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Abstract. We prove that Atiyah duality holds in the ∞-category of non-A1-invariant motivic spectra
over arbitrary derived schemes: every smooth projective scheme is dualizable with dual given by the

Thom spectrum of its negative tangent bundle. The Gysin maps recently constructed by L. Tang are
a key ingredient in the proof. We then present several applications. First, we study A1-colocalization,

which transforms any module over the A1-invariant sphere into an A1-invariant motivic spectrum with-

out changing its values on smooth projective schemes. This can be applied to all known p-adic cohomol-
ogy theories and gives a new elementary approach to “logarithmic” or “tame” cohomology theories; it

recovers for instance the logarithmic crystalline cohomology of strict normal crossings compactifications

over perfect fields and shows that the latter is independent of the choice of compactification. Second,
we prove a motivic Landweber exact functor theorem, associating a motivic spectrum to any graded

formal group law classified by a flat map to the moduli stack of formal groups. Using this theorem, we

compute the ring of P1-stable cohomology operations on the algebraic K-theory of qcqs derived schemes,
and we prove that rational motivic cohomology is an idempotent motivic spectrum.
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1. Introduction

This paper is a sequel to [AHI24], where we introduced the stable∞-category MSS of motivic spectra
over a derived scheme S. Our goal is to prove the following theorem and discuss some applications:

Theorem 1.1. Let f : X → S be a smooth projective morphism between derived schemes.

(i) (Ambidexterity, Theorem 5.9) There is a canonical isomorphism of functors

f♯Σ
−Ωf ≃ f∗ : MSX → MSS .

(ii) (Atiyah duality, Corollary 5.15) For every ξ ∈ K(X), the Thom spectrum ThX(ξ) ∈ MSS is
dualizable with dual ThX(−ξ − Ωf ).

In A1-homotopy theory, this ambidexterity theorem was announced by Voevodsky [Del02] and proved
independently by Ayoub [Ayo08] and Röndigs [Rön05]. This theorem is one of two key ingredients in
the construction of the six-functor formalism for A1-invariant motivic spectra, the other one being the
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localization theorem of Morel and Voevodsky. While the latter does not hold as is without A1-invariance,
Theorem 1.1 is hopefully a first major step towards a six-functor formalism for some theory of non-A1-
invariant motivic spectra.

It follows from Atiyah duality that any cohomology theory satisfying the Künneth formula and repre-
sentable in MSS satisfies Poincaré duality. This unifies essentially all known instances of Poincaré duality
for cohomology theories of schemes, including non-A1-invariant cases such as de Rham cohomology by
Clausen [Cla21] and relative prismatic cohomology by Tang [Tan22].

Part I is dedicated to the proof of Theorem 1.1. We crucially make use of the Gysin maps in MSS

constructed by Longke Tang [Tan24]: for a closed immersion Z ↪→ X between smooth S-schemes, the
associated Gysin map is a canonical map

gys : X+ → ThZ(NZ/X)

in MSS , whose A1-localization recovers the purity isomorphism LA1(X/(X − Z)) ≃ LA1ThZ(NZ/X) of

Morel and Voevodsky.1 Using the Gysin map for the diagonal embedding X ↪→ X ×S X of a smooth
separated S-scheme, we can define in a standard way a canonical pairing

evX,ξ : ThX(ξ)⊗ ThX(−ξ − ΩX/S)→ 1S

in MSS , which we investigate in Section 3. A more precise statement of Atiyah duality is that the pairing
evX,ξ is perfect when X is smooth and projective.

Similarly to the proofs of Ayoub and Röndigs in A1-homotopy theory, we reduce the ambidexterity
theorem to the case of projective space Pn

S → S, where we then argue by induction on n. The heart of
the proof is the induction step, which is carried out in Section 4. In more details, the structure of the
proof of Theorem 1.1 is as follows:

• We prove Atiyah duality for X = Pn
S and ξ = O(−1)m by induction on n (Theorem 4.8).

• Atiyah duality for X = Pn
S and ξ = 0 implies ambidexterity for f : Pn

S → S (Proposition 5.7).
• Ambidexterity for Pn implies ambidexterity for all smooth projective morphisms (Theorem 5.9).
• Finally, ambidexterity for f : X → S implies Atiyah duality for any ξ ∈ K(X) (Corollary 5.15).

Remark 1.2. In [Hoy17, Section 5.3], a different proof of ambidexterity for f : Pn
S → S is given, which

does not proceed by induction on n but instead uses a direct geometric construction of the unit map
ηf : id→ f♯Σ

−Ωf f∗ (called the Pontryagin–Thom collapse map in loc. cit.). This geometric construction
strongly relies on A1-homotopy invariance, so it is not clear how to adapt it to MSS .

Remark 1.3. In A1-homotopy theory, the ambidexterity theorem was generalized to smooth proper
morphisms by Cisinski and Déglise in [CD19]. To obtain such a generalization in our setting requires
further developments towards the six-functor formalism. If k is a field of characteristic 0, one can combine
Theorem 1.1(ii), Chow’s lemma, resolution of singularities, and weak factorization to prove that ThX(ξ)
is dualizable in MSk for any smooth proper k-scheme X and any ξ ∈ K(X).

In Part II, we discuss some applications of Atiyah duality. As one of our main applications, we study
A1-colocalization in Section 6, by which we mean the right adjoint to the inclusion of the subcategory
MSA1

S of A1-invariant motivic spectra (which is the usual stable motivic homotopy ∞-category of Morel
and Voevodsky). More specifically, we consider the functor

Mod1A1
(MSS)→ MSA1

S , E 7→ E†,

which is right adjoint to the inclusion, where 1A1 = LA1(1) is the A1-invariant motivic sphere. Atiyah
duality implies that the A1-colocalization E† of a 1A1-module E has the same values as E on smooth
projective schemes. Moreover, its values on more general smooth schemes can sometimes be computed
by means of a suitable compactification:

Theorem 1.4 (Computing the A1-colocalization). Let S be a derived scheme and let E ∈ Mod1A1
(MSS).

(i) (Proposition 6.21) For any smooth projective S-scheme X and any ξ ∈ K(X), the counit map

E†(ThX(ξ))→ E(ThX(ξ))

is an isomorphism.

1Note that the purity isomorphism does not hold prior to A1-localization. In fact, a motivic spectrum in MSS satisfies

purity if and only if it is A1-invariant; see Remark 2.5.
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(ii) (Proposition 6.25) Let U be a smooth S-scheme admitting a smooth projective compactification
U ↪→ X with a relative strict normal crossings boundary ∂X = X − U . Let ∂1X, . . . , ∂nX be
the smooth components of ∂X, and for any subset I ⊂ {1, . . . , n}, let ∂IX =

⋂
i∈I ∂iX and let

iI : ∂IX ↪→ X be the inclusion. Then, for any ξ ∈ K(X), one may compute E†(ThU (ξ)) as the
total cofiber of an n-cube I 7→ E(Th∂IX(ξ + NiI )), whose edges are Gysin maps.

For this theorem to be useful, we need to know some examples of 1A1-modules. A large supply of
1A1 -modules comes from the fact that algebraic K-theory is A1-invariant on regular noetherian schemes.
As recently proved by Bachmann [Bac22], Voevodsky’s slice filtration of the motivic spectrum KGL over
a Dedekind domain D induces a multiplicative filtration of the algebraic K-theory of smooth D-schemes
with associated graded given by the Bloch–Levine motivic complexes; this is the motivic filtration F ∗K
of algebraic K-theory. This filtration is represented by the motivic spectrum kgl ∈ MSD in the sense
that FnK = Ω∞−n

P1 kgl for all n ∈ Z. Moreover, the structure maps FnK → Fn−1K are induced by the

multiplication by the Bott element β : P1 → kgl, and we have

kgl[β−1] = KGL and kgl/β = HZ.
In a similar way, the motivic filtration of p-complete topological cyclic homology TCp defined by Bhatt,
Morrow, and Scholze in [BMS19] is represented by a motivic spectrum tcp ∈ MSS over any derived
scheme S, with a Bott element β : P1 → tcp such that

tcp[β−1] = TCp and tcp/β = HZsyn
p .

Over a Dedekind domain D, we show that the cyclotomic trace K→ TCp is compatible with these motivic
filtrations (Proposition 6.12), which gives rise to a morphism of motivic E∞-ring spectra kgl → tcp in
MSD.

Theorem 1.5 (Examples of 1A1 -modules).

(i) (Localizing invariants, Example 6.4) Let E be a localizing invariant of Z-linear ∞-categories and
let ES ∈ MSS be the associated motivic spectrum over a qcqs derived scheme S. If S is regular
noetherian or if E is truncating, then ES is a 1A1-module.

(ii) (Rational orientable ring spectra, Example 6.18) If S is regular noetherian, then any rational
orientable commutative ring in hMSS is a 1A1-module.

(iii) (p-adic étale cohomology theories, Corollary 6.15, Examples 6.16 and 6.17) Let S be p-completely
smooth over a Dedekind domain and let (A, I) be a prism with a map S∧

p → Spf(A/I). Then the
following motivic spectra are E∞-algebras over kgl and hence over 1A1 in MSS:

tcp, tpp, tc−p , thhp, TCp, TPp, TC−
p , THHp, HZsyn

p , HZ∆
p , HA∆.

Here, the motivic spectra tcp, tpp, tc−p , and thhp represent the Bhatt–Morrow–Scholze motivic

filtrations of TCp, TPp, TC−
p , and THHp, respectively, HZsyn

p = tcp/β represents syntomic

cohomology (of p-adic formal schemes), HZ∆
p = tpp/β represents absolute prismatic cohomology,

and HA∆ represents prismatic cohomology relative to (A, I).
In particular, if k is a perfect field of characteristic p, then the crystalline cohomology motivic

spectrum HW (k)crys = HW (k)∆ is an E∞-algebra over 1A1 in MSk.

Remark 1.6. Given that almost all examples of cohomology theories are provably or conjecturally
1A1-modules over regular noetherian schemes, one may reasonably ask if the motivic sphere itself is A1-
invariant over such bases. While an answer to this question is probably out of reach in this generality,
the case of a base field seems approachable, especially in characteristic zero. One can also enforce a
positive answer by replacing MSS with Mod1A1

(MSS) without any obvious undesirable side effects (at
least when S is a field or a Dedekind domain).

Theorem 1.4(ii) suggests that E†(U) may be interpreted as the “logarithmic E-cohomology” of the
pair (X, ∂X), but it is defined without reference to a choice of compactification (which may not even
exist in general). We make this interpretation more precise for crystalline cohomology by comparing the
A1-colocalization of HW (k)crys with the logarithmic crystalline cohomology defined by Kato [Kat89]:

Theorem 1.7 (Comparison with rigid and logarithmic crystalline cohomology, Proposition 6.27). Let k
be a perfect field of characteristic p > 0.

(i) The motivic spectrum HW (k)crys,†[1/p] represents Berthelot’s rigid cohomology.
(ii) For a smooth k-scheme U , suppose that there is a smooth projective compactification X such that

∂X = X − U is a strict normal crossings divisor. Then there is a W (k)-linear isomorphism

HW (k)crys,†(U) ≃ RΓcrys((X, ∂X)/W (k)),
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where the right hand side is logarithmic crystalline cohomology; in particular, the latter does not
depend on the choice of compactification.

The question of independence of the choice of compactification has been open since the introduction
of logarithmic crystalline cohomology. Mokrane [Mok93] proved it under resolution of singularities.

In Section 7, we show that the algebraic cobordism spectrum MGL can be built in a familiar way
using Grassmannians (which is less obvious than in A1-homotopy theory). Atiyah duality then implies
that MGL is lisse, i.e., a colimit of a dualizable objects in MSS . This in turn implies a homological
version of the Conner–Floyd isomorphism of [AHI24]:

Theorem 1.8 (Homological Conner–Floyd isomorphism, Corollary 7.8). Let S be a qcqs derived scheme.
There is an isomorphism of bigraded multiplicative homology theories

MGL∗∗(−)⊗L Z[β±1] ≃ KGL∗∗(−) : MSS → AbZ×Z.

The fact that MGL is lisse further allows us to adapt the proof of the motivic Landweber exact functor
theorem of Naumann–Spitzweck–Østvær [NSØ09] to our non-A1-invariant setting, which is the content
of Section 8. This theorem associates to certain graded modules M over the Lazard ring L a motivic
spectrum Φ(M) ∈ MSS with an isomorphism of homology theories Φ(M)∗∗(−) ≃ MGL∗∗(−) ⊗L M .
For example, Theorem 1.8 says that the motivic K-theory spectrum KGL is obtained in this way from
the multiplicative formal group law x + y − βxy on Z[β±1]. It turns out that this construction Φ has
good functorial and multiplicative properties, at least modulo phantom maps, which is enough for some
applications. To succintly formulate these properties, we consider on the one hand a certain symmetric

monoidal 1-category Mod♭,+
fg of flat modules over the moduli stack Mfg of formal groups, and on the

other hand the symmetric monoidal 1-category h̄MSlisse
S whose objects are lisse motivic spectra and

whose morphisms are those of hMSlisse
S modulo phantom maps.

Theorem 1.9 (Motivic Landweber exact functor theorem, Theorem 8.18). There is for any qcqs derived
scheme S a symmetric monoidal functor

Φ: Mod♭,+
fg → h̄MSlisse

S ,

natural in S, such that for any Z-graded L-module M that is flat over Mfg, we have an isomorphism

Φ(M)∗∗(−) ≃ MGL∗∗(−)⊗L M : MSS → AbZ×Z.

In Section 9, we use Theorems 1.8 and 1.9 to study P1-stable operations in algebraic K-theory. We
explicitly compute the bigraded endomorphism ring KGL∗∗

Λ KGL for any subring Λ ⊂ Q in terms of
the algebraic K-theory of the base scheme and the automorphisms of the multiplicative formal group
(Proposition 9.5). When Λ = Q, we recover the idempotents defined by Riou in A1-homotopy theory
[Rio10, Section 5], which induce a decomposition of KGLQ into eigenspaces of the Adams operations.
Along the way, we generalize to derived schemes a theorem of Soulé about the finiteness of the Adams
decomposition (Proposition 9.13(ii)). We then define the motivic spectrum HQ over any derived scheme
as the 0th Adams eigenspace of KGLQ; it is stable under arbitrary base change and represents Beilinson’s
rational motivic cohomology [Bei85, Section 2.2]. Over a regular noetherian scheme, HQ is A1-invariant
and coincides with the motivic spectrum introduced by Riou and further investigated by Cisinski and
Déglise in [CD19, Section 14]. Finally, as another application of Theorem 1.9, we prove:

Theorem 1.10. Let S be a derived scheme.

(i) (Idempotence of HQ, Theorem 9.16) The rational motivic cohomology spectrum HQ ∈ MSS is
an idempotent E∞-algebra.

(ii) (Characterization of HQ-modules, Proposition 9.19) A Q-linear motivic spectrum lies in the
image of the fully faithful embedding ModHQ(MSS) ↪→ MSS if and only if it admits a structure
of MGL-module in the homotopy category hMSS.

Note that even though HQ is the usual A1-invariant rational motivic cohomology spectrum when S
is regular noetherian, its idempotence in MSS is a stronger statement than its idempotence as an A1-
invariant motivic spectrum. A natural question that we do not pursue in this paper is whether Morel’s
isomorphism HQ ≃ 1+

Q holds in MSS . Here, 1Q = 1+
Q × 1−

Q is the decomposition of the rational motivic

sphere into the eigenspaces of the swap automorphism of P1 ⊗ P1. We expect this to be true in general
and record it as a conjecture:

Conjecture 1.11. For any derived scheme S, we have HQ ≃ 1+
Q in MSS.
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By Theorem 1.10(ii), this conjecture is equivalent to the orientability of the motivic ring spectrum 1+
Q .

Establishing this conjecture would be a first step towards answering the question of the A1-invariance of
the motivic sphere raised in Remark 1.6.

Conventions and notation. We generally use the same notation as in [AHI24], except that we use
the Nisnevich-local version of the ∞-category of motivic spectra:

MSS = SpP1(PNis,ebu(SmS ,Sp)).

Thus, the Morel–Voevodsky stable motivic homotopy∞-category is the full subcategory of MSS spanned
by the A1-invariant objects. Moreover, by [AHI24, Proposition 2.2], any motivic spectrum satisfies
smooth blowup excision.2

We write Map(X,Y ) for the mapping anima in an ∞-category, map(X,Y ) for the mapping spectrum
in a stable ∞-category, and Hom(X,Y ) for the internal Hom object in a monoidal ∞-category.

Given motivic spectra E,X ∈ MSS , we write

Ep,q(X) = π0Map(Σp−2qΣq
P11, X ⊗ E),

Ep,q(X) = π0Map(X,Σp−2qΣq
P1E),

and we let En(X) = E2n,n(X) and En(X) = E2n,n(X). We also write E(X) for the mapping spectrum
map(X,E).

A scheme is a derived scheme by default. Note that we often use hooked arrows ↪→ for immersions
of derived schemes, even though these are not monomorphisms. We write SchX for the ∞-category of
X-schemes and SmX ⊂ SchX for the full subcategory of smooth X-schemes. The superscript “fp” means
“of finite presentation”.

We write Vect(X) for the anima of finite locally free sheaves over a scheme X, and Pic(X) = Vect1(X)
for the subanima of invertible sheaves. For a sheaf E ∈ Vect(X), we denote by V(E) = Spec(SymE)
and P(E) = Proj(SymE) the associated vector and projective bundles. We denote by Ni = Li[−1] the
conormal sheaf of a quasi-smooth immersion i : Z ↪→ X, so that V(Ni)→ Z is the normal bundle of i.

Acknowledgments. We are especially grateful to Longke Tang, who shared with us his construction
of Gysin maps, to Jacob Lurie for suggesting the link between A1-colocalization and logarithmic coho-
mology theories, and to Dustin Clausen and Akhil Mathew for communicating with us about the filtered
cyclotomic trace.

Part I. Atiyah duality

2. Background on Gysin maps

Let S be a derived scheme. In [AHI24, Section 7], we constructed a symmetric monoidal functor

K(S)→ Pic(MSS), ξ 7→ Σξ1S ,

called the J-homomorphism, where K(S) is the K-theory anima of S, which is moreover natural in S. It
is induced by a symmetric monoidal structure on the functor

Vectepi(S)→ Pebu(SmS)∗, E 7→ P(E⊕ O)/P(E),

where Vectepi(S) is the ∞-category of finite locally free sheaves on S and epimorphisms. For a smooth
morphism f : X → S and an element ξ ∈ K(X), we define the Thom spectrum ThX(ξ) ∈ MSS to be the
motivic spectrum f♯Σ

ξ1X . Note that any fiber sequence F → E→ G in Perf(X) induces an isomorphism
E ≃ F ⊕ G in K(X), hence an isomorphism of Thom spectra

ThX(E) ≃ ThX(F ⊕ G).

Let PairS be the subcategory of the arrow category Sm∆1

S whose objects are closed embeddings and
whose morphisms are excess intersection squares

Z ′ X ′

Z X

2In fact, we will never directly use Nisnevich descent, and all results in this paper remain valid if we define MSS using
PZar,sbu; the proof of ambidexterity for projective spaces even works using PZar,ebu. To simplify the exposition, and

because they do not seem to be of any practical relevance, we chose not to keep track of such refinements.
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in the sense of [Kha21, Introduction], i.e., topologically cartesian squares such that the induced map
NZ/X |Z′ → NZ′/X′ is surjective (these are exactly the conditions under which there is an induced map

BlZ′(X ′)→ BlZ(X)). If
∫
SmS

Vectepi → SmS denotes the cartesian fibration classified by Vectepi, there

is an obvious symmetric monoidal functor

PairS →
∫
SmS

Vectepi, (Z ↪→ X) 7→ (Z,NZ/X).

Applying the J-homomomorphism yields a symmetric monoidal functor

(2.1) PairS → MSS , (Z ↪→ X) 7→ ThZ(NZ/X).

Furthermore, let TripleS be the subcategory of Sm∆2

S whose objects are composable pairs of closed
embeddings and whose morphisms are pairs of excess intersection squares. If S2Vectepi denotes the ∞-
category of short exact sequences of finite locally free sheaves (with epimorphisms as morphisms), there
is a symmetric monoidal functor

TripleS →
∫
SmS

S2Vectepi, (W ↪→ Z ↪→ X) 7→ (W,NZ/X |W ↪→ NW/X ↠ NW/Z).

Applying the J-homomorphism yields a symmetric monoidal functor

(2.2) TripleS → MS∆1

S , (W ↪→ Z ↪→ X) 7→ (ThW (NW/X) ≃ ThW (NZ/X |W ⊕NW/Z)).

Let Z ↪→ X be a closed embedding between smooth S-schemes. In [Tan24], Longke Tang constructs
a Gysin map

gys : X+ → ThZ(NZ/X)

in MSS , where NZ/X is the conormal sheaf of the embedding. The following theorem records the minimal
properties of Tang’s construction that we will need.

Theorem 2.3 (Tang).

(i) (Functoriality in pairs and linearity) The Gysin maps assemble into an SmS-linear functor

PairS → MS∆1

S , (Z ↪→ X) 7→ (gys : X+ → ThZ(NZ/X)),

natural in S, whose boundary PairS → MS∂∆1

S is given by (Z ↪→ X) 7→ Σ∞
P1X+ and (2.1). In

particular, we have for any E ∈ Vect(X) an E-twisted Gysin map

ThX(E) =
P(E⊕ OX)

P(E)

gys−−→
ThP(EZ⊕OZ)(NZ/X)

ThP(EZ)(NZ/X)
≃ ThZ(EZ ⊕NZ/X).

(ii) (Composition of closed immersions) The Gysin map X+ → ThX(Nid) = X+ is the identity,
naturally in X and in S. If Z ↪→ X and W ↪→ Z are closed embeddings in SmS, then there is a
commutative square

X+ ThZ(NZ/X)

ThW (NW/X) ThW (NZ/X |W ⊕NW/Z)

gys

gys gys

∼

in MSS, where the lower isomorphism comes from the fiber sequence NZ/X |W → NW/X → NW/Z

in Perf(W ). Moreover, these squares assemble into an SmS-linear functor

TripleS → MS∆1×∆1

S ,

natural in S, whose boundary TripleS → MS
∂(∆1×∆1)
S is given by three instances of (i) and one

instance of (2.2).
(iii) (Normalization) For any E ∈ Vect(S), the null-sequence

P(E)+ → P(E⊕ O)+
gys−−→ ThS(E)

in MSS obtained by applying (i) to the excess intersection square

∅ P(E)

S P(E⊕ O)

is a cofiber sequence.
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Remark 2.4. Theorem 2.3(i) is a coherent version of the following statement: if

Z ′ X ′

Z X

is a topologically cartesian square in SmS such that the induced map NZ/X |Z′ → NZ′/X′ is surjective,
then there is an induced commutative square

X ′
+ ThZ′(NZ′/X′)

X+ ThZ(NZ/X)

gys

gys

in MSS . Moreover, the SmS-linearity implies that we have for every Y ∈ SmS a commutative square

X+ ⊗ Y+ ThZ(NZ/X)⊗ Y+

(X × Y )+ ThZ×Y (NZ×Y/X×Y ).

gys⊗id

∼ ∼

gys

Remark 2.5. Let Z ↪→ X be a closed embedding in SmS and let U = X − Z be the open complement.
Applying the functoriality of Gysin maps to the cartesian square

∅ U

Z X,

we obtain a null-homotopy of the composition

U+ → X+
gys−−→ ThZ(NZ/X)

in MSS . Unlike in A1-homotopy theory, this is almost never a cofiber sequence in MSS . For example, by
Theorem 2.3(iii), the fiber of the Gysin map P1

+ → Th∞(N∞) is {0}+ and not A1
+.

Construction 2.6 (Gysin transformation). Let f : X → S be a smooth morphism and i : Z ↪→ X a
closed embedding such that fi is smooth. Then there is an SmS-linear functor SmX → PairS that sends
Y ∈ SmX to the pair YZ ↪→ Y . Composing it with the functor of Theorem 2.3(i), we get an SmS-linear
natural transformation

(2.7) f♯Σ
∞
P1(−)+ → (fi)♯Σ

Nii∗Σ∞
P1(−)+ : SmX → MSS .

By the universal property of MSX as a PNis,ebu(SmS ,Sp)-linear ∞-category [AI23, Proposition 1.2.2],
composition with Σ∞

P1(−)+ : SmX → MSX induces an isomorphism of ∞-categories

(2.8) FunL
MSS

(MSX ,MSS)
∼−→ FunNis,ebu

SmS
(SmX ,MSS),

where FunC means C-linear functors, FunL means colimit-preserving functors, and FunNis,ebu means
functors that send Nisnevich sieves and elementary blowup squares to colimit diagrams. We then define
the Gysin transformation

gys(f, i) : f♯ → g♯Σ
Nii∗ : MSX → MSS

to be the MSS-linear natural transformation obtained from (2.7) using the isomorphism (2.8).

Proposition 2.9 (Properties of Gysin transformations).

(i) (Base change) Given a cartesian diagram

W Y T

Z X S,

k

c

g

b a

i f
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where i is a closed immersion and f and fi are smooth, the following square commutes:

g♯b
∗ (gk)♯Σ

Nkc∗i∗

a∗f♯ a∗(fi)♯Σ
Nii∗.

gys(g,k)b∗

∼

BC BC

∼

a∗gys(f,i)

(ii) (Base independence) Given morphisms

Z X S T ,i f a

where i is a closed immersion and f , fi, and a are smooth, the following square commutes:

a♯f♯ a♯(fi)♯Σ
Nii∗

(af)♯ (afi)♯Σ
Nii∗.

a♯gys(f,i)

∼ ∼
gys(af,i)

(iii) (Linearity) Given morphisms

Z X S,i f

where i is a closed immersion and f and fi are smooth, and given A ∈ MSX and B ∈ MSS, the
following square commutes:

f♯(A⊗ f∗(B)) (fi)♯Σ
Ni(i∗(A)⊗ (fi)∗(B))

f♯(A)⊗B (fi)♯Σ
Nii∗(A)⊗B.

∼

PF

gys(f,i)

PF

∼

gys(f,i)⊗id

(iv) (Composition of closed immersions) The map gys(f, id) is the identity, and given morphisms

W Z X S,k i f

where i and k are closed immersions and f , fi, and fik are smooth, the following square com-
mutes:

f♯ (fi)♯Σ
Nii∗

(fik)♯Σ
Nikk∗i∗ (fik)♯Σ

Nk+k∗Nik∗i∗.

gys(f,i)

gys(f,ik) gys(fi,k)

∼

Here, the isomorphism is induced by the fiber sequence k∗(Ni)→ Nik → Nk in Perf(W ).

Proof. (i) It suffices to build a square in FunSmS
(SmX ,MST ). By Theorem 2.3(i), there is a commutative

diagram of SmS-modules

SmX PairS MS∆1

S

SmY PairT MS∆1

T .

The boundary is an SmS-linear transformation between two functors SmX → MS∆1

T , i.e., a functor
∆1 ×∆1 → FunSmS

(SmX ,MST ). This is the desired square.
(ii) We consider the cartesian diagram

Z ×T S X ×T S S ×T S S

Z X S T .

ı̄

πZ

f̄

πX

ā

πS a

i f a
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There is an SmS-linear functor SmX → Pair∆
1

S sending U to the excess intersection square

UZ U

UZ ×T S U ×T S.

Composing with the Gysin map functor PairS → MS∆1

S and applying the isomorphism (2.8), we obtain
a commutative square

f♯ (fi)♯Σ
Nii∗

(āf̄)♯π
∗
X (āf̄ ı̄)♯Σ

Nı̄π∗
Zi

∗.

gys(f,i)

gys(āf̄ ,̄ı)

On the other hand, (i) gives a commutative square

(āf̄)♯π
∗
X (āf̄ ı̄)♯Σ

Nı̄π∗
Zi

∗

a∗(af)♯ a∗(afi)♯Σ
Nii∗.

gys(āf̄ ,̄ı)

∼

BC BC

∼

a∗gys(af,i)

Combining these two squares and using the adjunction a♯ ⊣ a∗ gives the desired commutative square.
(iii) The natural transformation gys(f, i) is MSS-linear by construction.
(iv) This square is obtained from Theorem 2.3(ii) in the same way that the Gysin transformation was

obtained from Theorem 2.3(i), using the functor SmX → TripleS sending Y to YW ↪→ YZ ↪→ Y . □

Remark 2.10 (Functoriality of Gysin transformations). Let
∫
PairS

MS→ PairS be the cartesian fibration

classified by

PairopS → Cat∞, (Z ↪→ X) 7→ MSX .

(i) There is an MSS-linear functor ∫
PairS

MS→ MS∆1

S ,

whose restriction to the fiber over Z ↪→ X is the associated Gysin transformation MSX → MS∆1

S .
To see this, consider the functor∫

PairS

Sm→ PairS , (Z ↪→ X,Y ∈ SmX) 7→ (YZ ↪→ Y ),

which is fiberwise SmS-linear. Composing it with the SmS-linear functor from Theorem 2.3(i)
and applying the isomorphism (2.8) fiberwise yields the claimed MSS-linear functor.

In the same way, there is an MSS-linear functor∫
TripleS

MS→ MS∆1×∆1

S

encoding the commutative squares of Proposition 2.9(iv).
(ii) The SmS-linear functor from Theorem 2.3(i) can also be extended to an SmS-linear functor∫

PairS

MS→ MS∆1

S ,

where the action of SmS on the source is given by

Y ⊗ (Z ↪→ X,E) = (Y × Z ↪→ Y ×X,π∗
XE).

Note that this differs from the SmS-linear functor of (i), which used the fiberwise SmS-action on
the source. However, the obvious maps

(Y × Z ↪→ Y ×X,π∗
XE)→ (Z ↪→ X,πX♯π

∗
XE)

are part of an oplax SmS-linear structure on the identity of
∫
PairS

MS, viewed as a functor from

the above SmS-module structure to the fiberwise one, which by smooth base change becomes

strict after composing with the functor to MS∆1

S .
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Remark 2.11 (Gysin map for Thom spectra). Let i : Z ↪→ X be a closed immersion in SmS and let
ξ ∈ K(X). Applying the Gysin transformation to Σξ1X yields a ξ-twisted version of the Gysin map

ThX(ξ)→ ThZ(Ni + i∗ξ).

When ξ comes from a finite locally free sheaf E ∈ Vect(X), this is by construction the E-twisted Gysin
map described in Theorem 2.3(i).

Composing the functor of Remark 2.10(ii) with the J-homomorphism, we obtain an extension of the
functor of Theorem 2.3(i) to an SmS-linear functor∫

PairS

K→ MS∆1

S ,

sending (Z ↪→ X, ξ) to the ξ-twisted Gysin map above. Similarly, we can extend the functor of Theo-
rem 2.3(ii) to an SmS-linear functor ∫

TripleS

K→ MS∆1×∆1

S .

3. The geometric evaluation map

Here, we construct the geometric dual and the geometric evaluation map of Thom spectra over smooth
separated S-schemes, which play an instrumental role in our proofs of Atiyah duality and ambidexterity.
The geometric evaluation map induces a comparison map between the geometric dual and the categorical
dual, which will ultimately be shown to be an isomorphism for Thom spectra over smooth projective
S-schemes (see Corollary 5.15). The naturality properties of this comparison map are also investigated.

Construction 3.1 (Geometric evaluation map and comparison map). Let X be a smooth separated
S-scheme and let ξ ∈ K(X). The geometric evaluation map

evX,ξ : ThX(ξ)⊗ ThX(−ξ − ΩX)→ 1S

is defined as the composition

ThX(ξ)⊗ ThX(−ξ − ΩX) ≃ ThX×X(ξ ⊞ (−ξ − ΩX))
gys−−→ ThX(Nδ − ΩX) ≃ X+ → 1S ,

where δ : X ↪→ X ×X is the diagonal embedding, whose conormal sheaf Nδ is identified with ΩX via the
canonical isomorphisms

Nδ ≃ δ∗Ωπ2
≃ δ∗π∗

1(ΩX) ≃ ΩX .

The Thom spectrum ThX(−ξ − ΩX) is called the geometric dual of ThX(ξ) in MSS .
By adjunction, the geometric evaluation map induces the comparison map

compX,ξ : ThX(−ξ − ΩX)→ ThX(ξ)∨

in MSS , where E∨ = Hom(E,1S) denotes the categorical dual of a motivic spectrum E.

Remark 3.2. The choice of isomorphism Nδ ≃ ΩX used in the definition of evX,ξ is arbitrary, but it will
be important to remember this choice. The other choice yields a pairing that differs from evX,ξ by the
automorphism ⟨−1⟩rkΩX of 1X , which is nontrivial when X is odd-dimensional and −1 is not a square.

Construction 3.3 (Gysin null-sequences). Let X be a smooth S-scheme and let Y and Z be smooth
closed subschemes in X with Y ∩ Z = ∅. The cartesian square

∅ Y

Z X

is then a morphism from ∅ ↪→ Y to Z ↪→ X in the category PairS , inducing a null-sequence

ThY (ξ|Y )
inc−−→ ThX(ξ)

gys−−→ ThZ(NZ + ξ|Z)

in MSS for every ξ ∈ K(X).
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Proposition 3.4 (Bivariant naturality of the comparison map). Let X be a smooth separated S-scheme
and let Y and Z be smooth closed subschemes in X with Y ∩ Z = ∅. Then the comparison maps
compZ,ξ+NZ

, compX,ξ, and compY,ξ participate in a morphism of null-sequences

(3.5)

ThZ(−ξ − ΩX) ThX(−ξ − ΩX) ThY (−ξ − ΩY )

ThZ(ξ + NZ)∨ ThX(ξ)∨ ThY (ξ)∨,

inc gys

gys∨ inc∨

where both rows are instances of Construction 3.3.

Proof. Unpacking the duals, we are led to consider the following diagram in MSS (where we omit ξ for
simplicity):

(3.6)

0 Y+ ⊗ ThY (−ΩY )

Y+ ⊗ ThZ(−ΩX) Y+ ⊗ ThX(−ΩX)

0

0 Y+

X+ ⊗ ThZ(−ΩX) X+ ⊗ ThX(−ΩX)

ThZ(NZ)⊗ ThZ(−ΩX)

Z+ X+→ 1S .

Here, the horizontal and vertical arrows are induced by closed immersions in SmS , while the other arrows
are the obvious Gysin maps. The left prism is induced by the excess intersection squares

∅ ∅ Y × Z

Z Z × Z X × Z.

The prism at the top is similarly induced by the excess intersection squares

∅ ∅ Y × Z

Y Y × Y Y ×X.

Finally, the cube is induced by the following commutative square in PairS :

(∅ ↪→ Y × Z) (Y ↪→ Y ×X)

(Z ↪→ X × Z) (X ↪→ X ×X).

The bottom (resp. right) face of (3.6) corresponds to the left (resp. right) square in (3.5). The uppermost
(resp. leftmost) 0 in (3.6) corresponds to the null-homotopy of the first (resp. second) row in (3.5) (here,
we use the SmS-linearity of Gysin maps from Remark 2.11). Finally, the factorization through the middle
0 in (3.6) identifies the two resulting null-homotopies of the composite map ThZ(−ξ −ΩX)→ ThY (ξ)∨

in (3.5). □

Lemma 3.7. Consider a cartesian square

Z Y

X S,

ḡ

f̄

h g

f
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where f and g are smooth. Then the following diagram commutes for all A ∈ MSX and B ∈ MSY :

f♯(A⊗ f∗g♯(B)) f♯(A⊗ ḡ♯f̄∗(B))

f♯(A)⊗ g♯(B) h♯(ḡ
∗(A)⊗ f̄∗(B))

g♯(g
∗f♯(A)⊗B) g♯(f̄♯ḡ

∗(A)⊗B).

∼

PF

BC
∼

PF

∼

∼ PF

PF ∼

BC
∼

Proof. This follows from the lax monoidal structure of

hMS∗
♯ : Span(Sch, all, smooth)→ Cat1, (X

f←− Z g−→ Y ) 7→ g♯f
∗. □

Proposition 3.8. Let X be a smooth separated S-scheme and let ξ ∈ K(X). Then the pairing

evX,ξ : ThX(ξ)⊗ ThX(−ξ − ΩX)→ 1S

of Construction 3.1 is skew-symmetric in the following sense:

evX,ξ ◦ σ = evX,−ξ−ΩX
⟨−1⟩rkΩX ,

where σ is the swap map and ⟨−1⟩ is the image of the nontrivial loop by the J-homomorphism ΩK(Z)→
Aut(1Z).

Proof. Let f : X → S be the structure map. The pairing evX,ξ is by definition

f♯Σ
ξ1X ⊗ f♯Σ−ξ−Ωf1X

PF≃f♯Σξf∗f♯Σ
−ξ−Ωf1X

BC≃ f♯Σ
ξπ2♯π

∗
1Σ−ξ−Ωf1X

gys(π2,δ)−−−−−−→f♯ΣξΣNδΣ−ξ−Ωf1X ≃ f♯1X
ε−→ 1S .

The following commutative diagram (with A = Σξ1X and B = Σ−ξ−Ωf1X) shows that the pairing with
values in f♯1X is already skew-symmetric in the desired sense:

f♯(A⊗ f∗f♯(B)) f♯(A⊗ π2♯π∗
1(B)) f♯(A⊗ ΣNδB) f♯(A⊗ ΣΩfB)

f♯(A)⊗ f♯(B) h♯(π
∗
2(A)⊗ π∗

1(B)) f♯Σ
Nδ(A⊗B)

f♯(f
∗f♯(A)⊗B) f♯(π1♯π

∗
2(A)⊗B) f♯(Σ

NδA⊗B) f♯(Σ
ΩfA⊗B)

f♯(f
∗f♯(A)⊗B) f♯(π2♯π

∗
1(A)⊗B) f♯(Σ

NδA⊗B) f♯(Σ
ΩfA⊗B).

∼

PF

BC
∼

gys(π2,δ) Σα2

∼

Σ−id

∼gys(h,δ)

PF

∼

∼ PF

∼

∼

PF ∼

BC
∼

gys(π1,δ)

BC

∼

Σ−id

∼

Σα1

∼

BC
∼

gys(π2,δ) Σα2

∼

Here:

• the big left rectangle commutes by Lemma 3.7;
• the two central upper rectangles commute by the MS-linearity and base independence of Gysin

transformations;
• the rectangle of base change isomorphisms is induced by the cartesian squares

X ×S X X

X ×S X X

X S,

σ

π1

π2

id

f

π1

π2

f

f

where σ is the swap map;
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• the central bottom rectangle commutes by the compatibility of Gysin transformations with base
change, applied to the following cartesian diagram:

X X ×S X X

X X ×S X X

δ

id σ

π1

id

δ π2

(note that the automorphism of Nδ induced by σ is −id);
• the isomorphism α2 is Nδ ≃ δ∗Ωπ2 ≃ δ∗π∗

1Ωf ≃ Ωf and similarly for α1, so that α1α
−1
2 = −id;

therefore, the upper and lower right rectangles commute. □

4. Duals of projective spaces

Here, we identify the duals of projective spaces in MSS with their geometric duals. More precisely,
we show that the comparison map

compPn,O(−1)m : ThPn(−O(−1)m − ΩPn)→ ThPn(O(−1)m)∨

is an isomorphism for all n,m ≥ 0. We will argue by induction on n, using Proposition 3.4 for the disjoint
closed subschemes P0,Pn−1 ⊂ Pn. The nontrivial part is to show that the null-sequences in loc. cit. are
in fact cofiber sequences.

Lemma 4.1. Let E and F be finite locally free sheaves on a derived scheme. The commutative square

PP(E)(F) PP(E)(O(1)⊕ F)

P(F) P(E⊕ F)

is a universal strict virtual Cartier divisor over P(F) ↪→ P(E⊕F). In particular, there is an isomorphism

BlP(F)(P(E⊕ F)) ≃ PP(E)(O(1)⊕ F)

identifying the exceptional divisor with PP(E)(F).

Proof. The embedding P(F) ↪→ P(E ⊕ F) is the vanishing locus of the tautological map E → O(1)
on P(E ⊕ F). Thus, by the universal property of derived blowup of a vector bundle section [Ann22a,
Proposition 2.7], the points of the blowup are commutative squares

E L

E⊕ F L′

of quasi-coherent sheaves on the blowup, where L and L′ are invertible (see also [AHI24, Lemma 3.2]).
On the other hand, the points of PP(E)(O(1) ⊕ F) are pairs of surjections E ↠ L and L ⊕ F ↠ L′.

This data is clearly equivalent to that of the commutative square above. The exceptional divisor is the
vanishing locus of L→ L′, which coincides with PP(E)(F). □

Construction 4.2 (Thom spaces of twists by divisors). Let X ∈ SmS , let D ⊂ X be a smooth divisor,

and let E be a finite locally free sheaf on X. We construct a zigzag in Smsncd
S [AHI24, Definition 2.4]

PX(E⊕ O)← B → PX(E(D)⊕ O)

inducing isomorphisms

ThX(E)/ThD(E)
∼←− B/∂B ∼−→ ThX(E(D))/ThD(E(D))

in Psbu(SmS)∗ (or in Pebu(SmS)∗ if D ↪→ X is elementary). Let

b1 : B1 → PX(E⊕ O) and b2 : B2 → PX(E(D)⊕ O)

be the blowups of PD(O) ↪→ PX(E ⊕ O) and PD(E(D)) ↪→ PX(E(D) ⊕ O), respectively. The functor of
points of these blowups may be described using the universal property of blowups of vanishing loci (see
[Ann22b, Theorem 122] or [AHI24, Lemma 3.2]):
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• An X-morphism to B1 corresponds to a surjection

E⊕ O ↠ L1

of locally free sheaves, where L1 is invertible, and a factorization

E(D)⊕ L1 L1(D)

M1

through a surjection to an invertible sheaf M1. The vanishing locus of M1 → L1(D) is the
exceptional divisor E1 of the blowup.

• An X-morphism to B2 corresponds to a surjection

E(D)⊕ O ↠ L2

of locally free sheaves, where L2 is invertible, and a factorization

O(D)⊕ L2 L2(D)

M2

through a surjection to an invertible sheaf M2. The vanishing locus of M2 → L2(D) is the
exceptional divisor E2 of the blowup.

We note that in both cases, since the composite Li → Mi → Li(D) is the identity tensored with the
tautological map O→ O(D), so is the reverse composite Mi → Li(D)→Mi(D).

We claim that B1 and B2 can be identified in such a way that L2 = M1 and M2 = L1(D):

• Over B1, the composition

E(D)⊕ O→ E(D)⊕ L1 ↠ M1

is a surjection, which defines a mapB1 → PX(E(D)⊕O). Indeed, the vanishing loci of E(D)→M1

and O→M1 are strict transforms of PX(O) and PD(E⊕O)∪ PX(E), respectively, and these are
disjoint.

Furthermore, we have a factorization

O(D)⊕M1 M1(D).

L1(D)

The vanishing loci of the maps O(D)→ L1(D) and M1 → L1(D) are PX(E) and the exceptional
divisor, respectively. Since they are disjoint, the vertical map is surjective. This defines a map
B1 → B2.

• Over B2, the composition

E(D)⊕ O(D)→ L2 ⊕ O(D) ↠ M2

is a surjection, which defines a map B2 → PX(E⊕O). Indeed, the vanishing loci of E(D)→M2

and O(D) → M2 are strict transforms of PX(O) ∪ PD(E(D) ⊕ O) and PX(E(D)), respectively,
and these are disjoint.

Furthermore, we have a factorization

E(D)⊕M2(−D) M2.

L2

The vanishing loci of the maps E(D) → L2 and M2(−D) → L2 are PX(O) and the exceptional
divisor, respectively. Since they are disjoint, the vertical map is a surjection. This defines a map
B2 → B1.

It is clear from the construction that the maps B1 → B2 and B2 → B1 are inverse to one another.
Finally, we define relative strict normal crossings divisors ∂Bi on Bi as follows:

• The smooth components of ∂B1 are the strict transforms D1 and P1 of PD(E ⊕ O) and PX(E),
as well as the exceptional divisor E1.
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• The smooth components of ∂B2 are the strict transforms D2 and P2 of PD(E(D) ⊕ O) and
PX(E(D)), as well as the exceptional divisor E2.

By smooth blowup excision [AHI24, Proposition 2.7], the maps bi induce isomorphisms

B1/∂B1
∼−→ PX(E⊕ O)/(PD(E⊕ O) ∪ PX(E)) ≃ ThX(E)/ThD(E),

B2/∂B2
∼−→ PX(E(D)⊕ O)/(PD(E(D)⊕ O) ∪ PX(E(D))) ≃ ThX(E(D))/ThD(E(D))

in Psbu(SmS)∗. As the isomorphism B1 ≃ B2 identifies D1 with E2, P1 with P2, and E1 with D2, we

obtain the desired zigzag in Smsncd
S .

Definition 4.3. Let X be a smooth S-scheme, let ξ ∈ K(X), and let Y, Z ⊂ X be smooth closed
subschemes. We say that (X,Y, Z, ξ) is a Gysin quadruple if Y ∩ Z = ∅ and if the null-sequence

ThY (ξ)
inc−−→ ThX(ξ)

gys−−→ ThZ(NZ + ξ)

of Construction 3.3 is a cofiber sequence in MSS .

Proposition 4.4. Let X be a smooth S-scheme, let ξ ∈ K(X), and let Y,Z ⊂ X be smooth closed
subschemes with Y ∩ Z = ∅.

(i) For any E ∈ Vect(S), (P(E⊕ O),P(E), S, 0) is a Gysin quadruple.
(ii) Let ζ ∈ K(S). Then (X,Y, Z, ξ) is a Gysin quadruple if and only if (X,Y, Z, ξ + ζ) is.

(iii) Let B be the blowup of X in Y and let E be the exceptional divisor. Then (X,Y, Z, ξ) is a Gysin
quadruple if and only if (B,E,Z, ξ) is.

(iv) Let D be a smooth divisor on X with D ∩ Z = ∅ and let E ∈ Vect(X). Then (X,D,Z,E) is a
Gysin quadruple if and only if (X,D,Z,E(D)) is.

Proof. (i) This is exactly Theorem 2.3(iii).
(ii) This follows from the MSS-linearity of Gysin maps.
(iii) This follows from smooth blowup excision.
(iv) Consider the zigzag of isomorphisms

ThX(E)/ThD(E)
∼←− B/∂B ∼−→ ThX(E(D))/ThD(E(D))

from Construction 4.2, which is obtained by taking the total cofibers of the following cubes:

∅ ∅

PD(E) PD(E(D)⊕ O)

PD(E) PX(E)

PPD(E)(O(1)⊕ O) B

↙ ↘

∅ ∅

PD(O) PD(O)

PD(E) PX(E)

PD(E⊕ O) PX(E⊕ O)

PD(E) PD(E)

PD(E) PD(E(D)⊕ O)

PD(E) PX(E)

PD(E) PX(E(D)⊕ O).

Since D ∩ Z = ∅, the cube

∅ ∅

∅ ∅

∅ PZ(E)

∅ PZ(E⊕ O)
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maps compatibly via closed immersions to each of the cubes above, defining a lift of the above diagram

Tw(∆1) × (∆1)3 → SmS to PairS . Applying the functor PairS → MS∆1

S from Theorem 2.3(i) to this
diagram and taking the total cofibers of the resulting six cubes, we obtain a commutative diagram

ThX(E)/ThD(E) B/∂B ThX(E(D))/ThD(E(D))

ThZ(NZ ⊕ E) ThZ(NZ ⊕ E) ThZ(NZ ⊕ E)

gys

∼ ∼

gys gys

in MSS , where the first and last vertical maps are induced by the given null-sequence for ξ = E and
ξ = E(D), respectively. Thus, the first vertical map is an isomorphism if and only if the last one is. □

Corollary 4.5. Let E and F be finite locally free sheaves on S and let ξ ∈ K(P(E ⊕ F)). Then the
null-sequence

ThP(F)(ξ)
inc−−→ ThP(E⊕F)(ξ)

gys−−→ ThP(E)(F(−1) + ξ)

from Construction 3.3 is a cofiber sequence in the following cases:

(i) ξ = H(n) for some H ∈ Vect(S) and n ∈ Z;
(ii) ξ = −ΩP(E⊕F) −H(−1) for some H ∈ Vect(S).

Proof. In each case, we show that we can reach ξ using the moves from Proposition 4.4. Let b : B =
PP(E)(F(−1) ⊕ O) → P(E ⊕ F) be the blowup with exceptional divisor E = PP(E)(F) as in Lemma 4.1.
By Proposition 4.4(iii), it suffices to show that (B,E,P(E), b∗(ξ)) is a Gysin quadruple (which now lives
over P(E)). By Proposition 4.4(i), we know that (B,E,P(E), 0) is a Gysin quadruple. Note that

b∗(O(1)) = p∗(O(1))(E),

where p : B → P(E) is the structure map.
(i) We have b∗(H(n)) = p∗(H(n))(nE), so we can conclude using Proposition 4.4(ii,iv).
(ii) Let Ω = ΩP(E⊕F)/S . We consider the Euler fiber sequence over P(E⊕ F) and its dual:

Ω→ (E⊕ F)(−1)→ O,(4.6)

O(−1)→ (E⊕ F)∨ → Ω∨(−1).(4.7)

These imply the equations

−Ω = O− (E⊕ F)(−1),

−O(−1) = Ω∨(−1)− (E⊕ F)∨,

whence
−Ω−H(−1) = (E⊕ F ⊕H)⊗ Ω∨(−1) + O− (E⊕ F ⊕H)⊗ (E⊕ F)∨

in K(P(E⊕ F)). By Proposition 4.4(ii), it will suffice to show that

(P(E⊕ F),P(F),P(E),H ⊗ Ω∨(−1))

is a Gysin quadruple for any H ∈ Vect(S). By Proposition 4.4(iii,iv), this is equivalent to the statement
that

(B,E,P(E), b∗(H ⊗ Ω∨(−1))(E))

is a Gysin quadruple. If we pull back the fiber sequence (4.7) to the blowup and tensor it with H(E),
we obtain the equation

b∗(H ⊗ Ω∨(−1))(E) = (H ⊗ (E⊕ F)∨)(E)− p∗(H ⊗ O(−1))

in K(B). We now conclude using Proposition 4.4(ii,iv). □

Theorem 4.8. The comparison maps

compPn,O(−1)m : ThPn(−O(−1)m − ΩPn)→ ThPn(O(−1)m)∨

are isomorphisms for all n ≥ −1 and m ≥ 0.

Proof. We use induction on n, the cases n = −1 and n = 0 being trivial (the case n = 0 uses that the
Gysin map of the identity embedding is the identity). By Proposition 3.4, the comparison maps assemble
into a morphism of null-sequences

ThPn−1(−O(−1)m − ΩPn) ThPn(−O(−1)m − ΩPn) ThS(−Om)

ThPn−1(O(−1)m+1)∨ ThPn(O(−1)m)∨ ThS(Om)∨,

inc gys

gys∨ inc∨
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in which both sequences are cofiber sequences by Corollary 4.5. By induction hypothesis, the left and
right vertical maps are isomorphisms, hence also the middle one. □

5. Ambidexterity and Atiyah duality

Let f : X → S be a smooth morphism of derived schemes. We define the functor f! : MSX → MSS by

f! = f♯ ◦ Σ−Ωf .

It has a right adjoint f ! : MSS → MSX given by

f ! = ΣΩf ◦ f∗.

Using the naturality and monoidality of the J-homomorphism ξ 7→ Σξ, we deduce the following properties:

• (Functoriality) Let g : Y → X be another smooth morphism. Then there is a canonical isomor-
phism

(fg)! ≃ f!g!.
This uses the fiber sequence g∗Ωf → Ωfg → Ωg in Perf(Y ).
• (Base change) For any cartesian square

X ′ X

S′ S,

h

f ′ f

g

there is a canonical isomorphism

g∗f! ≃ f ′!h∗.
• (Projection formula) The functor f! is MSS-linear. In particular, for any A ∈ MSX and B ∈ MSS ,

there is a canonical isomorphism

f!(A⊗ f∗(B)) ≃ f!(A)⊗B.

These properties are clearly coherent, in the sense that they define a lax symmetric monoidal functor

MS∗
! : Span(Sch, all, smooth)→ Cat∞, (X

f←− Z g−→ Y ) 7→ g!f
∗.

This coherence will not be needed in the sequel, however.

Construction 5.1 (Gysin transformation). Consider a commutative triangle

Z X

S,

i

g
f

where f and g are smooth and i is a closed immersion. There is then a canonical fiber sequence

Ni → i∗(Ωf )→ Ωg

in Perf(Z), inducing an isomorphism i∗(Ωf ) ≃ Ni + Ωg in K(Z), whence and isomorphism

Σ−Ωg ≃ ΣNiΣ−i∗(Ωf )

of endofunctors of MSZ . Using this isomorphism, the Gysin transformation gys(f, i) : f♯ → g♯Σ
Nii∗ of

Construction 2.6 may be rewritten as

gys(f, i) : f! → g!i
∗.

Remark 5.2 (Properties of Gysin transformations). For convenience, we rewrite the main properties of
Gysin transformations (Proposition 2.9) using the shriek functors:

(i) (Base change) Given a cartesian diagram

W Y T

Z X S,

k

c

g

b a

i f
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where i is a closed immersion and f and fi are smooth, the following square commutes:

g!b
∗ (gk)!c

∗i∗

a∗f! a∗(fi)!i
∗.

gys(g,k)b∗

∼

BC BC

∼

a∗gys(f,i)

(ii) (Base independence) Given morphisms

Z X S T ,i f a

where i is a closed immersion and f , fi, and a are smooth, the following square commutes:

a!f! a!(fi)!i
∗

(af)! (afi)!i
∗.

a!gys(f,i)

∼ ∼

gys(af,i)

(iii) (Linearity) Given morphisms

Z X S,i f

where i is a closed immersion and f and fi are smooth, and given A ∈ MSX and B ∈ MSS , the
following square commutes:

f!(A⊗ f∗(B)) (fi)!(i
∗(A)⊗ (fi)∗(B))

f!(A)⊗B (fi)!i
∗(A)⊗B.

∼
PF

gys(f,i)

PF

∼

gys(f,i)⊗id

(iv) (Composition of closed immersions) The map gys(f, id) is the identity, and given morphisms

W Z X S,k i f

where i and k are closed immersions and f , fi, and fik are smooth, the following triangle
commutes:

f! (fi)!i
∗

(fik)!k
∗i∗.

gys(f,i)

gys(f,ik) gys(fi,k)i∗

Note that the isomorphism in Proposition 2.9(iv) disappears due to the following composition in
K(W ) being the identity:

−Ωfik ≃ −Ωf + Nik ≃ −Ωf + Ni + Nk ≃ −Ωfi + Nk ≃ −Ωfik.

(This relation is witnessed by the 3-simplex Ωf → Ωfi → Ωfik in the S•-construction.)

Construction 5.3 (Trace map). Let f : X → S be a smooth separated morphism and consider the
diagram

X

X ×S X X

X S,

δ

idX

idX
π1

π2

f

f

where the diagonal δ is a closed immersion. We define the trace

εf : f∗f! → idMSX

as the composition

f∗f!
BC≃ π2!π

∗
1

gys(π2,δ)−−−−−−→ idX!δ
∗π∗

1 ≃ idMSX
.

Note that εf is an MSS-linear transformation. By adjunction, εf is equivalent to a natural transformation

αf : f! → f∗.
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Definition 5.4. Let f : X → S be a smooth separated morphism. We say that f is MS-ambidextrous if
the trace map εf : f∗f! → id of Construction 5.3 is the counit of an adjunction f∗ ⊣ f!, or equivalently
if αf : f! → f∗ is an isomorphism.

Lemma 5.5. Let f : X → S be a smooth separated morphism and let ξ ∈ K(X). Consider the pairing

evX,ξ : ThX(ξ)⊗ ThX(−ξ − Ωf )→ 1S

of Construction 3.1.

(i) The induced map compX,ξ : ThX(−ξ − Ωf )→ ThX(ξ)∨ coincides with (αf )Σ−ξ1X
.

(ii) The other induced map ThX(ξ)→ ThX(−ξ − Ωf )∨ coincides with (αf )
Σξ+Ωf 1X

⟨−1⟩rkΩf .

Proof. Note that there is an isomorphism ThX(ξ)∨ ≃ f∗Σ−ξ1X induced by the following pairing:

(5.6) f♯Σ
ξ1X ⊗ f∗Σ−ξ1X

PF≃ f♯Σ
ξf∗f∗Σ−ξ1X

ε−→ f♯Σ
ξΣ−ξ1X = f♯f

∗1S
ε−→ 1S .

Assertion (i) is thus equivalent to the commutativity of the triangle

f♯Σ
ξ1X ⊗ f!Σ−ξ1X

1S ,

f♯Σ
ξ1X ⊗ f∗Σ−ξ1X

evX,ξ

id⊗αf

(5.6)

which follows at once from the definitions of evX,ξ and of αf . Assertion (ii) follows from (i) and Propo-
sition 3.8. □

Proposition 5.7 (From duality to ambidexterity). Let f : X → S be a smooth separated morphism such
that:

(i) Σ∞
P1X+ ∈ MSS is dualizable;

(ii) the map compX,0 : ThX(−Ωf )→ (Σ∞
P1X+)∨ is an isomorphism.

Then f is MS-ambidextrous.

Proof. We adapt an argument of Ayoub [Ayo08, Proposition 1.7.16]. We first show that the maps

αff
∗ : f!f

∗ → f∗f
∗,

αff
! : f!f

! → f∗f
!

are isomorphisms. Both are MSS-linear natural transformations between lax MSS-linear functors. We
claim that all four functors f!f

∗, f!f
!, f∗f

∗, and f∗f
! are in fact strictly MSS-linear. This is clear for

the first two functors. For the last two functors, we have

f∗f
∗ = Hom(Σ∞

P1X+,−) and f∗f
! = Hom(ThX(−Ωf ),−),

so their MSS-linearity follows from the given dualizability of Σ∞
P1X+ and ThX(−Ωf ). Hence, it is enough

to show that the maps αff
∗ and αff

! are isomorphisms on the unit object 1S . For the first map this
follows from Lemma 5.5(i) and Assumption (ii). By Lemma 5.5(ii) and Assumption (i), the second map
is dual to the first up to the automorphism ⟨−1⟩rkΩf of f!f

!1S , hence it is also an isomorphism.
We now show that αf : f! → f∗ has an inverse on both sides. On the one hand, the composite

f∗
ηf∗−−→ f∗f

∗f∗
(αff

∗)−1

−−−−−−→ f!f
∗f∗

f!ε−−→ f!

is right inverse to αf by the triangle identity for f∗ ⊣ f∗:

f∗ f∗f
∗f∗ f!f

∗f∗

f∗ f!.

ηf∗

id

αf

∼

f∗ε f!ε

αf

Similarly, the composite

f∗
f∗η−−→ f∗f

!f!
(αff

!)−1

−−−−−−→ f!f
!f!

εf!−−→ f!
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is left inverse to αf by the triangle identity for f! ⊣ f !:

f∗ f!

f∗f
!f! f!f

!f! f!.

αf

f∗η f!η
id

∼
αf εf!

□

Lemma 5.8. Consider a cartesian square

Z Y

X S,

ḡ

f̄

h g

f

where f and g are smooth. Then the following diagram commutes for all A ∈ MSX and B ∈ MSY :

f!(A⊗ f∗g!(B)) f!(A⊗ ḡ!f̄∗(B))

f!(A)⊗ g!(B) h!(ḡ
∗(A)⊗ f̄∗(B))

g!(g
∗f!(A)⊗B) g!(f̄!ḡ

∗(A)⊗B).

∼

PF

BC
∼

PF

∼

∼ PF

PF ∼

BC
∼

Proof. This follows from the lax monoidal structure of

hMS∗
! : Span(Sch, all, smooth)→ Cat1, (X

f←− Z g−→ Y ) 7→ g!f
∗. □

Following [Gro61, Définition 5.5.2], we say that a morphism of derived schemes f : X → S is projective
if it factors as

X ↪→ P(E)→ S,

where the first map is a closed immersion and E ∈ QCoh(S)≥0 is a quasi-coherent sheaf of finite type
(i.e., perfect to order 0). We say that f : X → S is locally projective if this holds locally on S. Note that
a locally projective morphism is proper. Note also that if E ∈ QCoh(S)≥0 is of finite type, there exists
a surjection On+1 ↠ E locally on S. Hence, if f is locally projective, then it factors as X ↪→ Pn

S → S
locally on S.

Theorem 5.9 (Ambidexterity for smooth projective morphisms). Let f : X → S be smooth and locally
projective. Then f is MS-ambidextrous.

Proof. For X = Pn
S , the claim follows from Theorem 4.8 (with m = 0) and Proposition 5.7, noting that

Pn
+ is dualizable in MSS (since Pn/Pn−1 is invertible). By Zariski descent, we may thus assume given a

factorization

X P

S,

i

f
p

where p is MS-ambidextrous and i is a closed immersion. By definition of MS-ambidexterity, the trace
map εp : p∗p! → idMSP

is the counit of an adjunction p∗ ⊣ p!. Let ηp : idMSS
→ p!p

∗ be a compatible unit.
Since εp is MSS-linear, so is ηp. We then define

ηf : idMSS
→ f!f

∗

as the composition

idMSS

ηp−→ p!p
∗ gys(p,i)−−−−−→ f!f

∗.

As both ηp and gys(p, i) are MSS-linear, ηf is MSS-linear. We now show that ηf and εf are the unit and
counit of an adjunction f∗ ⊣ f! by verifying the triangle identities, i.e., that the following composites are
equal to the identity:

f∗
f∗ηf−−−→ f∗f!f

∗ εff
∗

−−−→ f∗,(5.10)

f!
ηff!−−−→ f!f

∗f!
f!εf−−→ f!.(5.11)
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We first show that (5.10) is the identity. By assumption, the composition

p∗
p∗ηp−−−→ p∗p!p

∗ εpp
∗

−−−→ p∗

is the identity. The lower composition in the following diagram is thus the identity, while the upper
composition is (5.10):

f∗ f∗f!f
∗ π2!π

∗
1f

∗

f∗p!p
∗ p̄!f̄

∗p∗ f∗

i∗π2!π
∗
1p

∗ i∗p∗.

f∗ηp

f∗ηf BC
∼

εff
∗

gysgys

BC
∼
∼

BC

i∗εpp
∗

gys

gys

BC

∼

BC

gys

This diagram commutes, showing that (5.10) is the identity:

• the left triangle commutes by definition of ηf ;
• the two squares commute by the compatibility of Gysin maps with base change, applied to the

following two cartesian diagrams:

X ×S X P ×S X X

X P S,

π1

p̄

f̄ f

i p

X P ×S X X

P P ×S P P ;

i

p̄

id×i i

δ π2

• the triangle of Gysin maps is induced by the composition of closed immersions

X X ×S X P ×S X

X;

δ

id

i×id

π2 p̄

• the triangle of base change isomorphisms is induced by the cartesian squares

P ×S X X

P ×S P P

P S.

p̄

id×i

f̄

i

f
π2

π1 p

p

We now show that (5.11) is the identity. Instead of proving this directly, we will reduce the claim to the
first triangle identity using formal properties of Gysin transformations. Let ι be the transformation (5.10)
evaluated on 1S :

ι : 1X
f∗ηf−−−→ f∗f!(1X)

εf−→ 1X .

We claim that the endomorphism (5.11) can be identified with f!(ι⊗−). As we have already shown that
ι is the identity, this will complete the proof.
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In the following diagram, the upper composition is (5.11) while the lower composition is f!(ι⊗−):

f! f!f
∗f! ≃ f!(1X ⊗ f∗f!(−)) f!(1X ⊗ π2!π∗

1(−)) f!(1X ⊗−)

1S ⊗ f!(−) f!(1X)⊗ f!(−) h!(π
∗
2(1X)⊗ π∗

1(−)) f!(1X ⊗−)

f!(f
∗(1S)⊗−) f!(f

∗f!(1X)⊗−) f!(π1!π
∗
2(1X)⊗−) f!(1X ⊗−)

f!(f
∗f!(1X)⊗−) f!(π2!π

∗
1(1X)⊗−) f!(1X ⊗−).

∼

ηff!

PF

∼

BC
∼

f!εf

gys(π2,δ)

ηf⊗id gys(h,δ)

PF

∼

∼ PF

PF ∼

f!(f
∗ηf⊗id)

∼ PF

BC
∼

gys(π1,δ)

∼
BC

BC
∼

f!(εf⊗id)

gys(π2,δ)

This diagram commutes:

• the top left rectangle commutes by the MSS-linearity of the transformation ηf ;
• the rectangle directly below commutes by the naturality of the projection isomorphisms;
• the large rectangle commutes by Lemma 5.8;
• the two upper right rectangles commute by the MS-linearity and base independence of Gysin

transformations;
• the rectangle of base change isomorphisms is induced by the cartesian squares

X ×S X X

X ×S X X

X S,

σ

π1

π2

id

f

π1

π2

f

f

where σ is the swap map;
• the bottom right rectangle commutes by the compatibility of Gysin transformations with base

change, applied to the following cartesian diagram:

X X ×S X X

X X ×S X X.

δ

id σ

π1

id

δ π2

This completes the proof. □

Lemma 5.12. Let f : X → S be smooth and separated.

(i) For any cartesian square

Y X

T S,

v

g f

u

the following diagram commutes:

u∗f! u∗f∗

g!v
∗ g∗v

∗.

αf

BCBC ∼

αg
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(ii) For any A ∈ MSX and B ∈ MSS, the following diagram commutes:

f!(A)⊗B f∗(A)⊗B

f!(A⊗ f∗(B)) f∗(A⊗ f∗(B)).

αf

PFPF ∼

αf

Proof. By adjunction, this follows from the compatibility with base change and the MSS-linearity of the
trace map εf : f∗f! → idMSX

. □

Proposition 5.13 (Base change and projection formula for smooth projective morphisms). Let f : X →
S be smooth and locally projective.

(i) For any cartesian square

Y X

T S,

v

g f

u

the base change transformation
u∗f∗ → g∗v

∗

is an isomorphism.
(ii) For every A ∈ MSX and B ∈ MSS, the canonical map

f∗(A)⊗B → f∗(A⊗ f∗(B))

is an isomorphism.

Proof. Combine Lemma 5.12 and Theorem 5.9. □

Corollary 5.14. Let f : X → S be smooth and locally projective and let A ∈ MSX be dualizable. Then
f♯(A) ∈ MSS is dualizable with dual f∗(A∨).

Proof. Let f : X → S be the structure map. We have Hom(f♯A,−) ≃ f∗(A∨ ⊗ f∗(−)) by the smooth
projection formula. On the other hand, we have f∗(A∨⊗ f∗(−)) ≃ f∗(A∨)⊗ (−) by Proposition 5.13(ii).
This shows that f♯A is dualizable with dual f∗(A∨). □

Corollary 5.15 (Atiyah duality). Let S be a derived scheme, let X be smooth and locally projective over
S, and let ξ ∈ K(X). Then the Thom spectrum ThX(ξ) is dualizable in MSS. Moreover, the pairing

evX,ξ : ThX(ξ)⊗ ThX(−ξ − Ωf )→ 1S

of Construction 3.1 exhibits ThX(−ξ − Ωf ) as the dual of ThX(ξ).

Proof. Dualizability is a special case of Corollary 5.14. Since αf : f!Σ
−ξ1X → f∗Σ−ξ1X is an isomor-

phism (Theorem 5.9), it follows from Lemma 5.5(i) that the comparison map compX,ξ : ThX(−ξ−Ωf )→
ThX(ξ)∨ induced by the pairing evX,ξ is an isomorphism, so that the latter is a duality pairing. □

Remark 5.16. If i : Z ↪→ X is a closed embedding between smooth and locally projective S-schemes,
then the dual of Σ∞

P1i+ can be identified under Atiyah duality with the (−ΩX)-twisted Gysin map

ThX(−ΩX)→ ThZ(−ΩX + Ni) ≃ ThZ(−ΩZ).

In particular, since the formation of duals is functorial, we indirectly obtain a functoriality of Gysin
maps with respect to composition of closed immersions.

Part II. Applications

6. A1-colocalization and logarithmic cohomology theories

Let MSA1

S denote the full subcategory of MSS spanned by the A1-invariant motivic spectra, which
coincides with Morel and Voevodsky’s motivic stable homotopy category [Voe98]. We will write

LA1 : MSS → MSA1

S

for the left adjoint to the inclusion, which is a symmetric monoidal functor, and 1A1 = LA11 for the unit

of MSA1

S . The purpose of this section is to study A1-colocalization of 1A1-modules in MSS (Definition 6.3)
and relate it to logarithmic cohomology theories.

Proposition 6.1. Let S be a derived scheme. The inclusion MSA1

S ⊂ MSS admits a right adjoint.
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Proof. If S is qcqs, then Nisnevich sheaves of spectra on Smfp
S are closed under colimits in P(Smfp

S ,Sp),

since Nisnevich descent is equivalent to Nisnevich excision. Hence, both MSS and MSA1

S are closed under

colimits in the ∞-category of lax symmetric P1-spectra in P(Smfp
S ,Sp). This shows that a right adjoint

exists when S is qcqs. The existence of a right adjoint in general follows as both MSA1

and MS are
Zariski sheaves. □

Corollary 6.2. The inclusion MSA1

S ⊂ Mod1A1
(MSS) admits a right adjoint.

Proof. Since the forgetful functor Mod1A1
(MSS)→ MSS preserves and reflects colimits, the existence of

a right adjoint follows from Proposition 6.1. □

Definition 6.3. We write
(−)† : Mod1A1

(MSS)→ MSA1

S

for the right adjoint to the canonical inclusion and call it A1-colocalization.

We begin by listing primary examples of 1A1-modules.

Example 6.4 (Localizing invariants). Let E be a spectrum-valued localizing invariant of Z-linear stable
∞-categories (which we do not require to be finitary, as in [LT19, Definition 1.2]). Let S be a qcqs
derived scheme and let ES denote the motivic spectrum over S representing E, as defined in [AI23,
Remark 5.2.4]. Note that ES is canonically a module over KS = KGL in MSS by the universality of
K-theory as a localizing invariant proved in [BGT13]. Then:

(i) If S is regular noetherian, then ES is an 1A1-module.
(ii) If E is truncating, then ES is an 1A1-module.

Indeed, (i) follows from the fact that K-theory is A1-invariant for regular noetherian schemes [TT90,
Proposition 6.8], and (ii) follows from the fact that every truncating localizing invariant satisfies cdh-
descent on classical qcqs schemes [LT19, Theorem A.2] and that the cdh-sheafification of K-theory on
classical qcqs schemes is homotopy invariant K-theory [KST17, Theorem 6.3]3.

Next we would like to discuss examples of 1A1-modules arising from “motivic filtrations” of localizing
invariants. We first give a general recipe for constructing motivic spectra out of filtered spectra.

Construction 6.5 (Motivic filtrations and Bott elements). Let S be a derived scheme and set C =
PNis(SmS ,Sp) for notational simplicity. Write

Fil(C) = Fun((Z,≤)op,C) and SSeq(C) = Fun(Fin≃,C).

The symmetric monoidal functors Fin≃ → N→ (Z,≤)op induce lax symmetric monoidal functors

Fil(C)→ CN → SSeq(C),

associating to any filtered object a symmetric sequence. Let P1 denote the object Σ∞(P1,∞) ∈ C and
let F ∗P1 be the filtered object with F>1P1 = 0 and F≤1P1 = P1. The associated symmetric sequence is
(P1,P1, 0, 0, . . . ). Note that:

• A commutative Sym(F ∗P1)-algebra in Fil(C) is a commutative algebra F ∗A in Fil(C) with an
element c : Σ∞P1 → F 1A.
• A commutative Sym(P1,P1, 0, . . . )-algebra in SSeq(C) is a commutative algebra A in Splax

P1 (C)
with an element β : Σ∞P1 → A(∅).

Let F ∗E ∈ CAlg(Fil(C)). Given a map c : Σ∞Pic→ F 1E, we say that F ∗E satisfies the projective bundle
formula (with respect to c) if for every n ∈ Z, r ≥ 1, and X ∈ SmS , the map

r∑
i=0

c(O(1))i :

r⊕
i=0

Fn−iE(X)→ FnE(Pr
X)

is an isomorphism. The case r = 1 implies that the lax P1-spectrum e defined by (F ∗E, c|P1) is strict,
so that (e, c) is an oriented object in CAlg(SpP1(C)) satisfying the projective bundle formula [AI23,
Definition 3.2.1]. It then follows from [AI23, Lemma 3.3.5] that e also satisfies elementary blowup
excision, so that e ∈ CAlg(MSS). Similarly, the lax symmetric monoidal functor Fil(C)→ SSeq(C) sends
any F ∗E-module satisfying the projective bundle formula (with respect to c) to an e-module in MSS . In
particular, this functor sends the cofiber sequence of F ∗E-modules

F ∗+1E → F ∗E → gr∗FE

3There is no need for the finite-dimensional noetherian assumption in loc. cit. since K-theory is finitary.
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to the cofiber sequence of e-modules

ΣP1e
β−→ e→ e/β,

and it sends the span of filtered E∞-rings

F−∞E ← F ∗E → gr∗FE,

where F−∞E = colimn→−∞ FnE, to a span of motivic E∞-ring spectra

e[β−1]← e→ e/β.

Note that e represents F ∗E in the sense that Ω∞−n
P1 e ≃ FnE for all n ∈ Z, and that the maps Fn+1E →

FnE correspond to multiplication by the Bott element β ∈ e−1(S). The motivic E∞-ring spectra e[β−1]
and e/β represent F−∞E and gr∗FE in the same sense.

Remark 6.6. The motivic spectrum e ∈ CAlg(MSS) alone does not contain the data of the Z-graded
E∞-ring structure on (Ω∞−n

P1 e)n∈Z ≃ (FnE)n∈Z; it only remembers the S-graded E∞-ring (hence the
Z-graded E1-ring). However, we can apply the construction to the filtered E∞-F ∗E-algebra F ∗+⋆E in
Fil(C), which yields an E∞-e-algebra structure on the filtered motivic spectrum (Σ⋆

P1e, β). In particular,
we have a Z-graded E∞-e-algebra structure on (Σn

P1e)n∈Z and, as a special case, a Z-graded E∞-e/β-
algebra structure on (Σn

P1e/β)n∈Z.

We will apply Construction 6.5 to the motivic filtration of p-complete topological cyclic homology
F ∗TCp defined by Bhatt, Morrow, and Scholze [BMS19, Theorem 1.12] (see [AMMN22, Construction
5.33] for the extension to general p-complete animated rings). We will regard F ∗TCp as an étale sheaf
of p-complete spectra on all derived schemes by precomposing with the p-completion functor. We also
consider the motivic filtrations of TPp, TC−

p , and THHp, as defined in general in [BL22, Section 6.2]. To

formulate the projective bundle formula in these examples, recall that TCp/F
1TCp ≃ Zp, so that there

is a unique lift

Σ∞Pic K TCp

F 1TCp,

1−L∨

c

Tr

where Tr is the cyclotomic trace.

Proposition 6.7. Let S be a derived scheme. Then F ∗TCp satisfies the projective bundle formula over
S, i.e., the map

r∑
i=0

c(O(1))i :

r⊕
i=0

F ∗−iTCp(S)→ F ∗TCp(Pr
S)

is an isomorphism for every r ≥ 0. Moreover, the E∞-F ∗TCp-algebras F
∗TPp, F

∗TC−
p , F

∗THHp also
satisfy the projective bundle formula over S.

Proof. As explained in [AMMN22, Construction 5.33], the filtration F ∗TCp is complete on all animated
rings (in fact, FnTCp is (n− 1)-connective). By Zariski descent, it follows that the filtration F ∗TCp is
complete on all derived schemes. Hence, it suffices to show that the associated graded algebra gr∗F TCp

satisfies the projective bundle formula. The same reduction applies to F ∗TPp, F ∗TC−
p , and F ∗THHp, as

these filtrations are complete by [BL22, Corollary 6.2.15]. The associated graded algebras are respectively
syntomic cohomology, Nygaard-completed prismatic cohomology, the Nygaard filtration thereon, and its
associated graded. The desired projective bundle formulas are then proved in [BL22, Lemma 9.1.4] with
respect to the syntomic first Chern class csyn1 defined in op. cit. To conclude, we need to compare csyn1

with the map c : Σ∞Pic → gr1F TCp = Zsyn
p (1)[2] induced by the cyclotomic trace. More precisely, to

deduce that the projective bundle formulas also hold with respect to c, it will suffice to show that csyn1

and c differ by some automorphism of gr1F TCp. By [BL22, Theorem 7.5.6], the first Chern class csyn1

exhibits gr1F TCp as the p-completion of Pic. On the other hand, the map c factors as

Σ∞Pic Krk=0 F 1TCp

Pic gr1F TCp,

1−L∨

can

Tr

det

and the lower horizontal map induces an isomorphism after p-completion by [BMS19, Proposition 7.17]
(this proposition establishes the claim on quasiregular semiperfectoid rings, but it then automatically
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holds on p-quasisyntomic rings by p-quasisyntomic descent, and hence on all animated rings as both
sides are left Kan extended from smooth Z-algebras). □

Using Construction 6.5, we therefore obtain a motivic E∞-ring spectrum tcp over any derived scheme
S representing the filtration F ∗TCp, together with a diagram of motivic E∞-ring spectra over S

tcp

TCp HZsyn
p .

(−)/β(−)[β−1]

Here, HZsyn
p is the motivic E∞-ring spectrum representing the syntomic cohomology of p-adic formal

schemes. In the same way, the motivic filtrations on TPp, TC−
p , and THHp give morphisms of motivic

E∞-tcp-algebras in MSS

tpp ← tc−p → thhp.

Remark 6.8. The motivic filtrations on TCp and THHp are nonnegative and hence trivially exhaustive,
so that tcp[β−1] and thhp[β−1] represent TCp and THHp, respectively. On the other hand, the filtrations

on TC−
p and TPp are exhaustive on QSyn [BMS19, Theorem 1.12] but not in general, so that tc−p [β−1]

and tpp[β−1] do not always represent TC−
p and TPp.

Remark 6.9. It is expected that Example 6.4 can be refined to motivic filtrations of localizing invariants;
in particular, tcp should be a 1A1-module over any regular noetherian scheme. We will prove this
conjecture over Dedekind domains (Corollary 6.15).

Let us consider the motivic filtration of algebraic K-theory F ∗K as a Nisnevich sheaf of spectra on
smooth schemes over Dedekind domains, obtained by the A1-local slice filtration of the motivic E∞-ring
spectrum KGL:

FnK = Ω∞
P1fnKGL ≃ Ω∞

P1Σn
P1kgl.

In particular, F ∗K is canonically E∞-multiplicative by [BH21, Section 13.4].
For a commutative ring A, let QSynA denote the category of A-algebras that are p-quasisyntomic

in the absolute sense [BL22, Definition C.6]. Recall also the p-quasisyntomic topology on QSynA from
[BL22, Definition C.9].

Lemma 6.10. Let D be a Dedekind domain and let n ∈ Z. Then the p-completed left Kan extension of
FnK from smooth D-algebras to QSynD is p-quasisyntomic-locally 2n-connective.

Proof. It follows from [Bac22, Example 1.3] and [Spi18, Theorem 7.18 and Corollary 5.22] that the nth
graded piece grnF K is isomorphic to the weight n motivic complex Z(n)[2n], which is by definition the
Zariski sheafification of Bloch’s cycle complex (and is zero for n < 0). In [Gei04], Geisser identified the
étale sheafification of the p-completed motivic complex Zp(n) on smooth D-schemes with Sato’s p-adic
étale Tate twist Tp(n) [Sat07, (1.3.3)]. More precisely, [Gei04, Corollary 4.4 and Theorem 1.3] provide
a comparison map Zp(n)→ Tp(n), and [Gei04, Theorem 1.2(4) and Theorem 1.3] imply that it exhibits
Tp(n) as the étale sheafification of Zp(n). By [BM23, Theorem 5.8], Tp(n) is in turn isomorphic to
the syntomic complex RΓsyn(−,Zp(n)) of Bhatt and Lurie [BL22, Section 8.4]. The latter presheaf on
QSynD is p-completely left Kan extended from smooth D-algebras by [BL22, Proposition 8.4.10] and
it is p-quasisyntomic-locally connective by [BS22, Theorem 14.1]. Therefore, the p-completed left Kan
extension of grnF K from smooth D-algebras to QSynD is p-quasisyntomic-locally 2n-connective.

On the other hand, we claim that FnK is Zariski-locally n-connective on SmD. By [Bac22, Theorem
1.1(1)], the A1-invariant motivic spectrum fnKGL is very n-effective and hence n-connective in the
homotopy t-structure. Since the latter is complete [SS16, Corollary 3.8], the motivic filtration F ∗K is
also complete. By [Gei04, Corollary 4.4], grnF K ≃ Z(n)[2n] is n-connective. The Postnikov completeness
of the Zariski ∞-topos now implies that FnK = limi F

nK/Fn+iK is n-connective. Hence, the left
Kan extension of FnK from smooth D-algebras to QSynD is Zariski-locally, and thus p-quasisyntomic-
locally, n-connective. Now we can formally conclude that its p-completion is p-quasisyntomic-locally
2n-connective by Lemma 6.11 below. □

Lemma 6.11. Let C be a stable ∞-category equipped with a t-structure. Suppose that there is a fiber
sequence

fn+1 → fn → zn

for each n ≥ 0. Assume that zn is 2n-connective and that fn is φ(n)-connective for some function φ
with supn≥0 φ(n) =∞. Then fn is 2n-connective.
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Proof. The goal is to show that (fn)<2n = 0. Fix n ≥ 0 and let m ≥ n. Since the truncation (−)<2n : C→
C<2n is a left adjoint, the sequence

(fm+1)<2n → (fm)<2n → (zm)<2n = 0

is a cofiber sequence in C<2n. By induction on m, it suffices to find m ≥ n such that (fm)<2n = 0, but
this holds if φ(m) ≥ 2n. □

The following result originally came out of discussions between Dustin Clausen, Akhil Mathew, and
the third author, and our proof here follows the same line of thought.

Proposition 6.12 (Filtered cyclotomic trace). Let D be a Dedekind domain. Then the cyclotomic
trace K → TCp on smooth D-schemes lifts uniquely to a morphism of E∞-multiplicative filtrations
F ∗K→ F ∗TCp.

Proof. Recall that TCp on QSynD is p-completely left Kan extended from smooth D-algebras and that
the motivic filtration of TCp on QSynD is the double-speed p-quasisyntomic-local Postnikov filtration
by definition and by [BS22, Theorem 14.1]. Hence, we obtain the desired lift by Lemma 6.10. □

We say that a morphism of derived schemes Y → X is p-completely smooth if the induced morphism
Y/p→ X/p is smooth.

Corollary 6.13. Let S be p-completely smooth over a Dedekind domain. Then the cyclotomic trace on
SmS is refined by a morphism of motivic E∞-ring spectra kgl→ tcp in MSS.

Proof. The construction will be natural in S, so that we can assume S affine. If u : S∧
p → S is the

p-completion of S, then tcp ≃ u∗(tcp) by definition. We may therefore assume that S is p-complete. Let
f : S → Spec(D) be a p-completely smooth morphism, where D is a Dedekind domain. Then S is the
p-completion of a smooth affine D-scheme S′ [AMM22, Remark 5.13]. The morphism S → S′ is regular
by [Stacks, Tags 07PX and 0AH2], so that f is pro-smooth by Popescu’s theorem [Stacks, Tag 07GC].
Since the slice filtration and the inclusion MSA1

↪→ MS are compatible with pro-smooth base change, we
have kglS ≃ f∗(kglD) in MSS . Applying Construction 6.5 to the filtered E∞-map of Proposition 6.12,
we obtain a morphism of motivic E∞-ring spectra kglD → tcp in MSD. The desired morphism in MSS

is then the composite
kglS ≃ f∗(kglD)→ f∗(tcp)→ tcp. □

Remark 6.14. There is an integral refinement of the motivic filtration of topological cyclic homology
due to Bouis [Bou24]. This gives an integral motivic E∞-ring spectrum tc such that the cyclotomic trace
induces a morphism of E∞-ring spectra kgl→ tc over Dedekind domains.

Corollary 6.15. Let S be p-completely smooth over a Dedekind domain. Then the motivic spectrum tcp
is an E∞-1A1-algebra in MSS.

Proof. This follows from Corollary 6.13, as kgl is A1-invariant by definition. □

Example 6.16 (Syntomic cohomology and étale motivic cohomology). By Corollary 6.15, the syntomic
cohomology spectrum HZsyn

p = tcp/β is an E∞-1A1 -algebra in MSS if S is p-completely smooth over a
Dedekind domain. Note that this spectrum represents the syntomic cohomology of p-adic formal schemes,
not the syntomic cohomology of schemes. To clarify, let HZét

p denote the motivic E∞-ring spectrum over
a derived scheme S representing the syntomic cohomology of smooth S-schemes (obtained by applying
Construction 6.5 to the Z-graded E∞-algebra RΓsyn(−,Zp(∗))[2∗] from [BL22, Section 8.4]). As we
recalled in the proof of Lemma 6.10, HZét

p is stable under arbitrary base change as a p-complete motivic
spectrum, and over Dedekind domains it is the (degreewise) étale sheafification of the p-adic motivic
cohomology spectrum HZp, which explains the notation. In particular, HZét

p is an E∞-HZp-algebra
and hence an E∞-1A1-algebra over Dedekind domains. In general, the p-complete motivic spectrum
HZsyn

p coincides with i∗i
∗HZét

p , where i denotes the inclusion of the p-adic formal scheme S∧
p into S and

MSS∧
p

= limn MSS/pn . Later we will also define an integral étale motivic cohomology spectrum HZét

over any base, which is an E∞-1A1-algebra over Dedekind domains (see Example 9.21).

Example 6.17 (Prismatic and crystalline cohomology). Syntomic cohomology is practically initial
among other important p-adic étale cohomology theories, which are thus also 1A1-modules over Dedekind
domains. Let us take prismatic cohomology as an example [BS22, BL22, AKN23]. Let HZ∆

p denote the
motivic E∞-ring spectrum representing absolute prismatic cohomology. It is defined over any derived
scheme and is an E∞-algebra over the syntomic cohomology spectrum HZsyn

p .4 In particular, HZ∆
p is an

4This E∞-algebra structure exists before the Nygaard completion thanks to [AKN23, Proposition 7.12].
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E∞-1A1 -algebra in MSS if S is p-completely smooth over a Dedekind domain. If (A, I) is a prism, relative
prismatic cohomology RΓ∆(−/A) is represented by a motivic spectrum HA∆ over any A/I-scheme S. It
is an E∞-algebra over HZ∆

p , and thus over 1A1 if S is p-completely smooth over a Dedekind domain.
Taking the crystalline prism (W (k), (p)) for a perfect field k of characteristic p, we see that the motivic
spectrum HW (k)crys = HW (k)∆ representing crystalline cohomology is an E∞-1A1-algebra over k.

Example 6.18 (Rational orientable ring spectra). Let S be a regular noetherian scheme. As we will see
later in Proposition 9.19, every Q-linear orientable object in CAlg(hMSS) is canonically a 1A1-module,
and every Q-linear orientable E∞-algebra in MSS is canonically an E∞-1A1 -algebra.

With these numerous examples of 1A1-modules in mind, we now investigate the A1-colocalization of
1A1 -modules.

Lemma 6.19. Let C be a symmetric monoidal ∞-category in which every object is dualizable. Let
F : D → D′ be a C-linear functor between ∞-categories tensored over C. Then a left or right adjoint of
F is C-linear if it exists.

Proof. Suppose that F admits a right adjoint G. Then G is lax C-linear and thus we have a natural
transformation x⊗G(−)→ G(x⊗−) for every x ∈ C. It suffices to show that the induced map

Map(y, x⊗G(z))→ Map(y,G(x⊗ z))

is an isomorphism for every y ∈ D and z ∈ D′, but this follows straightforwardly from the dualizability
of x ∈ C and the C-linearity of F . The case of a left adjoint is proved in the same way. □

Lemma 6.20. The adjoint functors

Mod1A1
(MSS) MSA1

S

LA1

(−)†

are all MSdual
S -linear, where MSdual

S is the full subcategory of MSS spanned by the dualizable objects.

Proof. Apply Lemma 6.19 to C = MSdual
S and note that the A1-localization LA1 is MSS-linear. □

Proposition 6.21. Let E be a 1A1-module in MSS and let A ∈ MSdual
S be a dualizable motivic spectrum.

Then the counit E† → E induces an isomorphism of spectra

E†(A) ≃ E(A).

This holds in particular if A = ThX(ξ) for some smooth projective S-scheme X and some ξ ∈ K(X).

Proof. It follows from the MSdual
S -linearity of the inclusion MSA1

S ↪→ Mod1A1
(MSS) (Lemma 6.20) that

A⊗ 1A1 ≃ LA1A.

Then we see that

E†(A) = map(A,E†) ≃ map(LA1A,E†)

≃ map1A1
(LA1A,E)

≃ map1A1
(A⊗ 1A1 , E)

≃ map(A,E) = E(A),

where map1A1
(−,−) denotes the spectrum of 1A1-linear maps. Finally, ThX(ξ) is dualizable in MSS by

Corollary 5.15. □

Informally, Proposition 6.21 says that A1-colocalization is a universal machinery that converts a 1A1 -
module into some A1-invariant cohomology theory without changing its values on smooth projective
schemes. The following is how it is calculated in practice; the conclusion is Proposition 6.25.

Construction 6.22. Let □n denote the poset of subsets of {1, . . . , n}. Let X be a smooth projective
S-scheme and ∂X a relative strict normal crossings divisor on X with smooth components ∂1X, . . . , ∂nX.
Consider the n-cube □n,op → SmS sending I to the intersection ∂IX of all ∂iX with i ∈ I. This induces
an n-cube

□n,op → Fun(MSX ,MSS), I 7→ fI♯i
∗
I ,

where iI denotes the closed immersion ∂IX ↪→ X and fI the structure map ∂IX → S. Then, for each
ξ ∈ K(X), we define the n-cube Th(X,∂X)(ξ) in MSS by

Th(X,∂X)(ξ) : □n → MSS , I 7→ (fI♯i
∗
IΣ−ξ−ΩX1X)∨.
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Remark 6.23. Under Atiyah duality, the cube Th(X,∂X)(ξ) sends ∅→ I to the ξ-twisted Gysin map

ThX(ξ)→ Th∂IX(ξ + NiI ).

The cube itself should be given by “coherent Gysin maps”, but we will not need such a description.

Lemma 6.24. Let X be a smooth projective S-scheme, ∂X a relative strict normal crossings divisor on
X, and ξ ∈ K(X). Then there is a canonical morphism

ThX−∂X(ξ)→ Th(X,∂X)(ξ)

in MSS that exhibits LA1ThX−∂X(ξ) as the total fiber of the cube LA1Th(X,∂X)(ξ).

Proof. By definition, the total fiber of Th(X,∂X)(ξ) is the fiber of

ThX(−ξ − ΩX)∨ →
(

colim
I∈□n−{∅}

Th∂IX(−ξ − ΩX)
)∨

.

On the other hand, by Zariski descent, we have an isomorphism

ThX−∂X(ξ) ≃ lim
I∈□n−{∅}

ThX−∂IX(ξ).

Hence, it suffices to construct a pairing in MSS

ThX/(X−Z)(ξ)⊗ ThZ(−ξ − ΩX)→ 1S

that is (bivariantly) natural in the smooth closed subscheme Z ⊂ X and becomes a perfect pairing after
A1-localization. We define it as the composition

ThX/(X−Z)(ξ)⊗ ThZ(−ξ − ΩX) ≃ ThX×Z/(X−Z)×Z(ξ ⊞ (−ξ − ΩX))

→ ThX×Z/(X×Z−δ(Z))(ξ ⊞ (−ξ − ΩX))

→ ThX×X/(X×X−δ(X))(ξ ⊞ (−ξ − ΩX))

→ ThX(−ΩX + Nδ) ≃ X+ → 1S ,

where the first map collapses the complement of δ(Z), the second map is induced by the closed immersion
X × Z ↪→ X ×X, and the third map is the Gysin map with respect to the diagonal δ : X ↪→ X ×X (cf.
Construction 3.1). This pairing is obviously natural in Z, as the first two maps are and the third one
does not depend on Z. Using Theorem 2.3(ii), we can identify this pairing with

ThX/(X−Z)(ξ)⊗ ThZ(−ξ − ΩX)
gys⊗id−−−−→ ThZ(ξ + NZ)⊗ ThZ(−ξ − ΩX)

evZ,ξ+NZ−−−−−−→ 1S .

The second map is a perfect pairing in MSS by Atiyah duality (Corollary 5.15), and the first map
becomes an isomorphism after A1-localization, by the Morel–Voevodsky purity theorem [MV99, Section 3,
Theorem 2.23]. □

Proposition 6.25. Let E be a 1A1-module in MSS and U a smooth S-scheme. Suppose that there is an
open immersion U ↪→ X of S-schemes such that X is smooth projective and ∂X = X − U is a relative
strict normal crossings divisor. Then for every ξ ∈ K(X), there is a canonical isomorphism

E†(ThU (ξ)) ≃ tcofibE(Th(X,∂X)(ξ)),

where tcofib denotes the total cofiber.

Proof. Under Proposition 6.21, this is the A1-equivalence of Lemma 6.24 applied to the A1-invariant
motivic spectrum E†. □

Remark 6.26. The right hand side of the isomorphism in Proposition 6.25 can be regarded as the
“logarithmic E-cohomology” of the logarithmic pair (X, ∂X). Hence, the proposition says that E† of
a smooth S-scheme U is calculated as the logarithmic E-cohomology of a good compactification, if it
exists. On the other hand, it implies that the logarithmic E-cohomology does not depend on the choice
of compactification.

Let us take crystalline cohomology as an example. Consider the crystalline cohomology spectrum
HW (k)crys over a perfect field k, which is an E∞-1A1 -algebra in MSk by Example 6.17. Then its A1-
colocalization gives an integral refinement of Berthelot’s rigid cohomology [Ber86]. More precisely:

Proposition 6.27 (A1-colocalized crystalline cohomology). Let k be a perfect field of characteristic
p > 0.

(i) The motivic spectrum HW (k)crys,†[1/p] represents Berthelot’s rigid cohomology.
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(ii) For a smooth k-scheme U , suppose that there is a smooth projective compactification X such that
∂X = X − U is a strict normal crossings divisor. Then there is a W (k)-linear isomorphism

HW (k)crys,†(U) ≃ RΓcrys((X, ∂X)/W (k)),

where the right hand side is logarithmic crystalline cohomology in the sense of Kato [Kat89]; in
particular, the latter does not depend on the choice of compactification if one exists.

Proof. (i) Let HW (k)rig denote the motivic spectrum over k representing rigid cohomology. Then there
is a morphism of motivic spectra over k

(6.28) HW (k)rig → HW (k)crys[1/p],

that induces an isomorphism on Σ∞−n
P1 X+ for every smooth projective k-scheme X and n ∈ Z. One

way to construct such a morphism is to use the overconvergent de Rham–Witt complex [DLZ11]: it
is a differential graded subalgebra W †Ω−/k of the de Rham–Witt complex WΩ−/k, which is rationally

isomorphic to rigid cohomology. Hence, the inclusion W †Ω−/k →WΩ−/k rationally induces (6.28).

By [LYZR19, Proposition B.1], the∞-category MSA1

k [1/p] is generated under colimits and P1-desuspen-
sions by smooth projective k-schemes. Combining this with Proposition 6.21, we see that (6.28) induces
an isomorphism after A1-colocalization. Since rigid cohomology is A1-invariant, A1-colocalization does
not change HW (k)rig, and thus we obtain

HW (k)rig ≃ (HW (k)crys[1/p])† ≃ HW (k)crys,†[1/p].

The second isomorphism holds as both sides have the same values on smooth projective k-schemes; see
also Corollary 6.32 below.

(ii) By Proposition 6.25 (and the fact that HW (k)crys is oriented), the assertion is equivalent to an
isomorphism

(6.29) RΓcrys((X, ∂X)/W (k)) ≃ tcofibI HW (k)crys((Σ∞−d
P1 ∂IX+)∨),

where d = dim(X). Since crystalline cohomology satisfies the Künneth formula [BL22, Remark 4.1.8],
the functor

HW (k)crys(−) : MSop
k → ModW (k)(Sp)

is the unique symmetric monoidal limit-preserving extension of RΓcrys(−/W (k)) : Smop
k → ModW (k)(Sp),

and it sends ΣP11 to W (k)[−2]. Hence, the right-hand side of (6.29) is a dualizable W (k)-module with
dual given by the total fiber tfibI RΓcrys(∂IX/W (k))[2d]. By Poincaré duality for logarithmic crystalline
cohomology [Tsu99], the left-hand side of (6.29) is also dualizable with dual given by the logarithmic
crystalline cohomology of (X, ∂X) with compact supports RΓcrys,c((X, ∂X)/W (k))[2d]. Thus, it suffices
to produce an isomorphism

RΓcrys,c((X, ∂X)/W (k)) ≃ tfibI RΓcrys(∂IX/W (k)),

and this is done in [NS08, (2.11.9.1)]. □

Remark 6.30. The quest for such an integral refinement of rigid cohomology has been a topic of interest
in the recent literature. Ertl, Shiho, and Sprang [ESS23] constructed an integral p-adic cohomology
theory under the assumption of resolution of singularities, which coincides with A1-colocalized crystalline
cohomology by Proposition 6.27(ii). Merici [Mer24] constructed such a theory without resolution of
singularities, and we expect that it coincides with A1-colocalized crystalline cohomology, but we do not
pursue the comparison here; under resolution of singularities, it does, as he compared his theory with
Ertl–Shiho–Sprang’s.

After inverting the characteristic exponent, we have better control of A1-colocalization.

Proposition 6.31. Let k be a field of characteristic exponent e. Then the lax symmetric monoidal
inclusion

MSA1

k [1/e] ↪→ Mod1A1
(MSk)[1/e]

is strict symmetric monoidal and preserves compact objects.

Proof. By definition, the inclusion carries the unit to the unit. Recall that MSA1

k [1/e] is generated
under colimits and P1-desuspensions by smooth projective k-schemes, by [LYZR19, Proposition B.1]
(supplemented with [EK19, Corollary 2.1.7] and [Sus17, Lemma 1.12] if k is not perfect). Hence, to
prove that the inclusion is symmetric monoidal, it suffices to show that

(LA1Σ∞
P1X+)⊗1A1

(LA1Σ∞
P1Y+) ≃ LA1Σ∞

P1(X × Y )+
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for smooth projective k-schemesX and Y , but this follows from Corollary 5.15 and Lemma 6.20. Similarly,
to prove that the inclusion preserves compact objects, it suffices to show that LA1Σ∞

P1X+ is compact in
Mod1A1

(MSk) for every smooth projective k-scheme X, which also follows from Lemma 6.20. □

Corollary 6.32. Let k be a field of characteristic exponent e. Then the A1-colocalization functor

(−)† : Mod1A1
(MSk)[1/e]→ MSA1

k [1/e]

is lax symmetric monoidal and preserves colimits.

Proof. This is a formal consequence of Proposition 6.31. □

Remark 6.33. If k is perfect and satisfies resolution of singularities, the inversion of the characteristic
exponent is unnecessary in Proposition 6.31 and Corollary 6.32, by [Rio05, Théorème 1.4].

Over Fp, crystalline cohomology arises as the graded pieces of the motivic filtration of p-complete
topological periodic cyclic homology as established by Bhatt, Morrow, and Scholze [BMS19, Theorem
1.12(4)]. Through A1-colocalization, we see that rigid cohomology arises from a motivic filtration by the
same principle:

Proposition 6.34. A1-colocalizing the motivic filtration of TPp gives an exhaustive E∞-multiplicative

filtration F ∗TP†
p[1/p] in étale sheaves of spectra over SmFp

such that the graded piece grnF TP†
p[1/p] is

isomorphic to rigid cohomology RΓrig(−/Zp)[2n].

Proof. The motivic filtration of TPp gives a diagram of motivic E∞-ring spectra over Fp

tpp

TPp HZcrys
p ,

(−)/β(−)[β−1]

as well as an E∞-tpp-algebra structure on the filtration (Σ∗
P1tpp, β) (see Remark 6.6). Moreover, tpp is

an E∞-1A1-algebra by Corollary 6.15, so we can apply A1-colocalization. If we apply (−)†[1/p] to this
diagram, then:

• It remains a diagram of motivic E∞-ring spectra, as (−)†[1/p] is lax symmetric monoidal by
Corollary 6.32.

• It becomes a diagram of étale motivic spectra by [CD19, Theorem 14.3.4].
• HZcrys

p becomes the rigid cohomology spectrum HQrig
p by Proposition 6.27.

• The right leg remains the quotient by β, as (−)† commutes with P1-suspensions by Lemma 6.20.
• The left leg remains the inversion of β, as (−)†[1/p] preserves filtered colimits by Corollary 6.32.

Therefore, the sequence

· · · β−→ Σn+1
P1 tp†

p[1/p]
β−→ Σn

P1tp†
p[1/p]

β−→ Σn−1
P1 tp†

p[1/p]
β−→ · · ·

is an E∞-multiplicative, exhaustive, and étale-local filtration of the motivic spectrum TP†
p[1/p], whose

nth graded piece is Σn
P1HQrig

p . Taking Ω∞
P1 gives the desired filtration. □

Remark 6.35. Let k be a field of characteristic exponent e. By the proof of [Rob15, Corollary 4.12],
every A1-invariant KGL[1/e]-module in MSk has a canonical extension to a finitary localizing invariant

of k-linear stable ∞-categories. In particular, TP†
p[1/p] extends to a localizing invariant of Fp-linear

stable ∞-categories. However, we do not know an a priori definition of such a localizing invariant.

Remark 6.36. Presumably, A1-colocalization should also recover existing logarithmic cohomology theo-
ries in mixed characteristic. Let K be a p-adic field and OK the ring of integers in K. Let us consider the
A1-colocalization of the 1A1-module HZsyn

p in MSOK
representing the syntomic cohomology of smooth

OK-schemes (see Example 6.16). For a smooth proper K-scheme X, suppose that there is a semi-stable
model X of X over OK . Then we expect that there is an isomorphism

(Σn
P1HZsyn,†

p )(X) ≃ RΓsyn(X,Zp(n))[2n],

where the right hand side is the weight n logarithmic syntomic cohomology of X. In particular, the
motivic spectrum j∗(HZsyn,†

p ), where j denotes the open embedding Spec(K) ↪→ Spec(OK), should give
an integral refinement of Nekovář–Nizio l’s arithmetic syntomic cohomology over K defined in [NN16].



32 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

7. Algebraic cobordism via Grassmannians

We show that the motivic spectrum MGL ∈ MSS is a colimit of Thom spectra of Grassmannians as
in A1-homotopy theory, supplying the details to [AHI24, Remark 7.7].

We denote by

SSeq(C) = Fun(Fin≃,C)

the ∞-category of symmetric sequences in a symmetric monoidal ∞-category C, which is a symmetric
monoidal ∞-category under Day convolution.

Recall that the symmetric monoidal ∞-category MSS = SpP1(PNis,ebu(SmS ,Sp)) is a left Bousfield

localization of the symmetric monoidal∞-category Splax
P1 (PNis,ebu(SmS ,Sp)) of lax symmetric P1-spectra,

which are by definition modules in SSeq(PNis,ebu(SmS ,Sp)) over the free commutative algebra generated
by the symmetric sequence (0,P1, 0, 0, . . . ) [AI23, Definition 1.3.4].

Construction 7.1. We construct a functor

MGr: (Vectepi(S)/O)op → CAlg(MSS)/MGL, E 7→ MGr(E).

Given a finite locally free sheaf E on S, there is a lax symmetric monoidal functor

Fin≃ → (SmS)/Vect, I 7→ Gr|I|(E
I).

Indeed, it is a subfunctor of I 7→ Gr(EI), which is the composition of the lax symmetric monoidal functors
I 7→ EI and E 7→ Gr(E). As everything is natural in E, this defines a functor

Vectepi(S)op → CAlg(SSeq((SmS)/Vect)), E 7→ (I 7→ Gr|I|(E
I)).

This functor sends O to I 7→ (S,OI), which is the free commutative algebra generated by the symmetric
sequence (∅, (S,O),∅,∅, . . . ). Passing to slice categories, we thus get a functor

(Vectepi(S)/O)op → CAlg(Splax
(S,O)((SmS)/Vect)).

Composing with the Thom space functor Th: (SmS)/Vect → Pebu(SmS)∗, which is symmetric monoidal

[AHI24, Section 3] and sends (S,O) to P1, we obtain the functor

MGr: (Vectepi(S)/O)op → CAlg(Splax
P1 (Pebu(SmS)∗))→ CAlg(MSS).

To see that this construction comes with a natural E∞-map to MGL, we observe that the symmetric
sequence I 7→ Gr|I|(E

I) maps to the sequence I 7→ Vect|I| in CAlg(SSeq(P(SmS)/Vect)) (which factors
through Fin≃ → N), which maps further to I 7→ Krk=|I| in CAlg(SSeq(P(SmS)/K)). We then use the
extension of the Thom space functor to K-theory: there is a commutative square of symmetric monoidal
∞-categories

P(SmS)/Vect PNis,ebu(SmS)∗

P(SmS)/K SpP1(PNis,ebu(SmS)∗),

Th

Th

inducing a commutative square

CAlg(Splax
(S,O)(P(SmS)/Vect)) CAlg(SpP1(PNis,ebu(SmS)∗))

CAlg(Splax
(S,O)(P(SmS)/K)) CAlg(SpP1(SpP1(PNis,ebu(SmS)∗))).

Th

∼

Th

The right vertical map is now an isomorphism, since SpP1 is idempotent, and its inverse sends a P1-

spectrum (in P1-spectra) to its ∅th term. The sequence I 7→ Krk=|I| in CAlg(Splax
(S,O)(P(SmS)/K)) is

therefore sent to Th(Krk=0 → K) = MGL in the upper right corner.

Proposition 7.2 (Grassmannian model for MGL). Let E be a finite locally free sheaf on S with an
epimorphism E ↠ O. Then the E∞-map

colim
n→∞

MGr(En)→ MGL

is an isomorphism in MSS.
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Proof. Let φ : MGr(E∞)→ MGL be this map. Forgetting the E∞-ring structure, MGr(E∞) is the colimit
of the Thom spectra Σ−n

P1 ThGrn(E∞)(Tn), where Tn is the tautological sheaf, and MGL is similarly the

colimit of the Thom spectra Σ−n
P1 ThVectn(Un), where Un is the universal sheaf [AHI24, Proposition 7.1].

One then obtains φ by applying the Thom spectrum functor to the forgetful map

Grn(E∞)→ Vectn.

This map becomes an isomorphism in MSS by [AHI24, Theorem 5.3]. Using the Thom isomorphism, it
follows that for any oriented ring spectrum E ∈ CAlg(hMSS), the map φ induces an isomorphism

φ∗ : MapMSS
(MGL, E)

∼−→ MapMSS
(MGr(E∞), E).

Since the ring spectrum MGr(E∞) is oriented by [AHI24, Remark 6.10], the Yoneda lemma implies that
φ is an isomorphism in MSS . □

Remark 7.3.

(i) After A1-localization, the statement of Proposition 7.2 follows more directly from the fact that
the Thom spectrum functor inverts unstable motivic equivalences [BH21, Remark 16.11]. We do
not know an analogue of this fact in our non-A1-invariant theory, which is purely stable.

(ii) Construction 7.1 shows that the E∞-structure on LA1MGL constructed by Panin, Pimenov, and
Röndigs in [PPR08, Section 2.1] is canonically isomorphic to the one constructed by Bachmann
and Hoyois in [BH21, Section 16].

Definition 7.4. Let C be a presentably symmetric monoidal ∞-category. We denote by Cdual ⊂ C the
full subcategory of dualizable objects and by Clisse ⊂ C the full subcategory generated under colimits by
Cdual. Objects of Clisse are called lisse, and we denote by

lisse : C→ Clisse

the right adjoint to the inclusion (which exists since Cdual is small).

Observation 7.5.

(i) Let C and D be presentably symmetric monoidal∞-categories and let F : C→ D be a symmetric
monoidal functor with a colimit-preserving right adjoint G. For any X ∈ Clisse and Y ∈ D, the
canonical map

X ⊗G(Y )→ G(F (X)⊗ Y )

is an isomorphism.
(ii) Let C be a stable presentably symmetric monoidal ∞-category with 1 ∈ Cω. Then the functor

lisse(−) preserves colimits. As a special case of (i), we have a natural isomorphism

X ⊗ lisse(Y ) ≃ lisse(X ⊗ Y )

for any X ∈ Clisse and Y ∈ C.

Example 7.6. The motivic spectrum KGL ∈ MSS representing algebraic K-theory is lisse. This follows
from the Snaith presentation KGL ≃ Σ∞

P1Pic+[β−1] [AI23, Theorem 5.3.3], the isomorphism Σ∞
P1Pic+ ≃

Σ∞
P1P∞

+ [AHI24, Theorem 5.3], and the fact that Σ∞
P1Pn

+ is dualizable.

Corollary 7.7. The motivic spectrum MGL ∈ MSS is lisse.

Proof. Proposition 7.2 presents MGL as a colimit of Thom spectra of Grassmannians Grm(Onm), which
are dualizable by Corollary 5.15. □

Corollary 7.8 (Homological Conner–Floyd isomorphism). Let S be a qcqs derived scheme. The orien-
tation map MGL→ KGL induces an isomorphism of bigraded multiplicative homology theories

MGL∗∗(−)⊗L Z[β±1] ≃ KGL∗∗(−) : MSS → AbZ×Z,

where L→ Z[β±1] classifies the graded formal group law x+ y − βxy.

Proof. By the cohomological Conner–Floyd isomorphism [AHI24, Theorem 8.11], the map

MGL∗∗(−)⊗L Z[β±1]→ KGL∗∗(−) : MSop
S → AbZ×Z

is an isomorphism on SmS and hence on MSω
S . By duality, the map

MGL∗∗(−)⊗L Z[β±1]→ KGL∗∗(−) : MSS → AbZ×Z.

is an isomorphism on MSdual
S and hence on MSlisse

S . As both MGL and KGL are lisse (Corollary 7.7 and
Example 7.6), it follows from Observation 7.5(ii) that this map is an isomorphism on all of MSS . □



34 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

8. Motivic Landweber exactness

We now prove the Landweber exact functor theorem in our setting, which is entirely similar to its
incarnation in A1-homotopy theory [NSØ09] (which is in turn similar to the classical theorem in ordinary
homotopy theory). To guide the reader, we note that the theorem only uses the following three facts
from the theory of non-A1-invariant motivic spectra:

(i) the fact that the MGL-cohomology ring of a scheme carries a formal group law, together with
the computation of the MGL-module MGL⊗MGL [AHI24, Proposition 7.9], which implies that
the MGL-homology of any motivic spectrum defines a quasi-coherent sheaf on the stack Mfg of
formal groups;

(ii) the fact that MGL is lisse (Corollary 7.7), which implies that MGL-homology is determined on
dualizable motivic spectra;

(iii) the countability of the ∞-category MSdual
Z of dualizable motivic spectra over Z (Lemma 8.17),

which allows us to use the representability theorem of Adams to produce motivic spectra from
homology theories.

We start with some categorical preliminaries.

Definition 8.1. Let C be a stable compactly generated ∞-category. A morphism f : A → B in C is
called phantom if, for every compact object K ∈ Cω and every map g : K → A, the composite f ◦ g
is nullhomotopic. We denote by h̄C the 1-category whose morphisms are those of hC modulo phantom
maps.

In other words, h̄C is uniquely determined by the factorization

hC→ h̄C→ Fun(Cω,op,Ab), E 7→ [−, E],

where the first functor is essentially surjective and full, and the second functor is faithful. Note that the
functor hC→ h̄C is also conservative, since the above composite is.

Lemma 8.2. Let C be a commutative algebra in stable compactly generated ∞-categories. For a mor-
phism f : A→ B in Clisse, the following are equivalent:

(i) f is phantom in Clisse, i.e., induces the zero map [−, A]→ [−, B] : Cdual,op → Ab.
(ii) f induces the zero map [1, A⊗ (−)]→ [1, B ⊗ (−)] : Clisse → Ab.

(iii) f induces the zero map [1, A⊗ (−)]→ [1, B ⊗ (−)] : C→ Ab.

Proof. The equivalence of (i) and (ii) follows by duality and the fact that [1, A⊗ (−)] preserves filtered
colimits. That (ii) implies (iii) follows from Observation 7.5(ii). □

Warning 8.3. A phantom map in Clisse need not be phantom in C. In the sequel, we consider phantom
maps in MSlisse

S but never in MSS .

Corollary 8.4. Let C be a commutative algebra in stable compactly generated ∞-categories. Then:

(i) The symmetric monoidal structure on Clisse descends to h̄Clisse.
(ii) The lax symmetric monoidal functor

Clisse → Fun(C,Ab), E 7→ [1, E ⊗ (−)],

factors through h̄Clisse.

Proof. To prove (i), we must show that if f is a phantom map and g is any map in Clisse, then f ⊗ g is
phantom. This claim as well as Assertion (ii) follow immediately from the characterization of phantom
maps in Lemma 8.2(iii). □

Lemma 8.5. Let C and D be commutative algebras in stable compactly generated ∞-categories and let
F : C → D be a symmetric monoidal functor with a colimit-preserving right adjoint G. Then F sends
phantom maps in Clisse to phantom maps in Dlisse, and hence induces a functor h̄Clisse → h̄Dlisse.

Proof. If A ∈ Clisse, then G(F (A)⊗ (−)) ≃ A⊗G(−) as functors on D by Observation 7.5(i). The claim
then follows immediately using the characterization of phantom maps from Lemma 8.2(iii). □

For a cocomplete stable ∞-category C and a cocomplete abelian category A, we denote by

Funhom(C,A) ⊂ Fun(C,A)

the full subcategory of homological functors, i.e., functors that preserve filtered colimits, finite products,
and send cofiber sequences to exact sequences. If C and A have symmetric monoidal structures, then
Fun(C,A) is also symmetric monoidal via the Day convolution. While the Day convolution need not
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preserve homological functors, Funhom(C,A) inherits a structure of ∞-operad as a full subcategory of a
symmetric monoidal ∞-category.

If C is presentably symmetric monoidal with 1 ∈ Cω, then [1, E ⊗ (−)] : C → Ab is a homological
functor for any E ∈ C. The representability theorem of Adams states that in some cases all homological
functors C→ Ab are of this form:

Proposition 8.6 (Adams representability for homology theories). Let C be a commutative algebra in
stable compactly generated ∞-categories with Cdual = Cω, and suppose that the latter ∞-category is
countable. Then the lax symmetric monoidal functor

C→ Fun(C,Ab), E 7→ [1, E ⊗ (−)],

induces an isomorphism of ∞-operads

h̄C ≃ Funhom(C,Ab).

Proof. The fact that it induces an isomorphism of categories is a special case of [Hoy23, Corollary 19(2)]
(which is a modern exposition of a classical theorem of Adams [Ada71]; see also [Nee97, Theorem 5.1 and
Proposition 4.11] for another proof). The claim that it is in fact an isomorphism of ∞-operads means
the following: for any E1, . . . , En, E ∈ C, the canonical map

Maph̄C(E1 ⊗ · · · ⊗ En, E)→ Map((E1)0(−)⊗ · · · ⊗ (En)0(−), E0(−))

is a bijection, where E0(−) = [1, E ⊗ (−)]. We define an inverse as follows. By duality, a natural
transformation α in the target can be viewed as a morphism of cohomology theories

α : E0
1(−)⊗ · · · ⊗ E0

n(−)→ E0(−) : Cdual,op → Ab,

where E0(−) = [−, E]. Denoting by Ê0 : Cop → Ab the extension of E0 that preserves cofiltered limits, we

have an isomorphism Maph̄C(−, E) ≃ Ê0(−) by [Hoy23, Lemma 17]. Plugging in the objects E1, . . . , En

into α, we obtain an element

α(idE1
, . . . , idEn

) ∈ Ê0(E1 ⊗ · · · ⊗ En) ≃ Maph̄C(E1 ⊗ · · · ⊗ En, E).

It is straightforward to check that the map α 7→ α(idE1 , . . . , idEn) is the desired inverse. □

Let now S be a derived scheme. To formulate the Landweber exact functor theorem, we will need
to consider graded homology theories on MSS . To that end, let S be the free E∞-group on one element
(i.e., the sphere spectrum). The invertible object P1 in MSS determines a symmetric monoidal functor
Σ∗

P11 : S→ MSS , which induces a lax symmetric monoidal functor

MSS → Funhom(MSS ,AbS), E 7→ E∗(−) = [Σ∗
P11, E ⊗ (−)],

where AbS and Fun(MSS ,AbS) are equipped with the Day convolution. Of course, the S-graded functor
E∗(−) is completely determined by E0(−), as E∗ = E0 ◦ Σ−∗

P1 .

Remark 8.7. In general, the S-grading on E∗(−) does not descend to a Z-grading, as the automorphism
of E2(−) induced by the swap map on P1 ⊗ P1 is not necessarily the identity. It does however descend
to a Z-grading if E is orientable, by the naturality of the Thom isomorphism.

If S is qcqs, then MSS is compactly generated with 1 ∈ MSω
S . Moreover, if f : T → S is any morphism

of qcqs schemes, then f∗ : MST → MSS preserves colimits. Applying Observation 7.5, we obtain the
following commutative squares:

(8.8)

MSlisse
S Funhom(MSlisse

S ,AbS)

MSS Funhom(MSS ,AbS),

(−)◦lisse

MSlisse
S Funhom(MSS ,AbS)

MSlisse
T Funhom(MST ,AbS).

f∗ (−)◦f∗

Let Mfg denote the stack of (smooth, 1-dimensional, connected, and commutative) formal groups and
Ms

fg that of formal groups with trivialized Lie algebra. The stack Ms
fg is represented (as a presheaf

on classical affine schemes) by the Hopf algebroid (L,LB), where L is the Lazard ring and LB =
L[b0, b1, . . . ]/(b0 − 1). The usual grading on (L,LB) defines an action of Gm on Ms

fg such that Mfg =

Ms
fg/Gm. Thus, we have a cartesian square of faithfully flat maps

(8.9)

Spec(L) Ms
fg

Spec(L)/Gm Mfg.
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Remark 8.10. If R is a Z-graded commutative ring, then any Gm-equivariant map Spec(R) → Ms
fg

factors Gm-equivariantly through Spec(L). Indeed, such a map classifies a graded formal group G =
Spf(A) over R with a trivialization ωG ≃ R(1). Choosing a lift of 1 ∈ R in A−1 defines an isomorphism
of graded R-algebras R[[t]] ≃ A, hence a graded formal group law over R.

Construction 8.11. Let S be a qcqs derived scheme and let X ∈ MSS . As explained following [AHI24,
Lemma 8.7], the Z-graded abelian group MGL∗(X) has a structure of comodule over the Z-graded Hopf
algebroid (L,LB), i.e., it is a quasi-coherent sheaf on Mfg, which we shall denote by MGLfg(X). This
defines a lax symmetric monoidal homological functor

MGLfg : MSS → QCoh(Mfg)♡.

Accordingly, there is a lax symmetric monoidal functor

Φ∗ : QCoh(Mfg)♡ → Funfilt,×(MSS ,AbZ), F 7→ Γ(Ms
fg,MGLfg(−)⊗ F).

When F is the pushforward of a graded L-module M , we have

Φ∗(F) ≃ MGL∗(−)⊗L M

by the projection formula and base change for the cartesian square (8.9). Also, if ω ∈ Pic(Mfg) is the
pullback of the universal invertible sheaf on BGm, then

Φn(F) = Γ(Mfg,MGLfg(−)⊗ F ⊗ ω⊗n).

The functor Φ∗ is thus determined by Φ0, since MGLfg(−)⊗ ω⊗n = MGLfg ◦ Σ−n
P1 .

Remark 8.12. In the context of Construction 8.11, the unit section 1 ∈ Γ(Ms
fg,MGLfg(1S)) defines a

symmetric monoidal natural transformation

Γ(Ms
fg,−)→ Γ(Ms

fg,MGLfg(1S)⊗ (−)) = Φ∗(−)(1S) : QCoh(Mfg)♡ → AbZ.

For example, evaluating this natural transformation on the structure sheaf of Spec(L)/Gm gives the
graded ring homomorphism L→ MGL∗(1S) classifying the formal group law of MGL.

Lemma 8.13.

(i) For any F ∈ QCoh(Mfg)♡, the functor Φ∗(F) : MSS → AbZ factors through the localization

lisse : MSS → MSlisse
S .

(ii) For any morphism of qcqs derived schemes f : T → S, there is a commuting triangle

Fun(MSS ,AbZ)

QCoh(Mfg)♡

Fun(MST ,AbZ).

(−)◦f∗

Φ∗

Φ∗

Proof. This follows from the fact that MGL is lisse (Corollary 7.7) and the commutative squares (8.8). □

Construction 8.14. Consider the ∞-category Modfg of pairs (X,F) where X is a small presheaf on
classical affine schemes with a map π : X→Mfg and F ∈ QCoh(X)♡; morphisms are contravariant in X

and covariant in F. It has a symmetric monoidal structure with

(X,F)⊗ (Y,G) = (X×Mfg
Y,F ⊠ G),

and there is a lax symmetric monoidal functor

Modfg → QCoh(Mfg)♡, (X,F) 7→ π∗(F).

Let Mod♭
fg ⊂ Modfg be the full subcategory consisting of pairs (X,F) such that:

(i) Xs = X×Mfg
Ms

fg is affine;

(ii) F is flat over Mfg.

Note that Condition (i) excludes the unit (Mfg,O) of Modfg, but both conditions are preserved by binary

tensor products. Thus, Mod♭
fg is a nonunital symmetric monoidal subcategory of Modfg. More generally,

Mod♭
fg inherits the structure of an ∞-operad as a full subcategory of Modfg (so that we can still talk

about unital algebraic structures).
The subcategory of Modfg satisfying (i) can alternatively be described as the 1-category of triples

(R,G,M), where R is a Z-graded commutative ring, G is a Gm-equivariant map Spec(R) → Ms
fg, and

M is a Z-graded R-module. By Remark 8.10, any such G comes from a graded formal group law over R.
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Lemma 8.15. If (X,F) ∈ Mod♭
fg, then the functor

Γ(Xs, π∗(−)⊗ F) : QCoh(Mfg)♡ → ModO(Xs)(AbZ)

is exact.

Proof. Let Xs = Spec(R) and let M be the graded R-module corresponding to F. Since Ms
fg has affine

diagonal, we have a cartesian square of the form

Spec(A) Spec(L)

Spec(R) Ms
fg,

q

f

p

π

where the vertical maps are faithfully flat. Since q is faithfully flat and f is affine, it suffices to show
that the functor f∗q

∗(π∗(−)⊗M) is exact. We have natural isomorphisms

f∗q
∗(π∗(−)⊗M) ≃ f∗(f∗p∗(−)⊗ q∗(M)) ≃ p∗(−)⊗ f∗q∗(M).

The assumption that F is flat over Mfg means that f∗q
∗(M) is a flat L-module. As p is also flat, the

above functor is exact. □

Remark 8.16. Landweber’s theorem [Lur10, Lecture 16] gives a necessary and sufficient condition for
a pair (X,F) ∈ Modfg to satisfy Condition (ii) of Construction 8.14. For completeness, we recall it here.
For each prime p, there is a canonical sequence of sections

vn ∈ Γ(M≥n
fg , ω⊗(pn−1)), n ≥ 0,

starting with v0 = p, where M
≥n
fg ⊂Mfg is the vanishing locus of the sections v0, . . . , vn−1 (which depends

on p). Denote by F≥n the restriction of F to X≥n = X ×Mfg
M

≥n
fg . Then F is flat over Mfg if and only

if, for each prime p and each n ≥ 0, the map vn : F≥n → F≥n ⊗ ω⊗(pn−1) is injective.
For a formal group law F over a commutative ring R, we can take vn ∈ R to be the coefficient of xp

n

in the p-series of F . An R-module M is then flat over Mfg if and only if (v0, v1, . . . ) is a regular sequence
for M (for all primes p).

Lemma 8.17. Let S be a qcqs derived scheme. Suppose that S is countable, i.e., admits an open covering
by spectra of animated rings with countable homotopy groups. Then the ∞-category MSω

S is countable,
i.e., its anima of objects and all its mapping anima have countable homotopy groups.

Proof. If C is a presentable ∞-category and E is a small collection of maps in C, the left Bousfield
localization LE : C → C can be obtained as follows. For F ∈ C, choose a surjection from a well-ordered
set to the anima of all pairs (f : X → Y,X → F ) with f in the smallest collection containing E and
closed under codiagonals, and let TF be the transfinite composition of the pushouts along f . Iterate
such a construction to obtain an ordinal sequence

F → TF → T 2F → · · · .

Then it is clear that LEF = TκF if E is contained in Cκ. Suppose now that C is stable, that E is closed
under shifts and contained in Cω, and that Cω is countable. Then, if F ∈ C is such that the sets [X,F ]
are countable for all X ∈ Cω, the above description of LEF immediately shows that [X,LEF ] is also
countable for all X ∈ Cω.

We now apply this observation with C = Splax
P1 (P(Smfp

S ,Sp)). The countability of S implies that Smfp
S is

countable. As also Fin≃ and Spω are countable, SSeq(P(Smfp
S ,Sp))ω is countable. If A is a commutative

algebra in a symmetric monoidal compactly generated ∞-category, then the ∞-category of A-modules
is compactly generated, with compact objects generated under finite colimits and retracts by the free
A-modules A⊗X with X compact. In our situation, A is the commutative algebra (1,P1, (P1)⊗2, . . . ) in

SSeq(P(Smfp
S ,Sp)), which is a sequential colimit of compact objects. Hence, for any compact symmetric

sequences X and Y , the set [X,A ⊗ Y ] is countable. This shows that Cω is countable. Finally, MSS

is a left Bousfield localization of C at a collection of maps between compact objects, so that MSω
S is

countable. □
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Theorem 8.18 (Motivic Landweber exact functor theorem). For any qcqs derived scheme S, there is a
morphism of ∞-operads Φ making the triangle

h̄MSlisse
S

Mod♭
fg Fun(MSS ,AbS)

E 7→E∗(−)

Φ∗

Φ

commute, which is natural in S and uniquely determined as such. Moreover, Φ is a strict nonunital
symmetric monoidal functor.

Proof. The vertical functor is well-defined and lax symmetric monoidal by Corollary 8.4, and it lands in
the subcategory of lisse-extended homological functors Funhom(MSlisse

S ,AbS) by the first square in (8.8).
By Lemmas 8.13(i) and 8.15, the restriction of Φ∗ to Mod♭

fg also lands in this subcategory. By Proposi-
tion 8.6, the functor

h̄MSlisse
S → Funhom(MSlisse

S ,Ab), E 7→ E0(−),

is an isomorphism of ∞-operads if MSdual
S is countable, and this holds if S is countable by Lemma 8.17.

Hence, for countable S, there is a unique lift Φ of Φ0 (and hence of Φ∗) as indicated, which is automatically
a morphism of∞-operads. We then obtain such a lift for general S using the commutativity of the second
square in (8.8), Lemma 8.5, and Lemma 8.13(ii).

It remains to check that the lax nonunital symmetric monoidal structure of Φ is actually strict. Let
(Spec(R1)/Gm,M1) and (Spec(R2)/Gm,M2) be objects of Mod♭

fg. Their tensor product is

(Spec(R)/Gm,M1 ⊠M2), where Spec(R) = Spec(R1)×Ms
fg

Spec(R2).

Let E1, E2, and E be the images of these pairs by Φ. We must show that the induced map E1⊗E2 → E
in h̄MSlisse

S is an isomorphism, and we may assume S countable. In this case, it is by definition the
unique map making the triangle

E1∗(−)⊗ E2∗(−) E∗(−)

(E1 ⊗ E2)∗(−)

commute, where the horizontal map is the lax monoidal structure of Φ∗. It will thus suffice to construct
a natural isomorphism (E1 ⊗ E2)∗(−) ≃ E∗(−) making the triangle commute.

By Remark 8.10, we can choose Gm-equivariant factorizations of Spec(Ri) → Ms
fg through Spec(L).

They induce isomorphisms Ei∗(X) ≃ MGL∗(X)⊗L Mi and

E∗(X) ≃ (MGL⊗MGL)∗(X)⊗LB (M1 ⊠M2),

since (MGL ⊗ MGL)∗(X) is by definition the pullback of MGLfg(X) to Spec(LB). We then have a
sequence of natural isomorphisms:

(E1 ⊗ E2)∗(X) ≃ E1∗(E2 ⊗X)

≃M1 ⊗L MGL∗(E2 ⊗X)

≃M1 ⊗L E2∗(MGL⊗X)

≃M1 ⊗L MGL∗(MGL⊗X)⊗L M2

≃M1 ⊗L (MGL⊗MGL)∗(X)⊗L M2

≃ (MGL⊗MGL)∗(X)⊗LB (M1 ⊠M2)

≃ E∗(X).

The commutativity of the above triangle can be checked using the following claim twice: if F = Φ(M)
for some Z-graded L-module M , then the following square commutes for all X,Y ∈ MSS :

F∗(X)⊗ 1∗(Y ) F∗(X ⊗ Y )

M ⊗L MGL∗(X)⊗ 1∗(Y ) M ⊗L MGL∗(X ⊗ Y ).

∼

η

∼

idM⊗η

Here, the maps η are the evident “assembly maps”. The commutativity of the square on some element
a ∈ 1∗(Y ) is exactly the naturality of the isomorphism F∗(−) ≃ M ⊗L MGL∗(−) with respect to the
map idX ⊗ a : Σ∗

P1X → X ⊗ Y . □
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Remark 8.19. The multiplicative properties of Φ can also be stated as follows. If Mod♭,+
fg denotes the

symmetric monoidal full subcategory of Modfg consisting of Mod♭
fg and the unit (Mfg,O), then Φ extends

uniquely to a symmetric monoidal functor Φ: Mod♭,+
fg → h̄MSlisse

S .

Example 8.20 (Graded formal group laws).

(i) We recover MGL as a commutative monoid in h̄MSlisse
S from (Spec(L)/Gm,O) ∈ Mod♭

fg.

(ii) A graded formal group law F over a Z-graded commutative ring R defines a map Spec(R)/Gm →
Mfg over BGm. Any Z-graded R-module M that is flat over Mfg then defines an MGL-module

Φ(R,F,M) in h̄MSlisse
S . If moreover R itself is flat over Mfg, then Φ(R,F,M) is a module over

the commutative MGL-algebra Φ(R,F ) in h̄MSlisse
S .

Example 8.21 (Weakly periodic Landweber exact motivic spectra). Any formal group (R,G) classified

by a flat map Spec(R)→ Mfg gives a commutative monoid Φ(R,G) in h̄MSlisse
S . These motivic spectra

are weakly periodic in the following sense: if L ∈ Pic(R) is the pullback of the invertible sheaf ω, then
Φ(R,G)∗(−) = Φ(R,G)0(−)⊗R

⊕
n∈Z L

⊗n. For example:

(i) The universal formal group law over L gives the commutative monoid PMGL.
(ii) The multiplicative formal group law over Z gives the commutative monoid KGL (Corollary 7.8).

(iii) Let k be a perfect field of positive characteristic and let G be a formal group of finite height over

k. Then G admits a universal deformation Ĝ defined over the Lubin–Tate ring LT(G), which is

classified by a flat map Spec LT(G)→Mfg. The resulting commutative monoid E(G) in h̄MSlisse
S

is the motivic analogue of the Morava E-theory associated with G.

Remark 8.22. Let F be a graded formal group law over a Z-graded commutative ring R and let M be
a Z-graded R-module that is flat over Mfg. Since the motivic spectrum Φ(R,F,M) is an MGL-module

in h̄MSlisse
S , it admits an orientation that is canonical modulo phantom maps.

Remark 8.23. In [NSØ09, Proposition 8.9], it is claimed that Landweber exact motivic spectra can be
refined to MGL-modules (in the ∞-category of motivic spectra), but the proof is flawed. The mistake
originates in [NSØ09, Proposition 7.9], where it is claimed that the homotopy groups of any MGL-module
have a structure of (L,LB)-comodule, following the analogous claim for MU-modules made in [May01,
Lemma 11]. These claims are wrong, since the (L,LB)-comodule structure encodes in essence the descent
data to the sphere spectrum. This invalidates [NSØ09, Theorem 9.7] (unless the motivic spectrum F in
loc. cit. is a priori an MGL-module), as well as the main result of [Spi12], which uses this MGL-module
structure in an essential way.

9. Operations in algebraic K-theory and rational motivic cohomology

As applications of the motivic Landweber exact functor theorem, we compute the algebra of P1-stable
operations in algebraic K-theory and we show that rational motivic cohomology is an idempotent algebra
in MSS . These are non-A1-invariant enhancements of some of the results from [Rio10, Section 5.3],
[NSØ09, Sections 9 and 10], and [CD19, Section 14.1], and our proofs are essentially the same.

Our first goal is to explicitly describe the endomorphism ring of KGL. We make some preliminary
observations about Hopf algebroids.

Digression 9.1 (Dualizing and extending Hopf algebroids). Let (A,Γ) be a cocategory object in com-
mutative rings with left unit ηL, right unit ηR, counit ε and comultiplication ∆. We denote by Γ∨ the
A-linear of Γ, viewed as an A-module via ηL. Then Γ∨ is an associative algebra in A-bimodules, with
unit ε∨ : A→ Γ∨ and multiplication ◦ given by

f ◦ g : Γ
∆−→ Γ⊗A Γ

id⊗g−−−→ Γ⊗A A ≃ Γ
f−→ A.

Assume that Γ is flat as a left A-module, so that it is a filtered colimit of dualizable A-modules. If we

equip Γ∨ with the inverse limit topology, we then have (Γ⊗An)∨ ≃ (Γ∨)⊗̂An. Dualizing the commutative
algebra structure of Γ (in left A-modules), we obtain a structure of cocommutative coalgebra on Γ∨ (in

left A-modules), whose comultiplication Γ∨ → (Γ∨)⊗̂An is moreover right A⊗n-linear. There is a further
compatibility between the algebra and coalgebra structures of Γ∨, but we do not spell it out.

Let now R be a commutative A-algebra. The data of a cocartesian morphism of cocategory objects

(A,Γ)→ (R,R⊗A Γ)

is equivalent to the data of a ring map ρ : R → R ⊗A Γ that is a right coaction of (A,Γ) on R: the left
unit, counit, and comultiplication of (R,R ⊗A Γ) are extended from those of (A,Γ), and the right unit
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is the coaction ρ. Dualizing ρ, we find a left action of Γ∨ on R given by the left A-linear map

λ : Γ∨ ⊗A R→ R, f ⊗ r 7→ f(r) := (idR ⊗ f)(ρ(r)),

which extends η∨L : Γ∨ → A. Assuming Γ flat over A, this action is continuous (and it intertwines the
algebra structure of R and the coalgebra structure of Γ∨, but we do not spell this out). Furthermore,
there is then an isomorphism of rings

(9.2) R ⊗̂A Γ∨ ∼−→ HomA(Γ, R) = (R⊗A Γ)∨

with the following multiplication on R ⊗̂A Γ∨:

(R ⊗̂A Γ∨) ⊗̂A (R ⊗̂A Γ∨)→ R ⊗̂A Γ∨, (r · f)⊗ (s · g) 7→ r ·∆(f)(s) ◦ g.
In other words, this multiplication is left R-linear and right Γ∨-linear, and in the middle it is given by
the composition

Γ∨ ⊗̂A R
∆⊗id−−−→ Γ∨

ℓ ⊗̂A Γ∨ ⊗̂A R
id⊗λ−−−→ Γ∨

ℓ ⊗̂A R = R ⊗̂A Γ∨,

where the subscript ℓ means that the tensor product uses the left A-module structure of Γ∨. To make
the isomorphism (9.2) more useful, we note that if R0 ⊂ R is the equalizer of the left and right units,
then ∆(f)(s) = s · f for any s ∈ R0. This means that the isomorphism (9.2) restricts to a ring map

R0 ⊗̂A0 Γ∨ → (R⊗A Γ)∨,

where the multiplication on the left-hand side is computed componentwise. In particular, the map

Γ∨ → (R⊗A Γ)∨, f 7→ idR ⊗ f,
is a morphism of associative rings.

We recall the structure of the Gm-stack of multiplicative formal groups with trivialized Lie algebra.
It is presented by the graded Hopf algebroid (Z[β±1],Γm) with

Γm = Z[β±1]⊗L LB⊗L Z[β±1],

where the ring map L → Z[β±1] classifies the graded formal group law x + y − βxy. It is a standard
fact that Γm is a free Z[β±1]-module on countably many generators. The associative ring Γ∨

m can be
described explicitly as follows: it is a twisted Laurent polynomial algebra over a sequential limit of rings

(9.3) Γ∨
m = lim

(
· · · ω−→ Z[[x]]

ω−→ Z[[x]]
)

[β±1], ω(f) = (1− x)
df

dx
, β−1aβ = ω(a),

where the ring structure ◦ on the topological abelian group Z[[x]] is uniquely determined by the formula

(1− x)−k ◦ (1− x)−l = (1− x)−kl

for all k, l ∈ Z. Note that Γ∨
m is not a Z[β±1]-algebra, since β is not central.5

Remark 9.4. From the perspective of stable homotopy theory, these claims can be understood as
follows. We have Γm = KU2∗KU, which is a free KU2∗-module by [AC77, Theorem 2.1], and its dual
is Γ∨

m = KU2∗KU with ring structure given by composition of endomorphisms. To obtain the above
description of Γ∨

m, let x = βc1 ∈ KU0(BC×), so that KU0(BC×) ≃ Z[[x]].6 The latter group can
be identified with the subgroup of KU0(Ω∞KU) consisting of additive maps, which is a ring under
composition. Under this identification, the power series (1− x)−k corresponds to the (unstable) Adams
operation ψk, and the formula for ◦ corresponds to the equation ψk ◦ ψl = ψkl. Finally, the limit along
ω corresponds to the Snaith presentation KU = Σ∞

+ BC×[β−1] (and the lim1 obstruction to this limit

computing KU0(KU) vanishes since KU−1 = 0).

Proposition 9.5. Let S be a qcqs derived scheme and Λ ⊂ Q a subring.

(i) (KGL-homology cooperations) There is a right coaction of the Hopf algebroid (Z[β±],Γm) on the
Z[β±1]-algebra KGL⋆(S) and an isomorphism of Pic(MSS)-graded Hopf algebroids

(KGLΛ⋆,KGLΛ⋆KGL) ≃ KGLΛ⋆(S)⊗Z[β±1] (Z[β±1],Γm),

where on the right-hand side the right unit is the coaction while the left unit, counit, and comul-
tiplication are extended.

5For this reason, the statement of [NSØ09, Theorem 9.3] is incorrect. We give a corrected statement in Proposition 9.5(ii)
below.

6Following our algebro-geometric conventions, the element 1 − x ∈ KU0(BC×) is the dual of the universal line bundle,
and the Bott element β ∈ KU−2(∗) ⊂ KU0(CP1) is the restriction of x along the map CP1 → BC× classifying the

tautological bundle.
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(ii) (KGL-cohomology operations) There is a continuous left action of the Z[β±1]-bimodule algebra
Γ∨
m on the left Z[β±1]-module KGL⋆(S) extending η∨L : Γ∨

m → Z[β±1] and an isomorphism of
Pic(MSS)-graded rings

KGL⋆
ΛKGL ≃ KGL⋆

Λ(S) ⊗̂Z[β±1] Γ∨
m,

where the ring structure on the right-hand side is given by: (u · φ) ◦ (v · ψ) = u ·∆(φ)(v) ◦ ψ. In
particular, there is a ring homomorphism Λ ⊗̂Γ∨

m → KGL∗
ΛKGL, which is an isomorphism when

K0(S)⊗ Λ = Λ.

Proof. We use the symmetric monoidal functor Φ from Theorem 8.18. Recall from Example 8.21(ii) that
KGL is the image by Φ of the graded L-algebra Z[β±1]. The KGL-module KGL⊗KGL is then the image
by Φ of the Z[β±1]-module Γm, so it is a sum of copies of KGL (indexed by a basis of (Γm)0).

(i) As observed above, this statement is equivalent to the existence of a cocartesian morphism of
Hopf algebroids (Z[β±1],Γm) → (KGL⋆,KGL⋆KGL). First of all, the Čech conerve of 1 → KGL in
CAlg(hMSS) does induce a Picard-graded Hopf algebroid (KGL⋆,KGL⋆KGL) by [AHI24, Lemma 8.7],
and since the decomposition of KGL ⊗ KGL does not involve any grading shifts, the inclusion of the
S-graded subalgebroid (KGL∗,KGL∗KGL) is cocartesian. Thus, it will suffice to define a cocartesian
morphism (Z[β±1],Γm) → (KGL∗,KGL∗KGL). The graded Hopf algebroid (Z[β±1],Γm) is the Čech

conerve in CAlg(Modfg) of the map SpecZ → Mfg classifying Ĝm. Since Φ is symmetric monoidal, it

sends this Čech conerve to that of 1 → KGL in CAlg(h̄MSlisse
S ). Given the commutative triangle of

Theorem 8.18, we now obtain the desired morphism (Z[β±1],Γm) → (KGL∗,KGL∗KGL) by evaluating
the symmetric monoidal natural transformation of Remark 8.12 on the Hopf algebroid (Z[β±1],Γm).

(ii) Since KGL⊗KGL is a free KGL-module and since the unit in MSS is compact, the canonical ring
homomorphism

KGL⋆
ΛKGL→ HomKGL⋆(KGL⋆KGL,KGL⋆ ⊗ Λ)

is an isomorphism. By inspection, the ring structure on the right-hand side is obtained by dualizing
the Hopf algebroid from (i). The desired isomorphism of rings is thus an instance of (9.2). The last
statement follows from the equation ∆(φ)(v) = v · φ for v ∈ Λ, which holds because Λ is equalized by
the left and right units. □

Example 9.6 (Adams operations). Let k ∈ Z. The E∞-map Pic→ Pic, L 7→ L⊗k, induces a morphism
of E∞-rings

ψk : Σ∞
P1Pic+ → Σ∞

P1Pic+

such that ψk(β) = kβ ∈ (Σ∞
P1Pic+)−1(S). Thus, after inverting β and k, we obtain an E∞-map

ψk : KGL[ 1k ]→ KGL[ 1k ],

called the kth Adams operation. In fact, since k 7→ (−)⊗k is an action of the multiplicative monoid (Z, ·)
on the E∞-monoid Pic, we obtain for any submonoid M ⊂ Z an induced action of M on KGL[M−1] ∈
CAlg(MSS) via Adams operations.

Under the isomorphism of Proposition 9.5(ii), the kth Adams operation ψk ∈ End(KGL[ 1k ]) corre-

sponds to the unique element ψk ∈ (Γ∨
m)0 ⊗̂Z[ 1k ] such that ω∞(ψk) = (1−x)−k. Indeed, the latter power

series in KGL0[[x]] ≃ KGL0(Pic) corresponds to the map Pic→ K, L 7→ L⊗k. Explicitly, ψk is given by
the sequence

ψk =
(
k−n(1− x)−k

)
n∈N

in the limit (9.3) (which is how Riou defines the Adams operations in [Rio10, Definition 5.3.2]).

Our next goal is to investigate the case Λ = Q of Proposition 9.5 in more details, using the fact that
the multiplicative formal group becomes isomorphic over Q to the additive one. Analogously to the
multiplicative case, the Gm-stack of additive formal groups with trivialized Lie algebra is presented by
the graded Hopf algebroid (Z[β±1],Γa) with

Γa = Z[β±1]⊗L LB⊗L Z[β±1],

where the ring map L→ Z[β±1] now classifies the graded formal group law x+ y. Unlike Γm, Γa is not
torsionfree and is more difficult to describe explicitly. For each prime p, Γa ⊗ Fp is a double Laurent
polynomial algebra over the even part of the dual Steenrod algebra at p. Rationally, however, we simply
have

Γa ⊗Q = Q[β±1]⊗Q[β±1].

Viewing Γa as a Z[β±1]-module via the left unit and dualizing, we find

(9.7) (Γa ⊗Q)∨ = QZ[β±1], β−1aβ = σ(a),
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as topological rings, where the ring structure on QZ is given by pointwise multiplication and σ : QZ → QZ

is the shift operator (an)n∈Z 7→ (an+1)n∈Z.
The graded formal group laws x+ y− βxy and x+ y over Q[β±1] are isomorphic via the power series

−β−1 log(1− βt) =
∑
n≥1

1

n
βn−1tn ∈ Q[β±1][[t]].

Conjugation with this isomorphism defines an isomorphism of graded Hopf algebroids

(Q[β±1],Γm ⊗Q) ≃ (Q[β±1],Γa ⊗Q),

hence an isomorphism of graded topological rings

(9.8) (Γa ⊗Q)∨ ≃ (Γm ⊗Q)∨.

Remark 9.9. In terms of the explicit descriptions (9.3) and (9.7) of the algebras (Γm⊗Q)∨ and (Γa⊗Q)∨,
we have the following formula for the isomorphism (9.8). First, there is an isomorphism of topological
rings

(QN, ·) ∼−→ (Q[[x]], ◦), (an)n∈N 7→
∞∑

n=0

an
n!

(− log(1− x))n.

The inverse sends f ∈ Q[[x]] to (an)n∈N, where an/n! is the nth coefficient of f(1−exp(x)−1). The power
series (1− x)−k thus corresponds to (kn)n∈N, which shows that the isomorphism is compatible with the
ring structures. The shift operator (an)n∈N 7→ (an+1)n∈N on QN corresponds to the endomorphism ω of
Q[[x]], which yields in the limit the desired isomorphism

(Γa ⊗Q)∨0 = QZ ∼−→ (Γm ⊗Q)∨0 , (an)n∈Z 7→

( ∞∑
n=0

an−k

n!
(− log(1− x))n

)
k∈N

(cf. [Rio10, Proposition 5.3.7]).

Combining Proposition 9.5(ii) with (9.8) and (9.7), we obtain an isomorphism of rings

QZ ∼−→ EndhMSZ(KGLQ).

For each n ∈ Z, the characteristic function of n thus defines an idempotent endomorphism en of KGLQ
over SpecZ, hence over any derived scheme S. We denote by KGL

(n)
Q the image of en, called the nth

Adams eigenspace of KGLQ. By Proposition 9.13(i,iv) below, the motivic spectrum KGL
(n)
Q represents

the kn-eigenspace of the Adams operation ψk on the rational K-groups K∗(−)Q for any k ∈ Z− {0,±1}.
Note that KGL

(n)
Q is by definition stable under arbitrary base change.

Definition 9.10. Let S be a derived scheme. The rational motivic cohomology spectrum HQ ∈ MSS is
the motivic spectrum KGL

(0)
Q equipped with the E0-algebra structure 1→ KGLQ → KGL

(0)
Q .

Remark 9.11. Under the isomorphism (9.8), the map η∨L : (Γm ⊗ Q)∨0 → Q corresponds to η∨L : QZ =
(Γa⊗Q)∨0 → Q, which is evaluation at 0 ∈ Z. In particular, it sends the idempotent e0 to 1. This implies
that the endomorphism e0 of KGLQ with image HQ is a morphism of E0-algebras in hMSS (this also
follows from Lemma 9.15 below).

Remark 9.12. If S is regular noetherian, so that KGL ∈ MSS is A1-invariant, the spectrum KGL
(n)
Q

coincides by construction with the one defined by Riou [Rio10, Definition 5.3.9] (the slight variations in
our formulas are explained by a different choice of coordinate in our description of Γ∨

m: Riou uses the
coordinate u = (1 − x)−1 − 1). In particular, HQ coincides in this case with the A1-invariant rational
motivic cohomology spectrum defined in [Rio10, Definition 5.3.17] and studied further by Cisinski and
Déglise in [CD19, Section 14].

Proposition 9.13 (Adams decomposition). Let S be a derived scheme.

(i) The canonical map ⊕
n∈Z

KGL
(n)
Q → KGLQ

is an isomorphism in MSS.
(ii) If S is locally of finite Krull dimension, then the canonical map

KGLQ →
∏
n∈Z

KGL
(n)
Q

is an isomorphism in MSS.
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(iii) For every n ∈ Z, the Bott element β induces an isomorphism ΣP1KGL
(n)
Q ≃ KGL

(n+1)
Q . In

particular, Σn
P1HQ ≃ KGL

(n)
Q .

(iv) For every n ∈ Z and k ∈ Z− {0}, we have ψk = kn · id on KGL
(n)
Q .

Proof. (i) This follows from the case S = SpecZ proved in [Rio10, Theorem 5.3.10]. We give a proof for
completeness. We may assume S qcqs, so that MSS is compactly generated. It then suffices to show
that for every X ∈ MSω

S , the map

colim
n

[
X,

n⊕
i=−n

KGL
(i)
Q

]
→ [X,KGLQ]

is an isomorphism. Injectivity is obvious. Let e[−n,n] be the idempotent endomorphism
∑n

i=−n ei of

KGLQ, whose image is
⊕n

i=−n KGL
(i)
Q . To prove surjectivity, we must show that for every f : X → KGLQ,

there exists an n such that f ≃ e[−n,n] ◦ f . Recall that KGL ⊗ KGLQ is a countable sum of copies of
KGLQ. Since KGL ⊗X is a compact KGL-module, the map idKGL ⊗ f factors through a finite sum of
copies of KGLQ. This shows that the map

KGL0
Q(KGL)→ KGL0

Q(X), α 7→ α ◦ f,
is continuous, where the target has the discrete topology. Since the sequence (e[−n,n])n converges to 1 in

KGL0
Q(KGL), its image (e[−n,n] ◦ f)n in KGL0

Q(X) is eventually equal to f , as desired.

(iii) By Proposition 9.5(ii), there is a morphism of graded rings QZ[β±1]→ KGL∗
QKGL, where QZ[β±1]

is as described in (9.7). The claim thus follows from the equation en+1β = βen in the ring QZ[β±1].
(iv) By Example 9.6 and Remark 9.9, ψk is given by the sequence (kn)n∈Z in QZ.
(ii) In light of (i), (iii), and (iv), the statement is equivalent to the following: for any animated ring A

of finite Krull dimension and any n ∈ Z, there are only finitely many i ∈ Z such that Kn(A)
(i)
Q ̸= 0. Here,

the groups Kn(A)
(i)
Q are the eigenspaces of the Adams operations on Kn(A)Q. By the Bass delooping

theorem [AHI24, Corollary 4.13], we can in fact ignore the negative K-groups and assume n ≥ 0. In this
case, we have Kn(A)

(i)
Q = 0 for any i < 0, so it remains to prove that Kn(A)

(i)
Q = 0 for large enough i.

Since K≥0(−)
(i)
Q is finitary and the Zariski∞-topos of A has finite homotopy dimension [CM21, Theorem

3.12], this follows from Lemma 9.14(ii) below. □

Lemma 9.14. Let i ∈ Z.
(i) Let R→ S be a morphism of animated commutative rings such that π0(R)→ π0(S) is surjective

with nilpotent kernel. Then the spectrum K(R,S)
(i)
Q is i-connective.

(ii) Let R be a local animated commutative ring. Then the spectrum K≥0(R)
(i)
Q is i-connective.

Proof. If R is local and static, (ii) was proved by Soulé [Sou85, Section 2, Théorème 1]. It thus remains
to prove (i). Consider the zigzag of natural transformations on animated commutative rings

(K≥0)Q
Tr−→ HC−

Q
Nm←−− HC+

Q [1].

We equip (K≥0)Q with the Adams filtration (K≥0)
(≥∗)
Q and HC− and HC+ with the HKR filtrations as

defined in [Rak20, Section 6] or [BL22, Section 6.3]. By definition of the latter, Nm is canonically a
filtered map (where [1] also shifts the filtration by 1). We claim that Tr can also be refined (uniquely) to
a filtered map. This follows from connectivity considerations as in [EM23, Proposition 4.6]. Indeed, since
(K≥0)Q is left Kan extended from smooth Z-algebras [EHK+20, Example A.0.6], it suffices to consider Tr
on smooth Z-algebras. We already know that K≥0(−)

(≥i)
Q is i-connective as a Zariski sheaf on classical

schemes, by Soulé’s theorem. On the other hand, for a smooth Z-algebra R, the HKR filtration on
HC−(R) is exhaustive with graded pieces

griHKRHC−(R) = Ω≥i
R [2i]

(by [Rak20, Example 6.3.8]), so that HC−(R)/FiliHKRHC−(R) is (i − 1)-truncated. This shows that Tr
refines uniquely to a filtered map.

By Goodwillie’s theorem [Goo86, Theorem II.3.4 and Lemma I.3.3], both transformations Tr and Nm
are isomorphisms on (R,S). In particular, since HC+ commutes with rationalization, we have

K(R,S)
(i)
Q

∼−→ K(RQ, SQ)
(i)
Q .

We may thus assume that R is a Q-algebra. On animated Q-algebras, we have functorial splittings of
the HKR filtration

HC− ≃
∏
i∈Z

griHKRHC− and HC+ ≃
⊕
i≥0

griHKRHC+
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(for HC+, this reduces to the classical case of polynomial Q-algebras as both sides are left Kan extended;
for HC− = Fil0THP, this is established in the proof of [Bal23, Theorem 3.4]). Since Tr and Nm are lower
triangular with respect to these decompositions, they induce isomorphisms on associated graded

K(R,S)
(i)
Q ≃ griHKRHC−(R,S) ≃ gri−1

HKRHC+(R,S)[1].

The ith graded piece griHKRHC+(R) of the HKR filtration is the Hodge-truncated derived de Rham

cohomology LΩ≤i
R [2i] (again by [Rak20, Example 6.3.8]), which is i-connective. Moreover, since R → S

is surjective on π0, the induced map on gri−1
HKRHC+ is surjective on πi−1, so that the fiber gri−1

HKRHC+(R,S)
is still (i− 1)-connective. By the above isomorphisms, we deduce that K(R,S)

(i)
Q is i-connective. □

Next, we observe that the Adams decomposition of KGLQ can also be obtained using the functor Φ

from Theorem 8.18. Let Φ(Q) ∈ CAlg(h̄MSlisse
S ) be the commutative monoid induced by the graded ring

homomorphism L→ Q classifying the additive formal group law over Q, as in Example 8.20(ii).

Lemma 9.15. Let S be a qcqs derived scheme. The summand inclusion KGL
(n)
Q → KGLQ is the image

by Φ: Mod♭
fg → h̄MSlisse

S of the morphism

(Spec(Q)/Gm, Ĝa,Q(n))→ (Spec(Q), Ĝa,Q) ≃ (Spec(Q), Ĝm,Q),

In particular, there is an isomorphism of E0-algebras HQ ≃ Φ(Q).

Proof. The idempotent endomorphism en of KGLQ∗(−) is by construction the image by Φ∗ of the idem-

potent endomorphism of (Spec(Q)/Gm, Ĝa,
⊕

n∈Z Q(n)) projecting onto Q(n). □

Theorem 9.16. For any derived scheme S, the motivic E0-ring spectrum HQ ∈ MSS is idempotent.
Hence, it admits a unique E∞-ring structure, and the forgetful functor ModHQ(MSS) → MSS is fully
faithful.

Proof. Since HQ is stable under base change, we may assume S qcqs. We must show that the map

idHQ ⊗ η : HQ→ HQ⊗HQ

is an isomorphism, where η : 1→ HQ is the unit. By Lemma 9.15, it can be identified with the map

idΦ(Q) ⊗ η : Φ(Q)→ Φ(Q)⊗ Φ(Q).

The latter is a section in h̄MSlisse
S of the multiplication µ : Φ(Q) ⊗ Φ(Q) → Φ(Q). Since the functor

MSlisse
S → h̄MSlisse

S is conservative, it suffices to show that µ is an isomorphism. Since Φ is a (nonunital)
symmetric monoidal functor by Theorem 8.18, µ is the image by Φ of the map

Q⊗L LB⊗L Q→ Q

classifying the identity automorphism of the additive formal group law over Q. This map is an isomor-
phism, since the Hurewicz map ηR : L→ Z⊗L LB is rationally an isomorphism by Lazard’s theorem (see
for example [Lur10, Lecture 2, Lemma 10]). □

Remark 9.17. The use of the motivic Landweber exact functor theorem in Proposition 9.5 is merely
a convenience, as it would be possible to make that computation using only the Snaith presentation of
KGL. However, its use in the proof of Theorem 9.16 seems more essential: we do not know an alternative
argument.

Remark 9.18 (The E∞-orientation of HQ). Being a retract of KGLQ as an E0-ring (Remark 9.11), the
E∞-ring HQ is canonically oriented. By [AHI24, Corollary 7.10], there is an isomorphism of HQ-algebras
HQ⊗MGL ≃ HQ[b1, b2, . . . ] in hMSS . Since the action of the symmetric group Σn on Σn

P1HQ is trivialized
by the Thom isomorphism and Q⊗ Σ∞

+ BΣn ≃ Q, HQ[b1, b2, . . . ] is actually the free E∞-HQ-algebra on
the generators bi. We therefore obtain a morphism of E∞-rings

MGL→ HQ⊗MGL
∼←− HQ[b1, b2, . . . ]→ HQ

by sending each bi to 0.

Proposition 9.19. The following are equivalent for a Q-linear motivic spectrum E ∈ MSS:

(i) E lies in the full subcategory ModHQ(MSS) ⊂ MSS.
(ii) E admits a structure of MGL-module in MSS.

(iii) E admits a structure of MGL-module in hMSS.

In particular, every Q-linear orientable object in CAlg(hMSS) is an HQ-module.
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Proof. (i)⇒ (ii) follows from Remark 9.18, and (ii)⇒ (iii) is obvious. The subcategory ModHQ(MSS) ⊂
MSS is a tensor ideal and is closed under retracts. To prove (iii) ⇒ (i), it therefore suffices to show that
the canonical map MGLQ → MGL⊗HQ is an isomorphism, and we may assume S qcqs. The spectrum
MGLQ is the image by Φ of the universal rational formal group law on the graded ring L ⊗ Q. On the
other hand, by Lemma 9.15 and Theorem 8.18, MGL ⊗ HQ is the image by Φ of the graded L-algebra
LB⊗L Q. The claim follows since the map L⊗Q→ LB⊗L Q is an isomorphism. □

Remark 9.20 (Periodic rational motivic cohomology and the Chern character). If E ∈ CAlg(MSS) is
a Q-linear orientable E∞-ring, there is a canonical isomorphism⊕

n≥0

Σn
P1E

∼−→ SymE(ΣP1E)

(see Remark 9.18). Inverting the tautological element u : P1 → SymE(ΣP1E), we obtain a further isomor-
phism

PE =
⊕
n∈Z

Σn
P1E

∼−→ SymE(ΣP1E)[u−1].

In other words, the spectrum PE has a structure of E∞-E-algebra, which is initial among E∞-E-algebras
R with a unit u : P1 → R. By Proposition 9.19, KGLQ is an E∞-HQ-algebra. Hence, there is a unique
map of E∞-HQ-algebras

ch−1 : PHQ→ KGLQ

sending u to β, which is an isomorphism by Proposition 9.13(iii).

Example 9.21 (Integral étale motivic cohomology). Let HZét ∈ MSZ be the étale localization of the
motivic cohomology spectrum HZ. For any derived scheme S, let HZét ∈ MSS be its base change to S.
Then:

(i) For any prime p, the p-completion of HZét is the motivic spectrum HZét
p from Example 6.16

representing Bhatt–Lurie syntomic cohomology.
(ii) The rationalization of HZét is the rational motivic cohomology spectrum HQ from Definition 9.10

representing the fixed points of the Adams operations on the rational K-groups.
(iii) HZét satisfies étale descent, i.e., belongs to the full subcategory MSét

S ⊂ MSS .
(iv) Over a Dedekind domain D, HZét is the étale localization of HZ in MSD, and Ω∞−n

P1 HZét is the
étale sheafification of the Bloch–Levine motivic complex Z(n)[2n] on SmD.

Indeed, (i) and (ii) are true over Spec(Z) and hence over arbitrary S as both HZét
p and HQ are stable

under base change. We therefore have the following cartesian fracture square in CAlg(MSS):

HZét
∏

p HZét
p

HQ
(∏

p HZét
p

)
Q

.

To prove (iii), it remains to show that (
∏

p HZét
p )Q satisfies finite étale descent. Since RΓsyn(−,Zp(∗))

is an étale sheaf of E∞-rings, it has a unique structure of finite étale transfers satisfying the projection
formula [BH21, Corollary C.13]. Moreover, it is the constant sheaf Zp in weight 0. Hence, for a finite
étale map f : Y → X, the endomorphism f∗f

∗ of RΓsyn(X,Zp(∗)) is multiplication by the degree of f .
This remains true if we take the product over all primes, so that we obtain a finite étale sheaf after
rationalizing. Over a Dedekind domain D, we see using the idempotence of HQ (Theorem 9.16) that
the fracture cospan for HZ maps to the one for HZét, which yields a map HZ → HZét in CAlg(MSD).
The induced map Z(n)[2n] = Ω∞−n

P1 HZ→ Ω∞−n
P1 HZét exhibits its target as the étale sheafification of its

source, since this holds after p-completion (by Example 6.16) and rationally (using that (LétZ(∗))Q is an

étale sheaf on Smfp
D , by a transfer argument as above). This proves (iv).
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