
FINITE BROWN REPRESENTABILITY

MARC HOYOIS

In this note, we review a variant of the Brown representability theorem due to Adams, which charac-
terizes those group-valued contravariant functors (Anfin,≥1

∗ )op → Grp on finite pointed connected anima

that are isomorphic to π0Map(−, X) for some pointed connected anima X ∈ An≥1
∗ . A stable version of

this result characterizes those functors Sp → Ab that are isomorphic to π0(− ⊗ E) for some spectrum
E ∈ Sp; this is used for example to construct Landweber exact spectra. This finite/homological version
of Brown representability was originally proved in [Ada71, Theorem 1.3] and an exposition in the stable
setting can be found in [Mar83, Chapter 4]. However, both treatments are somewhat imprecise in a key
technical step (namely in the definition of two indexing categories, called C and C̄ in both sources; their
loose definitions should presumably be understood as the posets h0CX//Y × h0CX//Z and A appearing
in our proof of Lemma 10 below).

We will formulate and prove a generalization of Adams’ result, analogous to Lurie’s formulation of
Brown representability [Lur17, Theorem 1.4.1.2], but the proof is essentially Adams’ original argument.
To state the theorem we need a few definitions.

Definition 1. Let C be an ∞-category. We call C countable if it has countably many isomorphism
classes of objects and all the homotopy groups of all the mapping anima in C are countable.

Definition 2. Let X be an ∞-topos and let n ≥ −1. A square

A B

C D

in X is called n-cartesian if the canonical map A→ B ×D C is n-connective.

Definition 3. Let C be an∞-category with finite limits. A functor C→ Set is called weakly left exact if
it preserves finite products and sends cartesian squares to 0-cartesian squares. We let Funwlex(C,Set) ⊂
Fun(C,Set) denote the full subcategory of weakly left exact functors.

Definition 4. We say that an ∞-category C is generated by h-cogroups under finite colimits if it admits
all finite colimits and contains a small collection of objects (Sα)α∈A with the following properties:

(1) Each Sα admits a structure of cogroup object in the homotopy category hC.
(2) C is generated by (Sα)α∈A under finite colimits and retracts.

The prototypical example is the ∞-category Anfin,≥1
∗ of finite pointed connected anima, which is

generated under finite colimits by the single cogroup object S1. Moreover, any small stable ∞-category
is generated by cogroups under finite colimits, since every object is a cogroup.

We will write [X,Y ] as a shorthand for π0Map(X,Y ). For comparison, we first state the usual Brown
representability theorem:

Theorem 5 (Brown representability). Let C be an ∞-category generated by h-cogroups under finite

colimits. Let FunΠwlex(Ind(C)
op,Set) be the full subcategory of weakly left exact functors that preserve

arbitrary products. Then the functor

hInd(C)→ FunΠwlex(Ind(C)
op,Set), B 7→ [−, B],

is an isomorphism.

Proof. The functor is fully faithful by Yoneda. The essential surjectivity is [Lur17, Theorem 1.4.1.2]. □

Lemma 6. Let C be an ∞-category generated by h-cogroups under finite colimits. Then C contains a
small collection of objects (Sα)α∈A such that the family of functors

[Sα,−] : Ind(C)→ Set

is conservative.
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Proof. For a morphism ε : X → ∅ in C, denote by ΣεX the pushout ∅ ⊔X ∅, so that Map(ΣεX,Y ) =
ΩεMap(X,Y ) for any Y ∈ Ind(C). Let (Sα)α∈A be a family of h-cogroups generating C under finite
colimits and retracts, with counit maps ε : Sα → ∅. Then (Sα)α∈A generates Ind(C) under colimits, so
that the family of functors Map(Sα,−) : Ind(C) → hAn is conservative. Since Sα is a cogroup in hC,
each of these functors factors through Grp(hAn). But a morphism in Grp(hAn) is an isomorphism if
and only if it induces an isomorphism on all homotopy groups at the unit element. Therefore the family
(Σn

εSα)α∈A,n∈N has the desired property. □

Theorem 7 (finite Brown representability). Let C be a pointed ∞-category generated by h-cogroups
under finite colimits and such that hC is countable. Let F : Cop → Grp be a weakly left exact functor
and let F̂ : Ind(C)op → Set be the extension of F that preserves cofiltered limits. Then there exists an
object B ∈ Ind(C) and a natural isomorphism [−, B] ≃ F of functors Cop → Set. Moreover, B is

uniquely determined up to isomorphism, and the induced natural transformation [−, B]→ F̂ of functors
Ind(C)op → Set is objectwise surjective.

Proof. The proof is exactly the same as that of [Lur17, Theorem 1.4.1.2] using Lemma 10 below, where
the additional assumptions that C is pointed, that hC is countable, and that F is group-valued are used.
We repeat the argument for the reader’s convenience.

Let (Sα)α∈A be a family of objects of C as in Lemma 6. We start by proving the following assertion:

(∗) Let X ∈ Ind(C) and let x ∈ F̂ (X). Then there exists a map X → X ′ in Ind(C) and an element

x′ ∈ F̂ (X ′) lifting x and inducing bijections [Sα, X
′]→ F (Sα) for all α ∈ A.

To that end we construct a sequence X → X0 → X1 → X2 → . . . in Ind(C) and compatible elements

xn ∈ F̂ (Xn) lifting x. Set X0 = X ⊔
∐

α∈A,s∈F (Sα) Sα. Since F̂ takes arbitrary coproducts to products,

there exists x0 ∈ F̂ (X0) lifting x as well as all the elements s ∈ F (Sα) for all α ∈ A. Thus x0 induces a
surjection [Sα, X0] ↠ F (Sα) for every α ∈ A.

Suppose that (Xn, xn) has been constructed. Let Rα be the equivalence relation on [Sα, Xn] such that
xn induces an injective map [Sα, Xn]/Rα ↪→ F (Sα). We define Xn+1 by the pushout square∐

α∈A,r∈Rα
(Sα ⊔ Sα) Xn

∐
α∈A,r∈Rα

Sα Xn+1.

∇

r

By Lemma 10, there exists an element xn+1 ∈ F̂ (Xn+1) lifting xn.

Finally, let X ′ = colimn Xn. Then the sequence of elements xn defines an element x′ ∈ F̂ (X ′) lifting
x. The induced map [Sα, X

′] → F (Sα) is surjective, since the composite [Sα, X0] → [Sα, X
′] → F (Sα)

was already surjective. To prove the injectivity of this map, let f, g : Sα → X ′ be such that f∗(x′) =
g∗(x′). Since Sα is compact in Ind(C), f and g factor through maps fn, gn : Sα → Xn for some n, so
that f∗

n(xn) = g∗n(xn). By construction, the composite map Sα ⊔ Sα → Xn → Xn+1 factors through
Sα ⊔ Sα → Sα, whence f = g. This concludes the proof of (∗).

Let B ∈ Ind(C) and b ∈ F̂ (B) satisfy (∗) for X = ∅. The element b defines a natural transformation

[−, B] → F̂ , which we claim has the desired properties. We first prove the surjectivity of the natural

transformation. Let X ∈ Ind(C) and let x ∈ F̂ (X). Applying (∗) to the element (b, x) ∈ F̂ (B ⊔ X),

we obtain a morphism B ⊔ X → X ′ and an element x′ ∈ F̂ (X ′) lifting (b, x) and inducing bijections
[Sα, X

′] → F (Sα). It follows that the map B → X ′ induces bijections [Sα, B] → [Sα, X
′] for all α ∈ A,

so that it is an isomorphism in Ind(C). The composite X → X ′ ≃ B is then a preimage of x, as desired.
We now prove the injectivity of the natural transformation on C. Let X ∈ C and let f, g : X → B be

two preimages of some element x ∈ F (X), i.e., f∗(b) = x = g∗(b). We form the pushout square

X ⊔X B

X W

∇

f+g

in Ind(C). By Lemma 10, we find w ∈ F̂ (W ) lifting x and b. Applying (∗) to this element, we find a

morphismW →W ′ and an element w′ ∈ F̂ (W ′) lifting w and inducing bijections [Sα,W
′]→ F (Sα). The

composite map h : B →W ′ then induces bijections on [Sα,−] for all α ∈ A, so that it is an isomorphism
in Ind(C). Since h ◦ f = h ◦ g, we deduce that f = g, as desired.
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It remains to prove the uniqueness of B up to isomorphism. Let C ∈ Ind(C) be any object with a

natural isomorphism [−, C] ≃ F on C, and let c ∈ F̂ (C) be the element whose restriction to any X ∈ C/C

corresponds to the homotopy class of X → C. Applying (∗) to the pair (b, c) ∈ F̂ (B ⊔C), we find a map

B ⊔ C → B′ and an element b′ ∈ F̂ (B′) lifting b and c and inducing bijections [Sα, B
′]→ F (Sα) for all

α ∈ A. Then both maps B → B′ and C → B′ induce bijections on [Sα,−] for all α ∈ A, so that they
are isomorphisms in Ind(C). □

Remark 8. The cogroup generation assumption in Theorems 5 and 7 is only used through Lemma 6.
One may therefore replace it by the conclusion of Lemma 6. However, outside of 1-categories, we do not
know any examples where this weaker assumption can be checked directly.

Lemma 9. Let A be a countable filtered poset and F : Aop → Set a nonempty functor sending all
morphisms to surjections. Then the limit of F is nonempty.

Proof. Since A is a countable filtered poset, there exists a cofinal map N → A. We may thus assume
A = N, in which case the assertion is clear. □

Lemma 10. Let C be a pointed ∞-category with finite colimits such that hC is countable, let F : Cop →
Grp be a weakly left exact functor, and let F̂ : Ind(C)op → Set be the extension of F that preserves
cofiltered limits. Let

X Z

Y W

be a pushout square in Ind(C). If X ≃
∐

i∈I Xi with Xi ∈ C, then F̂ takes this square to a 0-cartesian
square.

Proof. We first prove that the lemma holds whenever X ∈ C. We fix (y, z) ∈ F̂ (Y )×F (X) F̂ (Z) and we

seek w ∈ F̂ (W ) lifting y and z. For any factorizations X → Y ′ → Y and X → Z ′ → Z with Y ′, Z ′ ∈ C,
let W ′ = Y ′ ⊔X Z ′ and let Lifty,z(Y

′, Z ′) ⊂ F (W ′) be the set of elements lifting both y|Y ′ and z|Z ′.
This defines a functor

Lifty,z : C
op
X//Y × C

op
X//Z → Set.

Note that W itself is the colimit of the filtered diagram CX//Y × CX//Z → C sending (Y ′, Z ′) to W ′.

An element w ∈ F̂ (W ) lifting y and z is therefore exactly an element in the limit of the functor Lifty,z.
Thus, we have to show that the limit of Lifty,z is nonempty. To do so, it suffices to find a factorization
C
op
X//Y × C

op
X//Z → Aop → Set of Lifty,z such that the limit of Aop → Set is nonempty. We will now

construct such a factorization where A is a filtered poset.
Let Y ′ → Y ′′ and Z ′ → Z ′′ be morphisms in CX//Y and CX//Z . We consider the pushout squares

X Z ′ Z ′′

Y ′ W ′ V

Y ′′ U W ′′.

Since F takes these squares to 0-cartesian squares, the restriction map Lifty,z(Y
′′, Z ′′)→ Lifty,z(Y

′, Z ′)
is surjective. This implies that the functor Lifty,z identifies parallel morphisms (since they can be
coequalized in CX//Y ×CX//Z), and hence factors through the homotopy 0-category h0CX//Y ×h0CX//Z ,
which is a filtered poset.

We define a new 0-category A as follows: its objects are those of CX//Y ×CX//Z , and we set (Y ′, Z ′) ≤
(Y ′′, Z ′′) if for any morphisms Y ′ → Y ′′′ ← Y ′′ in CX//Y and Z ′ → Z ′′′ ← Z ′′ in CX//Z , the surjection
Lifty,z(Y

′′′, Z ′′′) ↠ Lifty,z(Y
′, Z ′) factors through Lifty,z(Y

′′′, Z ′′′) ↠ Lifty,z(Y
′′, Z ′′). The factorization

Lifty,z(Y
′′, Z ′′) → Lifty,z(Y

′, Z ′) is then surjective and independent of Y ′′′ and Z ′′′, since CX//Y and
CX//Z are filtered. Moreover, if there exists a morphism (Y ′, Z ′) → (Y ′′, Z ′′) in CX//Y × CX//Z , then
(Y ′, Z ′) ≤ (Y ′′, Z ′′). The functor Lifty,z thus factors as

C
op
X//Y × C

op
X//Z → h0C

op
X//Y × h0C

op
X//Z → Aop → Set,
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where the first two functors are essentially surjective and the last functor sends (X,X) to a point and
any morphism to a surjection. To conclude, we show that the filtered poset A is countable, so that the
limit of Aop → Set is automatically nonempty by Lemma 9.

We now use for the first time the assumptions that C is pointed and that F is group-valued: we have
an exact sequence of groups

F (Y ′ ⊔ Z ′)← F (W ′)← F (ΣX)← F (Σ(Y ′ ⊔ Z ′)).

The set Lifty,z(Y
′, Z ′) is thus a coset of the image of F (ΣX) in F (W ′), and this image is the quotient

of F (ΣX) by the image of F (Σ(Y ′ ⊔ Z ′)). It follows that (Y ′, Z ′) ≤ (Y ′′, Z ′′) if (and only if) the image
of F (Σ(Y ′ ⊔ Z ′)) in F (ΣX) contains the image of F (Σ(Y ′′ ⊔ Z ′′)). Since CΣX/ has countably many
isomorphism classes, there are only countably many possible such images, hence only countably many
isomorphism classes in A. This completes the proof of the lemma when X ∈ C.

The proof in the general case is now an easy application of Zorn’s lemma. Let (Xi)i∈I be a family of
objects of C and let

∐
i∈I Xi → Y and

∐
i∈I Xi → Z be morphisms in Ind(C). For any subset J ⊂ I, let

XJ =
∐

i∈J Xi and let WJ = Y ⊔XJ
Z. We fix (y, z) ∈ F̂ (Y )×F̂ (XI)

F̂ (Z) and we seek w ∈ F̂ (WI) lifting

y and z. Let P be the poset of pairs (J,w) where J ⊂ I and w ∈ F̂ (WJ) lifts y and z. We first show
that every chain in P has an upper bound. Let A be a totally ordered set and let A→ P , α 7→ (Jα, wα).
Let J∞ =

⋃
α∈A Jα, and for α ∈ A∪{∞} let Xα = XJα and Wα = wJα . Let U→ Setop be the universal

cartesian fibration in sets. The given chain (Jα, wα) can be represented by a commutative diagram

U

C/Y ⊔Z · · · C/Wα
· · · C/W∞ Setop.

(y,z)

wα

F

w∞

Since W∞ = colimα∈A Wα in Ind(C)Y ⊔Z/, the ∞-category C/W∞ is the colimit under C/Y ⊔Z of the ∞-

categories C/Wα
. Thus there exists an element w∞ ∈ F̂ (W∞) lifting y, z, and all the wα’s as indicated.

Then (J∞, w∞) is an upper bound of the given chain in P . By Zorn’s lemma, the poset P admits a
maximal element (Jmax, wmax). It remains to show that Jmax = I. But if (J,w) ∈ P and i ∈ I − J , then

since WJ∪{i} = WJ ⊔Xi⊔Xi
Xi and Xi ⊔Xi ∈ C, we can lift w ∈ F̂ (WJ) to F̂ (WJ∪{i}), so (J,w) is not

maximal. □

Remark 11. The conclusion of Lemma 10 does not hold for arbitrary X ∈ Ind(C). If it did, then the

proof of Theorem 7 would show that the natural transformation [−, B]→ F̂ is bijective on all of Ind(C),
but this is usually not the case. For example, for a sequential ind-object, the failure of injectivity is
measured by the Milnor exact sequence.

Remark 12. The natural transformation [−, B]→ F̂ in the conclusion of Theorem 7 is more generally
an isomorphism on arbitrary coproducts of objects of C, since both sides transform coproducts into
products. Without the assumptions that C is pointed, that F is group-valued, and that hC is countable,
the conclusion of Lemma 10 is therefore necessary and sufficient for the conclusion of Theorem 7. We
do not know if the first two assumptions are necessary. However, we cannot remove the countability
assumption in the theorem (and hence in the lemma): if C is a small stable ∞-category satisfying the
conclusion of Theorem 7, then the functor hInd(C)→ Ind(hC) is full. But this fails for example for the
∞-category of κ-compact spectra with κ an uncountable cardinal.

Remark 13. The assumption that hC is countable in Lemma 10 (and hence in Theorem 7) can be
weakened to the assumption that CΣX/ has countably many isomorphism classes for every X ∈ C.
Combining this observation with Remark 8, we deduce the following somewhat curious fact (which may
well be obvious for other reasons): if C is a pointed 1-category with finite colimits and with countably
many isomorphism classes, then every weakly left exact functor Cop → Grp is in fact left exact.

Corollary 14 (homological Brown representability). Let C be a symmetric monoidal pointed∞-category
generated by h-groups under finite limits, such that hC is countable and every object of C is dualizable. Let
F : C→ Grp be a weakly left exact functor and let F̂ : Ind(C)→ Set be the extension of F that preserves

filtered colimits. Then there exists an object E ∈ Ind(C) and a natural isomorphism [1,− ⊗ E]
∼→ F̂ .

Moreover, E is uniquely determined up to isomorphism.

Proof. The assumption that every object of C is dualizable implies that C is self-dual, so that C is also
generated by h-cogroups under finite colimits. Let G : Cop → Grp be the functor given by G(X) = F (X∨).
Then G satisfies the assumptions of Theorem 7. Thus, there exists E ∈ Ind(C) and a natural isomorphism
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[−, E] ≃ G on C, which determines E uniquely up to isomorphism. Under the duality isomorphism
C ≃ Cop, this amounts to a natural isomorphism [1,−⊗ E] ≃ F . To conclude, we note that the functor

[1,−⊗ E] : Ind(C)→ Set preserves filtered colimits, hence is isomorphic to the extension F̂ . □

We now would like to promote Theorem 7 to an isomorphism of categories, as in the statement of
Theorem 5.

Definition 15. Let C be an ∞-category. Two maps f, g : X → Y in Ind(C) are called weakly homotopic
if for every K ∈ C and every map h : K → X, the composites f ◦ h and g ◦ h are homotopic. We write
[X,Y ]w for the set of weak homotopy classes of maps X → Y in Ind(C). These are the morphisms of a
1-category hwInd(C), which contains hC as a full subcategory.

If C is additive, a map in Ind(C) is also called a phantom map if it is weakly homotopic to 0. In this
case, [X,Y ]w is the quotient of the group [X,Y ] by the subgroup of phantom maps.

Remark 16. The canonical functor hInd(C) → hwInd(C) is full and essentially surjective. Moreover,
it preserves any limits that exist in hInd(C). If C is generated by h-cogroups under finite colimits, this
functor is also conservative (by Lemma 6).

Lemma 17. Let C be as in Theorem 7. Let F : Cop → Grp be a weakly left exact functor and let
B ∈ Ind(C) be an object with a natural isomorphism [−, B] ≃ F . For every X ∈ Ind(C), the map

[X,B]→ F̂ (X) induces an isomorphism [X,B]w
∼→ F̂ (X).

Proof. The last two statements in Theorem 7 imply that the map [X,B]→ F̂ (X) is surjective. Since the

natural transformation [−, B]→ F̂ is an isomorphism on C, it is clear that two morphisms f, g : X → B

become equal in F̂ (X) if and only if they are weakly homotopic. □

Proposition 18 (finite/homological Brown representability for natural transformations).

(1) Let C be an ∞-category as in Theorem 7. Then the functor

hwInd(C)→ Funwlex(C
op,Set), B 7→ [−, B],

detects group objects and restricts to an isomorphism between the full subcategories of objects that
admit group structures. In particular, it induces an isomorphism

Grp(hwInd(C))
∼→ Funwlex(C

op,Grp).

(2) Let C be a symmetric monoidal ∞-category as in Corollary 14. Then the functor

hwInd(C)→ Funwlex(C,Set), E 7→ [1,−⊗ E],

detects group objects and restricts to an isomorphism between the full subcategories of objects that
admit group structures. In particular, it induces an isomorphism

Grp(hwInd(C))
∼→ Funwlex(C,Grp).

Proof. (2) is a rephrasing of (1) under the duality isomorphism C ≃ Cop. Let G ⊂ Funwlex(C
op,Set) be

the full subcategory of objects that admit group structures, and let H be its preimage in hwInd(C). Since
G is closed under finite products, it suffices to show that the functor H → G is an isomorphism. It is
essentially surjective by Theorem 7. Let X ∈ Ind(C), let (Xα)α be a filtered diagram in C with colimit
X, and let F : Cop → Set. By Yoneda, we have

Map([−, X], F ) = Map(colim
α

[−, Xα], F ) = lim
α

Map([−, Xα], F ) = lim
α

F (Xα) = F̂ (X).

It then follows from Lemma 17 that the map

[X,B]w → Map([−, X], [−, B])

is an isomorphism for any B ∈ H. In particular, H→ G is fully faithful. □

Finally, we specialize Proposition 18 to the additive (e.g., stable) case. Note that a small additive ∞-
category C with finite colimits is generated by h-cogroups under finite colimits. Moreover, every weakly
left exact functor Cop → Set has a unique group structure.

Corollary 19. Let C be an additive ∞-category with finite colimits such that hC is countable.

(1) There is an isomorphism

hwInd(C)
∼→ Funwlex(C

op,Set), B 7→ [−, B].
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(2) Suppose that C has a symmetric monoidal structure in which every object is dualizable. Then
there is an isomorphism

hwInd(C)
∼→ Funwlex(C,Set), E 7→ [1,−⊗ E].

Let now C be a pointed ∞-category with finite colimits. The Spanier–Whitehead ∞-category SW(C)
is the colimit of the sequence

C
Σ−→ C

Σ−→ C −→ · · · .
It is the universal stable ∞-category with a right exact functor from C, and we have

Ind(SW(C)) = Sp(Ind(C)).

A weakly left exact functor SW(C)op → Set is called a cohomology theory on C: it is equivalently a
sequence of weakly left exact functors Hn : Cop → Set with isomorphisms Hn ≃ Hn+1 ◦Σ. A weakly left
exact functor SW(C) → Set is called a homology theory on C: it is a sequence of functor Hn : C → Set
that transform finite coproducts into finite products (this makes sense as C is pointed) and take pushout
squares to 0-cartesian squares, with isomorphisms Hn ≃ Hn+1 ◦ Σ. We denote by CohTh(C) (resp. by
HomTh(C)) the category of cohomology theories (resp. of homology theories) on C.

Since hSW(C) is countable if hC is countable, we obtain the following special case of Corollary 19:

Corollary 20. Let C be a pointed ∞-category with finite colimits such that hC is countable.

(1) There is an isomorphism

hwSp(Ind(C))
∼→ CohTh(C), (Bn)n∈Z 7→ ([−, Bn])n∈Z.

(2) Suppose that C has a symmetric monoidal structure that preserves finite colimits in each variable,
such that every object becomes dualizable in SW(C). Then there is an isomorphism

hwSp(Ind(C))
∼→ HomTh(C), E 7→ ([1,Σ∞−n(−)⊗ E])n∈Z.

Remark 21. The analogue of Corollary 20(1) in the setting of the standard Brown representability

theorem is as follows. Let C be a small pointed ∞-category with finite colimits, and let CohThΠ(Ind(C))
be the full subcategory of cohomology theories (Hn)n∈Z on Ind(C) such that each Hn : Ind(C)op → Set
preserves arbitrary products. Define SpΩ(hInd(C)) to be the limit of the tower

· · · −→ hInd(C)
Ω−→ hInd(C)

Ω−→ hInd(C).

Theorem 5 then yields an isomorphism

SpΩ(hInd(C))
∼→ CohThΠ(Ind(C)), (Bn)n∈Z 7→ ([−, Bn])n∈Z.

Indeed, note that both sides are unchanged if we replace C by its full subcategory generated by suspensions
under finite colimits, to which Theorem 5 applies. The canonical functor hSp(Ind(C)) → SpΩ(hInd(C))
is full, essentially surjective, and conservative, and it identifies parallel morphisms if and only if they
are levelwise homotopic. Since levelwise homotopic morphisms are also weakly homotopic, the canonical
functor hSp(Ind(C))→ hwSp(Ind(C)) factors through SpΩ(hInd(C)).
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