text{Proj}(A^{(2)})$.

(b) Find all Pythagorean triples, i.e., all $(a, b, c) \in \mathbb{N}^3$ with $a^2 = b^2 + c^2$. *Hint.* Use (a) on \mathbb{Q} -points combined with Exercise 7.1.

Exercise 7.3. (4 points) Let A be a \mathbb{Z} -graded ring.

(a) Show that there is an action of the multiplicative group \mathbb{G}_{m} on $\mathrm{Spec}(A)$ given by

$$(\lambda \varphi)(a) = \lambda^d \varphi(a)$$

for any $\varphi \colon A \to R$, $\lambda \in R^{\times}$, $d \in \mathbb{Z}$, and $a \in A_d$. Moreover, show that this action restricts to V(H) and D(H) for any homogeneous ideal $H \subset A$.

Suppose now that A is an N-graded ring generated by $A_{\leq 1}$. Let $A_+ \subset A$ be the irrelevant ideal and $D(A_+) \subset \operatorname{Spec}(A)$ its nonvanishing locus.

(b) Show that the map

$$D(A_+) \to Proj(A), \quad (\varphi \colon A \to R) \mapsto (\varphi_1 \colon A_1 \otimes_{A_0} R \twoheadrightarrow R),$$

is \mathbb{G}_{m} -invariant and induces a monomorphism

$$D(A_+)/\mathbb{G}_m \hookrightarrow Proj(A),$$

whose image is exactly the subfunctor of trivial quotient lines.

Exercise 7.4. (6 points) In Exercise 7.3(a), we showed that a \mathbb{Z} -grading on a ring A induces an action of \mathbb{G}_{m} on $\mathrm{Spec}(A)$.

(a) For any ring A, show that this construction defines a bijection

$$\{\mathbb{Z}\text{-gradings on }A\} \xrightarrow{\sim} \{\mathbb{G}_{\mathrm{m}}\text{-actions on }\mathrm{Spec}(A)\}.$$

Hint. Under the equivalence CAlg^{op} \simeq Aff, a \mathbb{G}_{m} -action on Spec(A) is a map of rings $A \to A[u^{\pm 1}]$ satisfying certain properties. Let A_d be the preimage of Au^d .

(b) Upgrade this bijection to an equivalence of categories

$$(CAlg^{\mathbb{Z}})^{op} \simeq \mathbb{G}_m Aff$$

between \mathbb{Z} -graded rings and affine schemes with \mathbb{G}_{m} -action.

Hint. The construction of Exercise 7.3(a) defines a functor $(CAlg^{\mathbb{Z}})^{op} \to \mathbb{G}_mAff$.

(c) Consider \mathbb{A}^1 as a monoid under multiplication, so that $\mathbb{G}_m \subset \mathbb{A}^1$ is a submonoid. Show that the bijection of (a) restricts to a bijection

$$\{\mathbb{N}\text{-gradings on }A\} \simeq \{\mathbb{A}^1\text{-actions on }\operatorname{Spec}(A)\},$$

and deduce an equivalence of categories

$$(\mathrm{CAlg}^{\mathbb{N}})^{\mathrm{op}} \simeq \mathbb{A}^1 \mathrm{Aff}$$

between N-graded rings and affine schemes with \mathbb{A}^1 -action.