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Conventions and notation.

• Throughout, “ring” means “commutative ring” and “algebra” means “commutative algebra”.
Not necessarily commutative algebras will be called “associative algebras”.

• We denote by CAlg the category of (commutative) rings. Given R ∈ CAlg, we denote by CAlgR
the category of (commutative) R-algebras.

• Given a ring R and a subset S ⊂ R, we denote by R[S−1] the localization of R at S. When
S = {f} has single element, we also write Rf or R[ 1f ] for the localization.

• The words “morphism” and “map” are used interchangeably. We denote by MapC(X,Y ) the set
of maps from X to Y in a category C; we simply write Map(X,Y ) if C is clear from the context.

• The symbols ≃ and ∼−→ are used for isomorphisms within a category as well as for equivalences
of categories. The arrows ↪→ and ↠ are sometimes used for monomorphsims and epimorphisms.

• Given a category C and an object X ∈ C, we denote by C/X the category of objects over X and
by CX/ the category of objects under X. For example, CAlgR ≃ CAlgR/.

• Fun(C,D) is the category of functors from C to D (objects are functors, morphisms are natural
transformations).

1. Some examples

1.1. Punctured elliptic curves. Consider the polynomial equation in two variables y2 = x3 − x. We
can consider its set of solutions in any ring R, namely

X(R) = {(a, b) ∈ R2 | b2 = a3 − a}.
This defines a functor X : CAlg → Set from the category of rings to the category of sets, which is an
example of an affine scheme. Being defined by a single equation in two variables, X is called a family
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2 MARC HOYOIS

of algebraic curves or simply a curve. It is also called an arithmetic surface: “arithmetic” because the
equation has integral coefficients, and “surface” because it turns out to be a 2-dimensional object from
the perspective of dimension theory in commutative algebra.

Let us consider explicitly the solution sets X(R) for various rings R:

(i) X(R) is a 1-dimensional real submanifold of R2, which is diffeomorphic to S1 ⊔ R:
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(ii) For any subring R ⊂ R, X(R) is the subset of X(R) consisting of all points whose coordinates
lie in R. One can show for example that the only points of X(R) with rational coordinates are
those on the x-axis, so that X(Q) = X(Z) = {(0, 0), (±1, 0)}.

(iii) X(C) is a 1-dimensional complex submanifold of C2, which can be shown to be diffeomorphic to
a punctured torus:

The two black circles indicate the intersection of X(C) with R2 ⊂ C2, which is the set X(R) from
(i). Furthermore, X(C) is biholomorphic to C/Λ − {0} where Λ is the lattice Z ⊕ Zi (and C/Λ
means the quotient of abelian groups). This is an example of a noncompact Riemann surface.

(iv) Let R[ε] = R[x]/(x2) be the ring of dual numbers over R. A pair of dual numbers (a+uε, b+ vε)
belongs to X(R[ε]) if and only if (a, b) ∈ X(R) and (u, v) is a tangent vector to X(R) at the point
(a, b) (see Remark 1.1 below). Thus, X(R[ε]) is naturally identified with the tangent bundle of
the 1-dimensional manifold X(R). As a subspace of R[ε]2 ≃ R4, X(R[ε]) is diffeomorphic to
(S1 × R) ⊔ (R× R).

(v) We can consider solutions in finite fields:
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(vi) In analogy with (iv), we can interpret X(R[ε]) as the set of tangent vectors to X(R) for any ring
R. Given (a, b) ∈ X(R), the set of all (u, v) such that (a + uε, b + vε) belongs to X(R[ε]) is an
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R-submodule of R2, called the tangent space of X at (a, b). The tangent spaces over the first
few finite fields are as follows:
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For any field k, the tangent spaces at all points of X(k) are 1-dimensional k-vector spaces, except
for the point (1, 0) in characteristic 2, where the tangent space is 2-dimensional. This reflects
the fact that the point (1, 0) is singular in characteristic 2, as it is a meeting point of the two
branches through (1, 0) and (−1, 0). The equation y2 = x3 − x is said to have bad reduction at
the prime 2, and good reduction at all other primes.

As the picture (iii) over the complex numbers strongly suggests, one should be able to compactify X by
filling in the puncture. In the picture (i) over the real numbers, this corresponds to adding a point “at
infinity” in the vertical direction that closes up the right-hand component. We will explain how to make
sense of this compactified object in §1.3.

Remark 1.1 (Dual numbers and tangent vectors). Let us give some details on the claim in (iv). Given
a ring R, a polynomial f ∈ R[x1, . . . , xn], and an n-tuple of dual numbers a+ uε ∈ R[ε]n, we have

f(a+ uε) = f(a) +

(
∂f

∂x1
(a)u1 + · · ·+

∂f

∂xn
(a)un

)
ε

in R[ε]. This expression vanishes if and and only if a is a zero of f and u is orthogonal to the gradient
∇f(a). If R = R and if this gradient is not zero, so that f−1(0) is a submanifold of Rn in a neighborhood
of a, this precisely means that u is tangent to f−1(0) at a. On the other hand, if this gradient is zero,
then every vector is orthogonal to it. Analogous statements hold for R = C.

Consider now the slightly different equation y2 = x3 − x+ 1 and associated solution sets

Y (R) = {(a, b) ∈ R2 | b2 = a3 − a+ 1}.

Despite the similarity to the previous equation y2 = x3 − x defining X, Y turns out to be qualitatively
quite different from X:

(vii) The set Y (R) ⊂ R2 now has a single component and is diffeomorphic to R:
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(viii) The set Y (Q) of rational solutions is infinite, and there are exactly 12 solutions in Z:

Y (Z) = {(−1,±1), (0,±1), (1,±1), (3,±5), (5,±11), (56,±419)}.

(ix) The set Y (C) ⊂ C2 is again a punctured torus, but its intersection with R2 now has a single
component:
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It is biholomorphic to C/Λ − {0} for some lattice Λ = Z ⊕ Zτ where τ ≈ 1
2 + 0.233i. An exact

expression for τ can be written using certain integrals called elliptic integrals, which also appear
in the formula for the arc length of an ellipse; this is the origin of the term “elliptic curve”. It
turns out that X(C) and Y (C) are not biholomorphic, even though they are diffeomorphic.

(x) Here are the solutions over some finite fields together with their tangent spaces:
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In addition to the prime 2 shown above, the equation y2 = x3 − x+ 1 also has bad reduction at
the prime 23, as (0, 13) is a singular point of Y (F23). It has good reduction at all other primes.

1.2. Singular cubic curves. Consider the polynomial equations y2 = x3 + x2 and y2 = x3. As in §1.1,
they define functors N,C : CAlg→ Set given by

N(R) = {(a, b) ∈ R2 | b2 = a3 + a2},
C(R) = {(a, b) ∈ R2 | b2 = a3}.

We call N the nodal cubic and C the cuspidal cubic. Here is what N(R) and C(R) look like:
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In contrast to the curves in §1.1, these curves have singularities and hence do not define submanifolds of
R2. We can “confirm” the singular nature of the node and of the cusp by computing tangent spaces as
explained in Remark 1.1. A vector (u, v) belongs to the tangent space at (a, b) ∈ N(R) if and only if

2bv = (3a2 + 2a)u.

For the point (a, b) = (0, 0), this holds for all (u, v), so that the tangent space at (0, 0) is 2-dimensional.
Similarly, the equation for the tangent space at (a, b) ∈ C(R) is

2bv = 3a2u,
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which always holds if (a, b) = (0, 0). These equations also show that, for any field k, (0, 0) is the only
singular point in both N(k) and C(k).

Over the complex numbers, the nodal cubic N(C) ⊂ C2 looks like a punctured pinched torus, i.e., a
torus in which one of the circles bounding a hole is collapsed to a point; this is equivalently a punctured
sphere in which two points have been identified. The cuspidal cubic C(C) ⊂ C2 looks like a punctured
sphere with a single thorn.

The two ways of visualizing N(C) correspond to two ways to algebraically “resolve” the nodal singu-
larity of N at the origin:

(i) The “pinched torus” picture suggests viewing N as a degenerate member of a family of curves
Nλ given (for example) by the equations y2 = x(x+λ)(x+1). We have N0 = N and, for nonzero
values of λ, Nλ(C) is a punctured torus with no singular points, similar to both examples in §1.1.
Thus, we can think of N as the limit of the nonsingular curves Nλ as λ → 0. In this situation,
we say that Nλ with λ ̸= 0 is a deformation of N .

(ii) The “sphere with two points identified” picture suggests viewing N as a quotient of a nonsingular

curve Ñ such that Ñ(C) is a punctured sphere. One can achieve this algebraically by a change
of variable: if we replace the coordinate y by the “slope” coordinate s = y/x, the equation

y2 = x3+x2 becomes s2 = x+1. If Ñ : CAlg→ Set is the functor defined by the latter equation,
i.e.,

Ñ(R) = {(a, c) ∈ R2 | c2 = a+ 1},
then there is map Ñ → N sending (a, c) to (a, ac), and one can check that Ñ has no singular

points. The curve Ñ is called the blowup ofN at the origin. Over the real numbers, Ñ(R)→ N(R)
looks like the quotient map R ↠ R/((−1) ∼ 1).

While an arbitrary system of polynomial equations does not in general have a nonsingular deformation
as in (i), it is a deep theorem that, if we work over a field of characteristic zero, it is always possible to
resolve singularities by blowing up as in (ii). Whether this is always possible in positive characteristic is
a major open question in algebraic geometry.

1.3. Compactifying affine curves. The curves considered in §1.1 and §1.2 can be compactified by
replacing the ambient 2-dimensional affine space A2 by the 2-dimensional projective space P2.

The affine n-space An is the functor CAlg→ Set given by An(R) = Rn. The projective n-space Pn is
a functor CAlg→ Set containing An; for simplicity, we shall only define it here on a certain subcategory
of CAlg (the general definition will be given in §3). Let (An − 0)(R) ⊂ Rn be the set of n-tuples that
generate the unit ideal of R. The group of units R× acts on the set Rn by scalar multiplication, and this
action preserves the subset (An − 0)(R). If R is a local ring or a principal ideal domain, we define

Pn(R) = (An+1 − 0)(R)/R×

(for arbitrary rings R, the right-hand side is only a subset of the left-hand side). We write

[a0 : . . . : an] ∈ Pn(R)

for the equivalence class of (a0, . . . , an) ∈ (An+1 − 0)(R). We can identify An(R) = Rn with the subset
of Pn(R) where a0 is a unit:

An(R) ↪→ Pn(R), (a1, . . . , an) 7→ [1 : a1 : . . . : an].

If k is a field, then Pn(k) is obtained from An(k) by adding a “point at infinity” [0 : a1 : . . . : an] in the
direction of every nonzero vector (a1, . . . , an); these points at infinity form a copy of Pn−1(k). Inductively,
we therefore obtain a decomposition

Pn(k) = kn ⊔ kn−1 ⊔ · · · ⊔ k0.

A polynomial is called homogeneous of degree d if it is a linear combination of monomials of degree
exactly d. For example, x3 + x2y − 2xz2 ∈ Z[x, y, z] is homogeneous of degree 3. If f ∈ R[x0, . . . , xn] is
homogeneous of degree d and (a0, . . . , an) ∈ Rn+1, then

f(λa0, . . . , λan) = λdf(a0, . . . , an)

for any λ ∈ R×. Because of this, the statement “f vanishes at (a0, . . . , an)” depends only on the point
[a0 : . . . : an] in Pn(R). In other words, a homogeneous polynomial equation in n + 1 variables has a
well-defined solution set in projective n-space.

Let us now return to the equation y2 = x3 − x from §1.1 defining the subfunctor X ⊂ A2. We can
homogenize this equation by introducing a new variable w and multiplying each term by the minimal
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power of w so that the equation becomes homogeneous: this yields the degree 3 homogeneous equation
wy2 = x3 − w2x. Let X̄ ⊂ P2 be the subfunctor of solutions to this equation, given by

X̄(R) = {[s : a : b] ∈ P2(R) | sb2 = a3 − s2a}

(this makes sense for an arbitrary ring R, although we have only defined it so far when R is a local ring
or a principal ideal domain). If we set s = 1, we recover precisely the subset X(R) of A2(R) ⊂ P2(R):

X = X̄ ∩ A2.

On the other hand, we can find the solutions “at infinity” by setting s = 0, which yields the equation
a3 = 0. If k is a field, we see that the only point of X̄(k) with s = 0 is [0 : 0 : 1], which is the point at
infinity in the vertical direction (0, 1):

X̄(k) = X(k) ⊔ {[0 : 0 : 1]} ⊂ P2(k).

As we surmised in §1.1, X̄(R) is a submanifold of the real projective plane P2(R) diffeomorphic to S1⊔S1,
while X̄(C) is a complex submanifold of the complex projective plane P2(C), which is diffeomorphic to
a torus S1 × S1 and biholomorphic to C/(Z⊕ Zi).

One can still define tangent spaces via dual numbers. Let us work out the tangent space at the point
at infinity [0 : 0 : 1] ∈ X̄(R) for a local ring R. Note that R[ε] is again local and R[ε]× = R×+Rε. Given
[s : a : b] ∈ X̄(R), a point [s+ tε : a+ uε : b+ vε] belongs to X̄(R[ε]) if and only if

(b2 + 2sa)t+ (−3a2 + s2)u+ 2sbv = 0.

If [s :a :b] = [0:0:1], this reduces to t = 0, so that tangent vectors at infinity have the form [0:uε :1+vε] =
[0 : uε : 1]. Thus, we see that u 7→ [0 : uε : 1] is a bijection from R to the tangent space at [0 : 0 : 1]. Since
this is a free R-module of rank 1, the point [0 : 0 : 1] is nonsingular.

Similarly, the affine curve Y ⊂ A2 defined by the equation y2 = x3 − x + 1 is compactified to the
projective curve Ȳ ⊂ P2 given by

Ȳ (R) = {[s : a : b] ∈ P2(R) | sb2 = a3 − s2a+ s3}.

For a field k, we have Ȳ (k) = Y (k)⊔{[0 :0:1]} as before. The real solution set Ȳ (R) is now diffeomorphic
to a circle, while Ȳ (C) is diffeomorphic to a torus and biholomorphic to C/Λ for some lattice Λ ⊂ C. As
in the affine case, X̄(C) and Ȳ (C) are diffeomorphic but not biholomorphic. Finally, the nodal cubic N
and cuspical cubic C from §1.2 also have compactifications N̄ , C̄ ⊂ P2, which over a field add the single
point at infinity [0 : 0 : 1]. Over the complex numbers, this has the effect of filling in the puncture.

Away from the primes of bad reduction (which means: when restricted to rings in which these primes
are invertible), X̄ and Ȳ are examples of elliptic curves. A remarkable fact is that elliptic curves have
an essentially unique group structure. More precisely, if we choose a point e in X̄(Z[ 12 ]) to serve as the
unit element, there is a unique lift

CAlgZ[ 12 ] Set∗.

Grp.

(X̄,e)

∃!
forget

Moreover, this lift lands in the subcategory Ab ⊂ Grp of abelian groups. Over the complex numbers,
the group structure on X̄(C) is that of the quotient C/Λ (with unit 0). In general, if we take the unit
to be the point at infinity, then the group law is determined by the requirement that P + Q + R = 0
whenever P , Q, and R lie on a line (if P = Q, this means that R lies on the tangent line at P , and if
P is the point at infinity, this means that Q and R lie on the same vertical line). Here is an illustration
over the real numbers:
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The same discussion applies to the elliptic curve Ȳ : CAlgZ[ 1
46 ]
→ Set (recall that Y has bad reduction

at the primes 2 and 23, and we have to invert both to get an elliptic curve).

1.4. Fermat curves. Let n ∈ N and consider the homogeneous equation xn = yn + zn. Let Xn(R) be
its set of solutions in the projective plane P2(R) (which we have only defined so far when R is a local
ring or principal ideal domain):

Xn(R) = {[a : b : c] ∈ P2(R) | an = bn + cn}.

(i) For n = 0, the equation is 1 = 1 + 1, which holds in a ring R if and only if R is the zero ring.
In other words, X0(R) = ∅ if R ̸= 0 and X0(0) = {0}. The functor X0 is the so-called empty
scheme.

(ii) For n = 1, the equation x = y+ z cuts out a line in P2, which is isomorphic to P1. Indeed, there
is a natural bijection

P1 ∼−→ X1, [a : b] 7→ [a+ b : a : b].

The real projective line P1(R) is diffeomorphic to a circle, while the complex projective line
P1(C), also called the Riemann sphere, is diffeomorphic to a sphere.

(iii) For n = 2, we have the equation x2 = y2 + z2. The solutions to this equation in Z3 are the
so-called Pythagorean triples. It turns out that these can be explicitly determined, as we now
explain. Call a Pythagorean triple (a, b, c) primitive if a > 0 and (a, b, c) = Z. Every Pythagorean
triple has the form n(a, b, c) for an integer n and a primitive Pythagorean triple (a, b, c) (which
are uniquely determined if n ̸= 0). Sending (a, b, c) to [a : b : c] defines a bijection between the
set of primitive Pythagorean triples and X2(Z). Furthermore, the inclusion Z ↪→ Q induces a
bijection X2(Z) ∼−→ X2(Q), with inverse given by clearing denominators (this is true for Xn for
all n and reflects the fact that the scheme Xn is proper).

Now, for any local Z[ 12 ]-algebra R (in fact any Z[ 12 ]-algebra), the map

σ : P1(R)→ X2(R), [a : b] 7→ [a2 + b2 : a2 − b2 : 2ab]

is well-defined and bijective. The inverse is given by

[u : v : w] 7→

{
[u+ v : w] if u+ v ∈ R×,

[w : u− v] if u− v ∈ R×.

In particular, for R = Q, σ gives a complete enumeration of all primitive Pythagorean triples,
which is known as Euclid’s formula.

The map σ : P1(k)→ X2(k) has a concrete geometric interpretation when k is a subfield of R.
If [a : b : c] ∈ X2(k), then a cannot be zero as then b and c would also be zero (note that this is
not true for k = C). Hence,

X2(k) = {[1 : b : c] ∈ P2(k) | b2 + c2 = 1} = {(b, c) ∈ A2(k) | b2 + c2 = 1}.

In other words, X2(k) is the set of points on the unit circle in R2 with coordinates in k. The
map σ is then the inverse stereographic projection from the point (−1, 0) on the unit circle:
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P

σ(P )

(iv) For n ≥ 3, Fermat’s Last Theorem states that

Xn(Q) = Xn(Z) =

{
{[0 : 1 :−1], [1 : 0 : 1], [1 : 1 : 0]} if n is odd,

{[1 : 0 :±1], [1 :±1 : 0]} if n is even.

Away from the prime 3, X3 : CAlgZ[ 13 ] → Set is another example of an elliptic curve, which has

a unique group structure with unit element [0 : 1 :−1].

1.5. Affine, projective, and general schemes. In §1.1 and §1.2 we saw examples of affine schemes,
and in §1.3 and §1.4 we saw examples of projective schemes. The former are the solutions in affine space
of systems of polynomial equations, while the latter are the solutions in projective space of systems of
homogeneous polynomial equations. If we allow inequations in addition to equations, we obtain the
notions of quasi-affine and quasi-projective schemes. We will study affine schemes in §2 and projective
schemes in §3. All of these objects are examples of schemes, which we will finally define in §??. The
following diagram summarizes the situation:

{affine schemes} {quasi-affine schemes}

{projective schemes} {quasi-projective schemes} {schemes}.

⊂

⊂

⊂ ⊂

(Strictly speaking, quasi-projective schemes are defined using polynomials in finitely many variables; for
the vertical inclusion to hold, one should either remove this finiteness condition on the quasi-projective
side or add it on the quasi-affine side.)

(i) An example of a quasi-affine scheme that is not affine is the punctured affine n-space An − 0 for
n ≥ 2, which is defined as

An − 0: CAlg→ Set, R 7→ {a ∈ Rn | (a) = R}.
As the notation suggets, this is in a precise sense the complement of 0 in An, where 0 is the joint
vanishing locus of the coordinate functions x1, . . . , xn on An.

(ii) An example of a quasi-projective scheme that is neither projective nor quasi-affine is the punctured
projective n-space Pn − 0 for n ≥ 2. This is again the complement of 0 in Pn, where 0 is the
vanishing locus of the projective coordinates x1, . . . , xn on Pn. For a local ring R, we have

(Pn − 0)(R) = {[a0 : . . . : an] ∈ Pn(R) | (a1, . . . , an) = R}.
(iii) Schemes that are not quasi-projective are more difficult to come by, but they can be constructed

by explicitly gluing affine schemes. The simplest example is the affine line with doubled origin,
which is the functor

CAlg→ Set, R 7→ {(f, e) | f ∈ R, e ∈ R/(f), and e2 = e}.

2. Affine geometry

2.1. Affine spaces. Affine geometry studies the solutions in affine spaces to systems of polynomial
equations, while projective geometry studies the solutions in projective spaces to systems of homogeneous
polynomial equations. In both cases, the solutions form a functor CAlgk → Set from the category of
k-algebras to the category of sets. Such functors are the basic objects of algebraic geometry:

Definition 2.1 (Algebraic functor). Let k be a ring. An algebraic k-functor is a functor CAlgk → Set.
An algebraic Z-functor is simply called an algebraic functor. Given an algebraic k-functor X and a
k-algebra R, the elements of X(R) are called the R-valued points or R-points of X.
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A basic example is given by affine spaces:

Definition 2.2 (Affine space). Let I be a set. The affine I-space over k is the algebraic k-functor

AI
k : CAlgk → Set, R 7→ RI .

We simply write AI when k = Z. For n ≥ 0, the affine n-space over k is An
k = A{1,...,n}

k . It is also called
the affine line if n = 1 and the affine plane if n = 2.

Remark 2.3.

(i) A0
k is a final object ∗ of Fun(CAlgk,Set).

(ii) A1
k is isomorphic to the forgetful functor CAlgk → Set.

(iii) AI
k is contravariantly functorial in the set I: a map f : J → I induces a natural transformation

AI
k → AJ

k given by precomposition with f .
(iv) By the universal property of polynomial rings, the functor AI

k is represented by the polynomial
k-algebra k[xi | i ∈ I], i.e., there is an isomorphism

AI
k ≃ Map(k[xi | i ∈ I],−) : CAlgk → Set.

Indeed, given an I-tuple (ri)i∈I ∈ RI , there is a unique k-algebra map k[xi | i ∈ I]→ R sending
xi to ri.

2.2. Presheaves. We start with some categorical preliminaries on set-valued functors, also known as
presheaves.

Definition 2.4 (Presheaves). Let C be a category. A presheaf on C is a functor Cop → Set. We denote
by

P(C) = Fun(Cop,Set)

the category of presheaves on C. More generally, given an arbitrary category E, an E-valued presheaf on
C is a functor Cop → E.

For example, an algebraic k-functor is exactly a presheaf on CAlgopk .

Remark 2.5. The category P(C) always admits limits and colimits, which are computed “pointwise” in
the category of sets. Many properties of the category of sets are thereby inherited by the category of
presheaves P(C), such as the fact that filtered colimits commute with finite limits, the fact the monomor-
phisms and epimorphisms are effective, etc.

Definition 2.6 (Yoneda embedding). Let C be a category. The Yoneda embedding of C is the functor

よ: C→ P(C), よ(X) = Map(−, X) : Cop → Set.

A presheaf on C is called representable if it lies in the essential image ofよ.

Notation 2.7 (The functor Spec). When C = CAlgopk , the Yoneda embedding is denoted by

Spec: CAlgopk → P(CAlgop) = Fun(CAlgk,Set).

Thus, Spec(A) is the algebraic k-functor represented by the k-algebra A:

Spec(A)(R) = Map(A,R).

For example, AI
k ≃ Spec(k[xi | i ∈ I]).

Definition 2.8 (Category of elements). Let C be a category and let F ∈ P(C) be a presheaf on C. The
category of elements El(F ) of F is defined by the cartesian square

El(F ) (Set∗)
op

C Setop.

forget

F

It is also denoted by
∫
F . Explicitly, objects of El(F ) are pairs (X,x) with X ∈ C and x ∈ F (X), and

morphisms (X,x)→ (Y, y) are morphisms f : X → Y in C such that f∗(y) = x.

Theorem 2.9 (Properties of the Yoneda embedding). Let C be a category.

(i) (The Yoneda Lemma) Let X ∈ C and F ∈ P(C). Then the map

Map(よ(X), F )→ F (X), f 7→ f(idX),

is a bijection with inverse x 7→ ((f : Y → X) 7→ f∗(x)).
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(ii) The Yoneda embeddingよ: C→ P(C) is fully faithful.
(iii) The Yoneda embeddingよ: C→ P(C) preserves all limits that exist in C.
(iv) Every presheaf F ∈ P(C) is canonically a colimit of representable presheaves:

colim

(
El(F )

forget−−−→ C
よ−→ P(C)

)
∼−→ F.

For the next two statements, assume that C is small.

(v) (Universal property ofよ) Let E be a cocomplete category. Then the functor

よ∗ : Funcolim(P(C),E)→ Fun(C,E),

is an equivalence of categories, where Funcolim denotes the category of colimit-preserving functor;
the inverse is given by left Kan extension alongよ. In particular, any functor C → E extends
uniquely (up to unique isomorphism) to a colimit-preserving functor P(C)→ E.

(vi) If E is any category, then any colimit-preserving functor K : P(C) → E has a right adjoint
E→ P(C) given by e 7→ Map(K(よ(−)), e).

Remark 2.10.

(i) By the Yoneda Lemma, the category of elements of a presheaf F ∈ P(C) can equivalently be
described as the pullback

El(F ) P(C)/F

C P(C),

forget

よ

whose objects are pairs (X,x) with X ∈ C and x :よ(X) → F . Theorem 2.9(iv) then says that
every presheaf is the colimit of all representable presheaves mapping to it.

(ii) By the full faithfulness of the Yoneda embedding, we have El(よ(X)) ≃ C/X . Together with
Theorem 2.9(iv), this shows that a presheaf is representable if and only if its category of elements
has a final object (which is then the representing object).

Corollary 2.11. Let F,G ∈ P(C) be presheaves. Then

Map(F,G) = lim
(X,x)∈El(F )

G(X).

Example 2.12. By Theorem 2.9(iii), the functor

Spec: CAlgopk → Fun(CAlgk,Set)

preserves all limits. Moreover, limits in CAlgopk are colimits in CAlgk. For example, k is the initial object
of CAlgk, so that Spec(k) is the final object of Fun(CAlgk,Set). The coproduct of two k-algebras A and
B is the tensor product A⊗k B, so that

Spec(A⊗k B) ≃ Spec(A)× Spec(B)

in Fun(CAlgk,Set). More generally, the pushout of a diagram A ← C → B in CAlgk is the relative
tensor product A⊗C B, so that

Spec(A⊗C B) ≃ Spec(A)×Spec(C) Spec(B).

Remark 2.13 (Algebraic structures on presheaves). Algebraic objects like monoids, groups, abelian
groups, rings, modules over a ring, etc., make sense in any category with finite products. In categories of
presheaves, since finite products are computed objectwise, algebraic objects are the same as presheaves
valued in the category of algebraic objects of the same type in Set. For example, abelian group objects
in presheaves are the same as presheaves of abelian groups:

Ab(P(C)) ≃ Fun(Cop,Ab).

Thus, given a presheaf F ∈ P(C), equipping F with an abelian group structure is equivalent to lifting F
along the forgetful functor Ab→ Set:

Ab

Cop Set.

forget

F
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2.3. Polynomial equations.

Definition 2.14 (System of polynomial equations). Let k be a ring and let I and J be sets. A system of
J polynomial equations in I variables over k is a J-tuple (fj)j∈J in the polynomial ring k[xi | i ∈ I]. We
denote by (Σ) the ideal in k[xi | i ∈ I] generated by (fj)j∈J and by k[Σ] the k-algebra k[xi | i ∈ I]/(Σ).

Remark 2.15. Every k-algebra R is isomorphic to k[Σ] for some system of polynomial equations Σ. A
choice of isomorphism R ≃ k[Σ] is exactly a presentation of R by generators and relations.

Given a system of polynomial equations over k, we can consider its solutions in any k-algebra. To
that end, recall that there is, for any k-algebra R, an evaluation map

k[xi | i ∈ I]×RI → R, (f, a) 7→ f(a),

which is defined as follows: for each a ∈ RI , f 7→ f(a) is the unique k-algebra map k[xi | i ∈ I] → R
sending xi to ai.

Definition 2.16 (Vanishing locus). Let F ⊂ k[xi | i ∈ I] be a subset. The vanishing locus of F in AI
k is

the subfunctor V(F ) ⊂ AI
k given by

V(F )(R) = {a ∈ RI | f(a) = 0 for all f ∈ F} ⊂ RI .

This is indeed a subfunctor: for any k-algebra map R → S, the induced map RI → SI sends V(F )(R)
to V(F )(S).

Remark 2.17. It is clear that the vanishing locus of F depends only on the ideal generated by F : if
(F ) = (F ′), then V(F ) = V(F ′). We will see below that the converse also holds (Corollary 2.25).

Definition 2.18 (Solution functor). Let Σ = (fj)j∈J be a system of J polynomial equations in I
variables over k. Its solution functor SolΣ : CAlgk → Set is the vanishing locus of {fj | j ∈ J} in AI

k:

SolΣ = V({fj | j ∈ J}) ⊂ AI
k.

By the universal property of polynomial rings, there is a one-to-one correspondence between systems
of J polynomial equations in I variables and k-algebra maps

k[xj | j ∈ J ]→ k[xi | i ∈ I].

By the Yoneda lemma, these are in turn equivalent to natural transformations

AI
k → AJ

k : CAlgk → Set.

Unraveling these equivalences, the map AI
k → AJ

k corresponding to a system Σ = (fj)j∈J is given on a
k-algebra R by

RI → RJ , a 7→ (fj(a))j∈J .

By definition, the solution functor SolΣ is the kernel of this map, i.e., there is a pullback square

(2.19)

SolΣ AI
k

0 AJ
k ,

where 0 is the subfunctor of AJ
k given by 0(R) = {0} ⊂ RJ .

Definition 2.20 (Affine scheme). A functor CAlgk → Set is called an affine k-scheme if it is isomorphic
to SolΣ for some system of polynomial equations Σ over k. We denote by Affk ⊂ Fun(CAlgk,Set) the
full subcategory spanned by the affine k-schemes. An affine scheme is an affine Z-scheme.

Example 2.21. The affine I-space AI
k is an affine k-scheme, as it is the solution functor of the empty

system of equations in I variables.

Lemma 2.22. Let Σ be a system of polynomial equations over k. Then the solution functor SolΣ is
represented by the k-algebra k[Σ], i.e., there is an isomorphism

SolΣ ≃ Spec(k[Σ]) : CAlgk → Set.

Theorem 2.23 (Characterization of affine schemes). Let k be a ring. The following conditions are
equivalent for an algebraic k-functor X : CAlgk → Set:

(i) X is an affine k-scheme.
(ii) X is representable, i.e., isomorphic to Spec(A) for some k-algebra A.
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(iii) X preserves limits and is accessible1.

Corollary 2.24. The Yoneda embedding of CAlgopk induces an equivalence of categories

Spec: CAlgopk
∼−→ Affk ⊂ Fun(CAlgk,Set).

Under this equivalence, the affine k-scheme SolΣ corresponds to the k-algebra k[Σ].

Under the equivalence of Corollary 2.24, the embedding SolΣ ↪→ AI
k of affine k-schemes corresponds

to the quotient map k[xi | i ∈ I] ↠ k[Σ]. This implies the following result:

Corollary 2.25 (Functorial Nullstellensatz). Sending a subset F ⊂ k[xi | i ∈ I] to its vanishing locus
V(F ) ⊂ AI

k induces an order-reversing bijection

V: {ideals in k[xi | i ∈ I]} ∼−→ {vanishing loci in AI
k}.

Example 2.26. Consider the following systems of polynomial equations over R in one variable:

Σ1 = (x2 + 1), Σ2 = ((x2 + 1)2), Σ3 = (x2 + x+ 1), Σ4 = (x4 + 1).

Then:

SolΣ1
(R) = ∅ SolΣ2

(R) = ∅ SolΣ3
(R) = ∅ SolΣ4

(R) = ∅,

SolΣ1(C) = {±i} SolΣ2(C) = {±i} SolΣ3(C) = {ζ3, ζ̄3} SolΣ4(C) = {±ζ8,±ζ̄8},

where ζn = exp
(
2πi
n

)
∈ C. All four equations have the same solutions in R. However, as the four ideals

(Σi) in R[x] are pairwise distinct, they define four different subfunctors of A1
R by Corollary 2.25. The

solutions in C distinguish them, except for SolΣ1
and SolΣ2

. To see that SolΣ1
̸= SolΣ2

as subfunctors of
A1

R, we can compute the solutions in the R-algebra C[ε] of dual complex numbers (where ε2 = 0):

SolΣ1
(C[ε]) = {±i}, SolΣ2

(C[ε]) = {±i+ aε | a ∈ C}.

On the other hand, the associated R-algebras are

R[Σ1] ≃ C, R[Σ2] ≃ C[ε], R[Σ3] ≃ C, R[Σ4] ≃ C× C.

By Lemma 2.22, SolΣ1
and SolΣ3

are both isomorphic to Spec(C). The different ideals (Σ1) and (Σ3)
correspond to two different embeddings of the affine R-scheme Spec(C) into A1

R, and the systems Σ1 and
Σ3 themselves are two different presentations of the R-algebra C.

Remark 2.27. In summary, given a system of polynomial equations Σ over k, we have the following
relations between Σ and SolΣ:

(i) The data of the pullback square (2.19) is equivalent to the data of Σ itself.
(ii) The data of the embedding SolΣ ↪→ AI

k is equivalent to the data of the ideal (Σ) in the polynomial
ring k[xi | i ∈ I].

(iii) The data of the affine k-scheme SolΣ alone is equivalent to the data of the k-algebra k[Σ].

This can be compared with the following types of data in differential geometry:

(i) A smooth manifold M given as the vanishing locus of a smooth function Rn → Rm.
(ii) A smooth manifold M given as a closed submanifold of Rn.
(iii) A smooth manifold M .

Smooth manifolds are the basic objects of interest in differential geometry. Embedding a manifold M into
a Euclidean space or realizing it as the vanishing locus of a function are often useful ways to understand
M , but we do not consider this additional data to be part of the manifold M itself. The situation in
algebraic geometry is entirely similar: the basic objects of interest are affine schemes. Any affine scheme
X can be embedded into an affine space (X ↪→ AI) or realized as the solution functor of a system of
polynomial equations (X ≃ SolΣ), but this data is not part of the affine scheme X itself.

A key difference between differential geometry and algebraic geometry is that it is much easier to
embed smooth manifolds into Rn than it is to embed schemes into An. In fact, the former is always
possible under mild technical assumptions2 (which are usually taken as part of the definition of smooth
manifold), but many interesting schemes are not affine. For example, the real projective space Pn(R)
can be embedded the Euclidean space R2n, but we will see that the algebraic projective space Pn with
n ≥ 1 cannot be embedded in AN for any N .

1Accessibility of X is technical condition saying that X is a small colimit of representables. It is equivalent to the

condition that X preserves κ-filtered colimits for some infinite cardinal κ, which is usually easy to check in practice.
2namely: Hausdorff, second countable, and of bounded dimension
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Remark 2.28 (Systems of linear equations). Let us spell out the analogy with linear algebra. A system
Λ of J linear equations in I variables over a ring k is a J-indexed family in the free k-module k(I), or
equivalently a k-linear map k(J) → k(I). If (aij)i∈I,j∈J is the corresponding I × J-matrix, a solution to
Λ in a k-module M is a family (mi)i∈I in M such that

∑
i∈I aijmi = 0 for all j ∈ J . This defines a

solution functor
SolΛ : Modk → Set.

Unraveling the definitions, SolΛ(M) is exactly the kernel of the map M I → MJ , obtained by applying
Map(−,M) to the given map k(J) → k(I). It follows that SolΛ ≃ Map(C,−), where C is the cokernel of
k(J) → k(I). Thus, we can think of a system of linear equations over k as a k-module C equipped with
a presentation, and its solution functor as the k-module C itself.

2.4. Examples of affine schemes.

Example 2.29 (The final scheme). The constant functor CAlg→ Set sending every ring to a one-point
set is isomorphic to Spec(Z) and hence is an affine scheme. This is the final object of Fun(CAlg,Set).

Example 2.30 (The empty scheme). The functor

CAlg→ Set, R 7→

{
∅ if R ̸= 0,

∗ if R = 0,

is an affine scheme, isomorphic to Spec(0). It is called the empty scheme and denoted by ∅. Note that ∅
is the initial object of Aff, but it not the initial object of Fun(CAlg,Set), which is the constant functor
with value ∅.

Example 2.31 (The idempotent classifier). Let Idem: CAlg→ Set be the functor sending R to the set
of idempotent elements of R. Then Idem is an affine scheme, isomorphic to Spec(Z× Z). Indeed, there
is a bijection

MapCAlg(Z× Z, R) ∼−→ Idem(R),

ϕ 7→ ϕ(1, 0),

which is natural in R ∈ CAlg.

Example 2.32 (The multiplicative group). The functor Gm : CAlg → Ab sending R to the group of
units R× is called the multiplicative group. It is an affine group scheme, meaning that the composition

CAlg
Gm−−→ Ab

forget−−−→ Set

is an affine scheme. Indeed, it is isomorphic to Spec(Z[u±1]): for every ring R, there is a bijection

MapCAlg(Z[u±1], R) ∼−→ R×,

ϕ 7→ ϕ(u).

Example 2.33 (The additive group). The functor Ga : CAlg→ Ab sending R to the underlying group
(R,+) is called the additive group. The composition

CAlg
Ga−−→ Ab

forget−−−→ Set

is simply the forgetful functor, also known as the affine scheme A1. Hence Ga is an affine group scheme.

Example 2.34 (The matrix ring). Let n ≥ 0 and let Matn : CAlg → Alg be the functor sending R to
the associative ring of n×n matrices over R. This is an associative ring object in affine schemes. Indeed,
since a matrix over R is simply a family of n2 elements of R, the composition

CAlg
Matn−−−→ Alg

forget−−−→ Set

is isomorphic to An2

and hence is an affine scheme.

Example 2.35 (The general linear group). Let n ≥ 0 and let GLn : CAlg→ Grp be the functor sending
R to the group GLn(R) of invertible n × n matrices. Then GLn is an affine group scheme. Indeed, let
A = Z[xij | (i, j) ∈ {1, . . . , n}2] be the ring representing Matn, which contains the universal n×n matrix
X = (xij)i,j . A matrix M ∈ Matn(R) is invertible if and only if its determinant det(M) ∈ R is a unit.
Hence, for any ring R, there is an isomorphism

MapCAlg(Adet(X), R) ∼−→ GLn(R),

ϕ 7→ (ϕ(xij))i,j ,

so that GLn ≃ Spec(Adet(X)).
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Example 2.36 (The special linear group). Let n ≥ 0 and let SLn : CAlg→ Grp be the functor sending
R to the special linear group SLn(R) of n × n matrices with determinant 1. Let X ∈ Matn(A) be the
universal n× n matrix as in Example 2.35. We then have

MapCAlg(A/(det(X)− 1), R) ∼−→ SLn(R),

ϕ 7→ (ϕ(xij))i,j ,

so that SLn ≃ Spec(A/(det(X)− 1)). The subfunctor inclusions SLn ⊂ GLn ⊂ Matn correspond to the
ring maps

A ↪→ Adet(X) ↠ A/(det(X)− 1).

Example 2.37 (Affine scheme associated with a module). Let k be a ring and let M be a k-module.
Consider the functor A(M) : CAlgk → Modk defined by

A(M)(R) = {k-linear maps M → R} = (M ⊗k R)∨.

Then A(M) is a k-module object in affine k-schemes. Indeed, if Symk(M) is the free k-algebra on M ,
there is a bijection

MapCAlgk
(Symk(M), R) ∼−→ A(M)(R),

ϕ 7→ ϕ|M,

so that A(M) ≃ Spec(Symk(M)). Affine spaces are a special case of this construction: AI
k ≃ A(k(I)).

Remark 2.38. Let k be a ring and let M be a k-module. Given Example 2.37, it is tempting to consider
the following “predual” of A(M): define A∨(M) : CAlgk → Modk by

A∨(M)(R) = M ⊗k R.

There is a canonical map A∨(M∨)→ A(M), which is an isomorphism if and only if M is a vector space
(Definition ??). Otherwise, A∨(M) does not preserve limits and hence is not an affine k-scheme (in fact,
it is not even a scheme). For that reason, the functor A∨(M) is rarely used.

2.5. Base change. Given a ring map ϕ : k → k′, we can transform any system of polynomial equations
Σ over k into a system ϕ∗(Σ) over k′ by applying ϕ to all the coefficients. More generally, many types
of data over k can be transformed into data over k′ using ϕ, a process known as base change, change
of coefficients, or extension of scalars. Other examples are the functor ϕ∗ : Modk → Modk′ sending a
k-module M to the k′-module M ⊗k k′, and the functor ϕ∗ : CAlgk → CAlg′k sending a k-algebra A to
the k′-algebra A⊗k k′. Unraveling these constructions, we see that there is a canonical isomorphism of
k′-algebras

k′[ϕ∗(Σ)] ≃ ϕ∗(k[Σ]).

In this section, we investigate the related process of transforming an algebraic k-functor into an algebraic
k′-functor.

Theorem 2.39 (Functoriality of presheaves). Let u : C→ D be a functor, and let

u∗ : P(D)→ P(C), F 7→ F ◦ u,
be the “restriction along u” functor.

(i) u∗ admits a left adjoint u♯ and a right adjoint u∗ given by

u♯(F )(d) = colim
(
(C×D Dd/)

op → Cop F−→ Set
)
= colim

d→u(c)
F (c),

u∗(F )(d) = lim
(
(C×D D/d)

op → Cop F−→ Set
)
= lim

u(c)→d
F (c),

provided these colimits and limits exist (e.g., if C is small).
(ii) The functor u♯ extends u: there is a canonical isomorphism

u♯ ◦よC ≃よD ◦ u.
(iii) If u is fully faithful, then u♯ and u∗ are fully faithful.
(iv) If u is a localization, then u∗ is fully faithful.
(v) If the functor u has a left adjoint uL (resp. a right adjoint uR), then there is a canonical isomor-

phism u♯ ≃ u∗
L (resp. u∗ ≃ u∗

R).

Remark 2.40.

(i) Given F : Cop → Set, the presheaves u♯(F ) and u∗(F ) are special cases of Kan extensions: u♯(F )
is the left Kan extension of F along uop, and u∗(F ) is the right Kan extension of F along uop.
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(ii) By the universal property ofよC, the functor u♯ is the unique colimit-preserving extension of u
(up to unique isomorphism). However, there is no analogous characterization of u∗.

Corollary 2.41. Let C be a category, let Y → X be a morphism in C, and let u : C/Y → C/X be the
forgetful functor.

(i) The functor u∗ : P(C/X)→ P(C/Y ) has a left adjoint u♯ given by

u♯(F )(U → X) =
∐

maps U → Y
over X

F (U → Y ).

(ii) If pullbacks along Y → X exist in C, the functor u∗ : P(C/X) → P(C/Y ) has a right adjoint u∗
given by

u∗(F )(U → X) = F (U ×X Y → Y ).

If k is a ring, then CAlgk ≃ CAlgk/ and hence CAlgopk ≃ (CAlgop)/k. Using this identification, we
obtain the following special case of Corollary 2.41 with C = CAlgop:

Corollary 2.42. Let ϕ : k → k′ be a ring map. Then there is a triple of adjoint functors

Fun(CAlgk′ ,Set) Fun(CAlgk,Set),

ϕ♯

ϕ∗

ϕ∗

where:

• ϕ∗ is precomposition with the forgetful functor CAlgk′ → CAlgk, and it is the unique colimit-
preserving extension of ϕ∗ : CAlgopk → CAlgopk′ ;

• ϕ∗ is precomposition with ϕ∗ : CAlgk → CAlgk′ ;
• ϕ♯ is given by

ϕ♯(X)(A) =
∐

k′-algebra
structures on A

X(A),

and it is the unique colimit-preserving extension of the forgetful functor CAlgopk′ → CAlgopk .

Definition 2.43. Let ϕ : k → k′ be a ring map, giving rise to the adjoint triple of Corollary 2.42.

(i) The functor ϕ∗ is called base change or extension of scalars along ϕ and is also denoted by
X 7→ Xk′ .

(ii) The functor ϕ∗ is called Weil restriction or restriction of scalars along ϕ and is also denoted by
Rϕ or Rk′/k.

Remark 2.44. Corollary 2.42 says in particular that the functors ϕ∗ and ϕ♯ preserve affine schemes:

(i) For a k-algebra A, ϕ∗(Spec(A)) ≃ Spec(A⊗k k′) in Fun(CAlgk′ ,Set). Hence, for any system of
polynomial equations Σ over k, ϕ∗(SolΣ) ≃ Solϕ∗(Σ).

(ii) For a k′-algebra B, ϕ♯(Spec(B)) ≃ Spec(B) in Fun(CAlgk,Set).

On the other hand, the functor ϕ∗ does not always preserve affine schemes.

Example 2.45. Consider the affine scheme Gm : CAlg→ Set, R 7→ R×. Let Gm,C : CAlgC → Set be its
base change to C, i.e., its restriction along the forgetful functor CAlgC → CAlg. The Weil restriction
RC/R(Gm,C) : CAlgR → Set is given by

RC/R(Gm,C)(A) = Gm,C(A⊗R C) = (A⊗R C)×.
One can check that RC/R(Gm,C) is an affine R-scheme: for any R-algebra A, there is a bijection

Map
(
R[x, y, z, w]/(xz − yw − 1, yz + xw), A

) ∼−→ (A⊗R C)×,
ϕ 7→ ϕ(x) + iϕ(y).

These equations ensure that ϕ(x) + iϕ(y) is inverse to ϕ(z) + iϕ(w). More generally, if k ⊂ k′ is a finite
field extension, one can show that Weil restriction Rk′/k sends affine k′-schemes to affine k-schemes.

A fundamental property of sets is that maps of sets are equivalent to families of sets: there is an
equivalence of categories

Ar(Set) ≃ Fam(Set),

where Ar(Set) = Fun({0 → 1},Set) is the arrow category of Set and Fam(Set) is the category whose
objects are (set-indexed) families of sets (Xi)i∈I , where a map (Xi)i∈I → (Yj)j∈J consists of a map
u : I → J and maps Xi → Yu(i) for all i ∈ I. In one direction, a map f : X → I corresponds to the family
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of its fibers (f−1{i})i∈I . In the other direction, a family (Xi)i∈I corresponds to the map
∐

i∈I Xi → I.
If we fix the target/indexing set I, we obtain an equivalence of categories

Set/I ≃ SetI .

The following proposition generalizes this fact to presheaves of sets (we recover the last equivalence by
taking C = ∗):

Proposition 2.46 (Slices of presheaf categories). Let C be a category and let F ∈ P(C) be a presheaf on
C. Then there is an equivalence of categories

P(C)/F P(El(F )),

∐
F

fibF

∼

described as follows. If u : El(F ) → C is the forgetful functor, there is a tautological map ∗ → u∗(F ),
whose adjoint u♯(∗)→ F is an isomorphism.

• Given H ∈ P(El(F )), the presheaf
∐

F H over F is u♯(H)→ u♯(∗) ≃ F . Explicitly,(∐
F

H

)
(X) =

∐
x∈F (X)

(H(X,x)→ ∗).

• Given G ∈ P(C)/F , the presheaf fibF (G) on El(F ) is the pullback u∗(G)×u∗(F ) ∗. Explicitly,

fibF (G)(X,x) = G(X)×F (X) {x} ≃


G

よ(X) Fx

 .

Specializing to the case of a representable presheaf, we get:

Corollary 2.47. Let C be a category, let X ∈ C, and let u : C/X → C be the forgetful functor. Then the
functor u♯ induces an equivalence of categories

P(C/X) ∼−→ P(C)/よ(X).

Specializing further to C = CAlgop, we get the following key result:

Corollary 2.48. Let k be a ring and let ϕ : Z→ k be the unique map. Then the functor ϕ♯ induces an
equivalence of categories

Fun(CAlgk,Set)
∼−→ Fun(CAlg,Set)/ Spec(k).

Remark 2.49. Because of Corollary 2.48, algebraic geometry over a base ring k is subsumed by algebraic
geometry over Z. In other words, working in the category Fun(CAlg,Set) of algebraic functors does not
restrict the generality, and we will often do so from now on. Note that the functor Spec of Notation 2.7
is independent of k, in the sense that the following square commutes:

CAlgopk (CAlgop)/k

Fun(CAlgk,Set) Fun(CAlg,Set)/ Spec(k).

∼

Spec Spec

∼

Remark 2.50. If f : X ′ → X is a morphism of algebraic functors, there is a triple of adjoint functors

Fun(CAlg,Set)/X′ Fun(CAlg,Set)/X ,

f♯

f∗

f∗

where f∗(Y ) = Y ×X X ′ and f♯(Y
′) = Y ′. Given Proposition 2.46, this can be seen by applying Theo-

rem 2.39 to the functor u : El(X ′)→ El(X). This recovers Corollary 2.42 when f is Spec(ϕ) : Spec(k′)→
Spec(k).
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2.6. Functions. Recall that the affine line A1 is the forgetful functor

A1 : CAlg→ Set, R 7→ R.

Tautologically, A1 has a structure of ring object in Fun(CAlg,Set), given by the factorization

CAlg

CAlg Set.

forget

A1

id

Recall also that Gm is the subfunctor of A1 given by R 7→ R×, which has a structure of abelian group
(Example 2.32).

Definition 2.51 (Function and nonvanishing function). Let X be an algebraic functor.

(i) A function on X is a map X → A1. We denote by

O(X) = Map(X,A1)

the set of functions on X. The ring structure on A1 induces a ring structure on O(X).
(ii) An nonvanishing function on X is a map X → Gm. We denote by

O×(X) = Map(X,Gm)

the set of nonvanishing functions on X. The abelian group structure on Gm induces an abelian
group structure on O×(X).

Remark 2.52.

(i) Since Gm ⊂ A1, we have O×(X) ⊂ O(X).
(ii) By the Yoneda lemma, there is a canonical isomorphism O(Spec(R)) ≃ R, i.e., the ring of

functions on Spec(R) is R itself. Hence, when restricted to affine schemes, the functor O : Affop →
CAlg is an equivalence of categories, which is inverse to Spec. Similarly, O×(Spec(R)) ≃ R×.

(iii) For a general algebraic functor X, we have

O(X) ≃ lim
x : Spec(R)→X

R, f 7→ (f ◦ x)x,

where the limit is indexed by the category of elements El(X)op (Corollary 2.11). Since the unit
group functor R 7→ R× preserves limits, it follows that O×(X) is precisely the unit group O(X)×.

(iv) By definition, the functor

O : Fun(CAlg,Set)op → CAlg, X 7→ O(X),

is limit-preserving. By (ii) and the universal property of presheaves, it is the unique limit-pre-
serving extension of the identity CAlg → CAlg. Similarly, O× is the unique limit-preserving
extension of the functor CAlg→ Ab, R 7→ R×.

Remark 2.53 (Size issues). The statement of Remark 2.52(iv) is actually nonsensical due to “size issues”.
Since the category CAlg is large, the limit in the formula for O(X) is indexed by a large category, so that
the ring O(X) is sometimes large. In this case, O(X) is not an object of CAlg, which is the category of
small rings. There are two standard ways to rectify this issue:

(i) One can simply replace the target of O by the category ĈAlg of large rings. One may then also

replace the category of sets in the source by the category Ŝet of large sets. We obtain the functor

O : Fun(CAlg, Ŝet)op → ĈAlg,

which is the unique extension of the embedding CAlg ↪→ ĈAlg that preserves large limits.
(ii) One can replace the source of O by the subcategory Funacc(CAlg,Set) of accessible functors,

which are the functors that are small colimits of representables. For an accessible functor X,
O(X) is a small limit of small rings and hence is small. We therefore have a functor

O : Funacc(CAlg,Set)op → CAlg,

which is the unique extension of the identity CAlg → CAlg that preserves small limits. All
algebraic functors that arise in practice (including all schemes) are accessible, and all relevant
constructions preserve accessibility, so that this restriction does not have any undesirable conse-
quences.
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2.7. Closed and open subfunctors. Roughly speaking, a closed subfunctor of an algebraic functor
is a subfunctor defined by the vanishing of functions, while an open subfunctor is one defined by the
nonvanishing of functions. This terminology is borrowed from topology, where the vanishing locus of a
continuous function is closed and its nonvanishing locus is open. We will see later that there is in fact a
topological interpretation of open subfunctors, though not of closed subfunctors.

Definition 2.54 (Vanishing and nonvanishing loci). Let X be an algebraic functor and F ⊂ O(X) a set
of functions on X.

(i) The vanishing locus of F is the subfunctor V(F ) ⊂ X given by

V(F )(R) = {x ∈ X(R) | f(x) = 0 for all f ∈ F}.
(ii) The nonvanishing locus of F is the subfunctor of D(F ) ⊂ X given by

D(F )(R) = {x ∈ X(R) | (f(x))f∈F generates the unit ideal in R}.

Remark 2.55.

(i) It is clear that V(F ) depends only on the ideal (F ) generated by F , and D(F ) only on the radical

ideal
√
(F ) generated by F , since an ideal is the unit ideal if and only its radical is.

(ii) We have the following implications:

(F ) = O(X) =⇒ V(F ) = ∅ ⇐⇒ D(F ) = X.

Here, ∅ is the empty scheme from Example 2.30. The reverse implication holds if X is affine, by
Proposition 2.65 below.

Example 2.56 (Punctured affine spaces). Let I be a set. The punctured affine I-space AI − 0 is the
nonvanishing locus of the coordinate functions {xi | i ∈ I} on AI = Spec(Z[xi | i ∈ I]). Explicitly:

(AI − 0)(R) = {a ∈ RI | (a) = R}.
Note that A1−0 is another name for the subfunctor Gm ⊂ A1. An I-tuple in R generating the unit ideal
is also called a unimodular row of length I.

Remark 2.57. A set of functions F ⊂ O(X) induces a map f : X → AF . By definition, we have

V(F ) = f−1(0) and D(F ) = f−1(AF − 0).

Remark 2.58. The terminology suggests that D(F ) should in some sense be the complement of V(F ) in
X. This is true when evaluated on fields, but it is not true in the category of algebraic functors. In fact,
they are not even disjoint: the intersection V(F ) ∩D(F ) is the empty scheme (Example 2.30), which is
not the initial object of Fun(CAlg,Set). We will see later that D(F ) is the complement of V(F ) (i.e., the
largest disjoint subobject) in various subcategories of Fun(CAlg,Set), such as the category of schemes.
Even then, the converse fails: V(F ) cannot be the complement of D(F ) in general, since it can happen
that V(F ) ̸= V(F ′) while D(F ) = D(F ′).

Proposition 2.59 (Formal properties of V and D). Let X be an algebraic functor.

(i) For any family (Fi)i∈I of subsets of O(X),⋂
i∈I V(Fi) = V

(⋃
i∈I Fi

)
,⋃

i∈I D(Fi) ⊂ D
(⋃

i∈I Fi

)
,

and the inclusion is an equality on local rings.
(ii) For any finite family F1, . . . , Fn of subsets of O(X),

D(F1) ∩ · · · ∩D(Fn) = D(F1 . . . Fn),

V(F1) ∪ · · · ∪V(Fn) ⊂ V(F1 . . . Fn),

and the inclusion is an equality on integral domains.

Example 2.60. Since 2 and 3 generate the unit ideal in Z, we have V(2) ∩ V(3) = V(1) = ∅ as sub-
functors of Spec(Z). On the other hand, D(2)∪D(3) ̸= D(1) = Spec(Z). For example, idZ ∈ Spec(Z)(Z)
belongs neither to D(2)(Z) = ∅ nor to D(3)(Z) = ∅.

Proposition 2.61 (Affineness of vanishing and nonvanishing loci). Let A be a ring.

(i) For any subset F ⊂ A, the quotient map A ↠ A/(F ) induces an isomorphism Spec(A/(F )) ∼−→
V(F ) ⊂ Spec(A). In particular, V(F ) is affine.

(ii) For any f ∈ A, the localization map A → Af induces an isomorphism Spec(Af )
∼−→ D(f) ⊂

Spec(A). In particular, D(f) is affine.
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If F ⊂ A has more than one element, D(F ) ⊂ Spec(A) is usually not an affine scheme. For example,
An − 0 is not affine for n ≥ 2 (see Example 2.74). This motivates the following definition:

Definition 2.62 (Quasi-affine scheme). Let k be a ring. An algebraic k-functor X is a quasi-affine
k-scheme if there exists a k-algebra A and a finite subset F ⊂ A such that X ≃ D(F ) ⊂ Spec(A). A
quasi-affine scheme is a quasi-affine Z-scheme.

Definition 2.63 (Closed and open subfunctors). Let X be an algebraic functor.

(i) A subfunctor Z ⊂ X is closed if, for every x : Spec(R)→ X, x−1(Z) = V(F ) for some F ⊂ R.
(ii) A subfunctor U ⊂ X is open if, for every x : Spec(R)→ X, x−1(U) = D(F ) for some F ⊂ R.

Remark 2.64. Vanishing loci are always closed subfunctors and nonvanishing loci are always open
subfunctors, but the converse does not hold.

The following result generalizes the functorial Nullstellensatz (Corollary 2.25):

Proposition 2.65 (Classification of closed and open subfunctors of affine schemes). Let A be a ring.

(i) The construction F 7→ V(F ) induces an order-reversing bijection

{ideals in A} ∼−→ {closed subfunctors of Spec(A)}.

(ii) The construction F 7→ D(F ) induces an order-preserving bijection

{radical ideals in A} ∼−→ {open subfunctors of Spec(A)}.

Definition 2.66 (Closed and open immersions). Let f : Y → X be a map of algebraic functors.

(i) f is a closed immersion or closed embedding if it is a monomorphism whose image is a closed
subfunctor of X.

(ii) f is an open immersion or open embedding if it is a monomorphism whose image is an open
subfunctor of X.

Definition 2.67 (Locally closed subfunctor, immersion). Let X be an algebraic functor.

(i) A subfunctor Y ⊂ X is locally closed if there exists an open subfunctor U ⊂ X containing Y as
a closed subfunctor.

(ii) A map f : Y → X is an immersion if it is a monomorphism whose image is a locally closed
subfunctor of X.

Proposition 2.68 (Closure properties of immersions).

(i) Consider a commutative triangle of algebraic functors

Z Y

X.

g

h f

If f and g are closed immersions, so is h. If h is a closed immersion and f is a monomorphism,
then g is a closed immersion. The same holds for open immersions and for immersions.

(ii) Consider a cartesian square of algebraic functors

Y ′ X ′

Y X.

f ′

f

If f is a closed immersion, so is f ′. The same holds for open immersions and for immersions.

2.8. Zariski descent. Let (fi)i∈I be a family of element in a ring R that generates the unit ideal. Then
the intersection of the vanishing loci V(fi) is the empty scheme but, in general, it is not true that Spec(R)
is the union of the nonvanishing loci D(fi) (see Example 2.60). In this section, we will show that this
becomes true if we compute the union in the category of affine schemes. Concretely, this means that a
map Spec(R)→ Spec(S) is uniquely determined by a family of maps D(fi)→ Spec(S) that agree on all
the intersections D(fi)∩D(fj). This is one of the most important results in the foundations of algebraic
geometry, which we will later recast as the statement that affine schemes satisfy Zariski descent.
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Theorem 2.69 (Zariski descent for modules). Let R be a ring and (fi)i∈I a family of elements of R
generating the unit ideal.

(i) (Descent for morphisms) For any R-modules M and N , the diagram

Map(N,M)→
∏
i∈I

Map(Nfi ,Mfi) ⇒
∏
i,j∈I

Map(Nfifj ,Mfifj )

is an equalizer.
(ii) (Descent for objects) Suppose given

• an Rfi-module Mi for each i ∈ I and
• an Rfifj -linear isomorphism αij : (Mi)fj

∼−→ (Mj)fi for each (i, j) ∈ I2,

• such that αjk ◦ αij = αik : (Mi)fjfk
∼−→ (Mk)fifj for each (i, j, k) ∈ I3.

Then there exists an R-module M with Rfi-linear isomorphisms βi : Mfi
∼−→ Mi for all i ∈ I,

such that αij ◦ βi = βj : Mfifj
∼−→ (Mj)fi for all (i, j) ∈ I2. Moreover, this data is unique up to

unique isomorphism.

Taking N = R in Theorem 2.69(i), we get the following special case:

Corollary 2.70. Let R be a ring and (fi)i∈I a family of elements of R generating the unit ideal. For
any R-module M , the diagram

M →
∏
i∈I

Mfi ⇒
∏
i,j∈I

Mfifj

is an equalizer in ModR.

Specializing further to M = R, we get the following result:

Corollary 2.71 (Zariski descent for affine schemes). Let R be a ring and let (fi)i∈I be a family of
elements of R generating the unit ideal. For any affine scheme X, the diagram

X(R)→
∏
i∈I

X(Rfi) ⇒
∏
i,j∈I

X(Rfifj )

is an equalizer.

Remark 2.72. Since X(R) ≃ Map(Spec(R), X), Spec(Rfi) ≃ D(fi), and Spec(Rfifj ) ≃ D(fi) ∩ D(fj),
Corollary 2.71 says that Spec(R) is the union of the open subschemes D(fi) in Aff. More precisely, if
Glue(I) is the poset with morphisms i ← (i, j) → j for all i, j ∈ I, then Spec(R) is the colimit of the
diagram Glue(I)→ Aff sending i to D(fi) and (i, j) to D(fi) ∩D(fj).

The following result is a generalization of Corollary 2.71, of which it is in fact a formal consequence:

Corollary 2.73 (Functions on nonvanishing loci). Let R be a ring and (fi)i∈I a family of elements of
R with image F ⊂ R. For any affine scheme X, there is an equalizer diagram

Map(D(F ), X)→
∏
i∈I

X(Rfi) ⇒
∏
i,j∈I

X(Rfifj ).

Example 2.74. Using Corollary 2.73 withX = A1, we can easily compute that the inclusion AI−0 ↪→ AI

induces an isomorphism O(AI) ∼−→ O(AI−0) as soon as |I| ≥ 2. Since O : Affop → CAlg is an equivalence
of categories, this implies that AI−0 is not an affine scheme. In particular, if n ≥ 2, An−0 is an example
of a quasi-affine scheme that is not affine.

Definition 2.75 (Zariski-local property). A property P of modules (resp. of linear maps, of algebras,
etc.) is Zariski-local if, for any ring R and family (fi)i∈I generating the unit ideal in R, an R-module M
(resp. an R-linear map M → N , an R-algebra A, etc.) has property P if and only if, for each i ∈ I, the
Rfi -module Mfi (resp. the Rfi-linear map Mfi → Nfi , the Rfi-algebra Afi , etc.) has property P .

Proposition 2.76 (Examples of Zariski-local properties). The following properties of modules are
Zariski-local:

(i) being zero,
(ii) finite generation,
(iii) finite presentation,
(iv) projectivity,
(v) flatness.

The following properties of linear maps are Zariski-local:
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(vi) being zero,
(vii) injectivity,
(viii) surjectivity,
(ix) bijectivity.

The following properties of algebras are Zariski-local:

(x) finite generation,
(xi) finite presentation.

The following properties of sequences of modules are Zariski-local:

(xii) exactness.

Remark 2.77. Further Zariski-local properties of modules are: being torsion, torsion-freeness. The
following properties of modules are not Zariski-local: freeness, injectivity.

2.9. Finiteness properties. Recall that a k-algebra is of finite presentation if it is isomorphic to k[Σ]
where Σ is a system of finitely many polynomial equations in finitely many variables, and it is of finite
type if it is isomorphic to k[Σ] where Σ has finitely many variables (but any number of equations). We

denote the respective full subcategories of CAlgk by CAlgfpk and CAlgftk . It turns out that these finiteness
conditions can naturally be expressed in terms of the algebraic k-functor Spec(A) : CAlgk → Set.

Definition 2.78 (Locally of finite presentation/type). Let X : CAlgk → Set be an algebraic k-functor.

(i) X is locally of finite presentation if it preserves filtered colimits.
(ii) X is locally of finite type if it preserves the colimits of filtered diagrams with injective transition

maps.

Proposition 2.79. Let k be a ring and A a k-algebra.

(i) A is of finite presentation if and only if Spec(A) : CAlgk → Set is locally of finite presentation.
(ii) A is of finite type if and only if Spec(A) : CAlgk → Set is locally of finite type.

Example 2.80.

(i) AI
k is locally of finite type if and only if I is a finite set, in which case it is also locally of finite

presentation. The same holds for the punctured affine spaces AI
k − 0.

(ii) The affine k-scheme A(M) is locally of finite presentation (resp. of finite type) if and only if the
k-module M is of finite presentation (resp. of finite type).

(iii) The algebraic k-functor A∨(M) of Remark 2.38 is locally of finite presentation for any k-module
M , since the tensor product preserves colimits in each variable.

(iv) The affine Z-schemes ∗, ∅, Idem, Gm, Ga, Matn, GLn, and SLn from §2.4 are all locally of finite
presentation.

Remark 2.81. Since filtered colimits commute with finite limits in the category of sets, the condition
of being locally of finite presentation or of finite type is preserved by finite limits in Fun(CAlgk,Set).

Remark 2.82 (Compatibility with base change). Let ϕ : k → k′ be a ring map. Since both the forgetful
functor CAlgk′ → CAlgk and its left adjoint ϕ∗ : CAlgk → CAlgk′ preserve filtered colimits, it follows
from Corollary 2.42 that both base change along ϕ and Weil restriction along ϕ preserve the property
of being locally of finite presentation or locally of finite type. On the other hand, the third functor ϕ♯

usually does not. For example, Spec(C) is locally of finite presentation as an affine R-scheme, but not
as an affine Q-scheme.

Recall that an algebraic k-functor can be thought of as a map of algebraic functors X → Spec(k)
(Corollary 2.48). Remark 2.82 implies that, for any cartesian square

X ′ X

Spec(k′) Spec(k),

f ′ f

if f is locally of finite presentation or of finite type, so is f ′. Consequently, we can extend Definition 2.78
to arbitrary maps of algebraic functors as follows:

Definition 2.83 (Morphism locally of finite presentation/type). Let f : X → S be a map of algebraic
functors.

(i) f is locally of finite presentation if, for every ring k and every k-point Spec(k)→ S, the algebraic
k-functor X ×S Spec(k) is locally of finite presentation.
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(ii) f is locally of finite type if, for every ring k and every k-point Spec(k) → S, the algebraic
k-functor X ×S Spec(k) is locally of finite type.

Concretely, under the equivalence of Corollary 2.48, the base change of f : X → S along s : Spec(k)→
S is the algebraic k-functor CAlgk → Set given by

(ϕ : k → R) 7→ {x ∈ X(R) | f(x) = s(ϕ) in S(R)} =


Spec(R) X

Spec(k) S

x

Spec(ϕ) f

s

 .

Example 2.84. Any open immersion is locally of finite presentation, and any closed immersion is locally
of finite type. A closed immersion i : Z ↪→ X is locally of finite presentation if and only if, for every ring
R and every x : Spec(R)→ X, there exists a finite subset F ⊂ R such that x−1(i(Z)) = V(F ).

Proposition 2.85 (Closure properties of morphisms locally of finite presentation/type).

(i) Consider a commutative triangle of algebraic functors

Z Y

X.

g

h f

If f is locally of finite presentation, then g is locally of finite presentation if and only if h is. The
same holds for “locally of finite type”.

(ii) Consider a cartesian square of algebraic functors

Y ′ X ′

Y X.

f ′

f

If f is locally of finite presentation, so is f ′. The same holds for “locally of finite type”.

2.10. The Nullstellensatz. Consider a monic polynomial f ∈ k[x] over a field k. By the functorial
Nullstellensatz (Corollary 2.25), we know that f is determined by its zero sets in all k-algebras. On
the other hand, by the elementary theory of fields, we know that f splits into linear factors over some
finite field extension of k. Hence, if we know the zero sets of f over any finite field extension of k,
then we know the original polynomial f provided it is separable (i.e., does not have multiple roots).
In general, the zero sets of f over finite field extensions of k determine the radical of f , which is the
product of the prime factors of f without multiplicity. The Nullstellensatz of Hilbert generalizes the latter
statement to systems of polynomial equations in several variables: given f1, . . . , fm ∈ k[x1, . . . , xn], the
sets of common zeros of these polynomials in all finite field extensions of k determine the radical ideal√

(f1, . . . , fn). This nontrivial theorem was at the heart of classical algebraic geometry, which was only
concerned with solutions of polynomial equations in fields. In this section, we review this result while
also pointing out some shortcomings of the classical perspective.

For a ring k, define the maps

{subsets of kn} {subsets of k[x1, . . . , xn]},
I

V

as follows:

I(X) = {f ∈ k[x1, . . . , xn] | f(x) = 0 for all x ∈ X},
V(F ) = {x ∈ kn | f(x) = 0 for all f ∈ F}.

Note that both maps are order-reversing and that F ⊂ I(V(F )) and X ⊂ V(I(X)) (in other words, this
is an adjunction between posets). Note also that I(X) is always an ideal in k[x1, . . . , xn], and it is even
a radical ideal if k is reduced (if a power of f vanishes on X, so does f). Call a subset X ⊂ kn algebraic
if it lies in the image of V, or equivalently if X = V(I(X)).

Theorem 2.86 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let n ∈ N. For any
subset F ⊂ k[x1, . . . , xn], we have

I(V(F )) =
√
(F ).
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Consequently, the maps I and V define a one-to-one correspondence

{algebraic subsets of kn} {radical ideals in k[x1, . . . , xn]}.
I
∼
V

We can upgrade this result to an equivalence of categories as follows. Define the category AffSetk of
affine algebraic sets over k as follows:

• An object of AffSetk is a pair (n,X) with n ≥ 0 and X ⊂ kn an algebraic subset.
• A morphism (n,X) → (m,Y ) is a map f : X → Y such that there exists a polynomial map

kn → km extending f .

Recall that a ring R is reduced if 0 is the only nilpotent element of R. We denote by CAlgredk the category
of reduced k-algebras.

Corollary 2.87. Let k be an algebraically closed field. Then there is an equivalence of categories

AffSetk
∼−→ (CAlgft,redk )op,

(n,X) 7→ k[x1, . . . , xn]/I(X).

Hence, AffSetk is equivalent to the full subcategory of Affk spanned by the reduced affine k-schemes of
finite type.

Remark 2.88. By Hilbert’s Basissatz, “finite type” and “finite presentation” are equivalent for algebras
over a field (and more generally over a noetherian ring).

We can also formulate a Nullstellensatz for an arbitrary field k as follows. Denote by Fieldfink ⊂ CAlgk
the full subcategory of finite field extensions of k.

Corollary 2.89. Let k be a field and let n ∈ N. Then there is a one-to-one correspondence

{vanishing loci in An : Fieldfink → Set} {radical ideals in k[x1, . . . , xn]}.
I
∼
V

Example 2.90 (Non-reduced intersections). Even in the context of algebraic geometry over an alge-
braically closed field k, there are geometric phenomena that are not captured by only considering solu-
tions in k. Consider for examples the vanishing loci L = V(y) and P = V(y − x2) in A2

k = Spec(k[x, y]).
Since the k-algebras k[x, y]/(y) ≃ k[t] and k[x, y]/(y − x2) ≃ k[t] are reduced, these affine k-schemes
are determined by the algebraic sets L(k) and P (k) in k2 (by the Nullstellensatz). The intersection
L(k)∩P (k) is the algebraic set {(0, 0)} ⊂ k2, which in turn corresponds to the subfunctor V(x, y) ⊂ A2

k.
However, the functorial intersection L ∩ P ⊂ A2

k is the subfunctor V(x2, y), which is isomorphic to
Spec(k[t]/(t2)). One can think of V(x2, y) as a first-order infinitesimal neighborhood of the origin V(x, y)
along the x-axis; this captures the fact that the line L is tangent (to first order) to the parabola P ,
so that they both contain the same infinitesimal horizontal segment at the origin. This residual tan-
gency information in the intersection can only be seen by evaluating the functor L ∩ P on non-reduced
k-algebras.

P

L

L ∩ P

This also resolves another issue in classical algebraic geometry, which is that intersections do not vary
nicely in families. Consider for example the family of horizontal line La = V(y − a) for a ∈ k. The
intersection La(k) ∩ P (k) has exactly two points for any a ̸= 0 (since k is algebraically closed), but only
a single point when a = 0. On the other hand, the scheme-theoretic intersection La ∩ P is given by a
2-dimensional k-algebra for all a ∈ k, namely k × k when a ̸= 0 and k[t]/(t2) when a = 0.

Example 2.91 (Geometry in mixed characteristic). Another aspect that is not captured by classical
algebraic geometry over fields is algebraic geometry in mixed characteristic, i.e., involving rings R that
do not contain any field. This is especially relevant in number theory, which studies rings of integers
in finite extensions of Q. Such rings can map to fields with different characteristics, which sometimes
allows us to transport results from one characteristic to another. As a very basic example, consider the
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following proof that
√
2 is irrational (which is a reformulation of the usual argument). A positive rational

number x such that x2 = 2 is the same thing as an element of X(Z) where X ⊂ P1 is the solution functor
to the homogeneous polynomial equation x2 = 2y2. Since X is a functor, the ring map Z→ Z/4 induces
a map X(Z)→ X(Z/4). Since the squares in Z/4 are 0 and 1, none of the six elements of P1(Z/4) satisfy
the equation x2 = 2y2, so that X(Z/4) is empty. It follows that X(Z) is also empty, i.e., that there does
not exist x ∈ Q with x2 = 2.

3. Projective geometry

3.1. Projective spaces over a field. Let k be a field. The classical projective n-space over k is the
set of lines through the origin in kn+1:

Pn(k) = {1-dimensional subspaces of kn+1}.
Given a nonzero (n + 1)-tuple (a0, . . . , an) ∈ kn+1 − {0}, we denote by [a0 : . . . : an] the 1-dimensional
subspace of kn+1 containing (a0, . . . , an). This identifies Pn(k) with the set of orbits of the (free) action
of k× on kn+1 − {0} by scalar multiplication:

(kn+1 − {0})/k× ∼−→ Pn(k),

(a0, . . . , an) 7→ [a0 : . . . : an].

The set Pn(k) is the union of n+ 1 copies U0, . . . , Un of An(k) = kn, where

Ui = {[a0 : . . . : an] ∈ Pn(k) | ai = 1}.
The complement Hi = Pn(k)− Ui is given by

Hi = {[a0 : . . . : an] ∈ Pn(k) | ai = 0}
and can be identified with Pn−1(k). We often think of Pn(k) as the completion of U0 = An(k) obtained
by adding a point “at infinity” in every radial direction. These points at infinity form the hyperplane at
infinity H0 = Pn−1(k) in Pn(k).

Since the k-vector space kn+1 is canonically self-dual, we can identify Pn(k) with the set of 1-dimen-
sional quotient spaces of kn+1:

Pn(k) ≃ {1-dimensional quotient spaces of kn+1},

L 7→ kn+1/L⊥.

Concretely, the line [a0 : . . . : an] corresponds to the coimage of the map (a0, . . . , an) : k
n+1 ↠ k.
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