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What is homotopy theory?

Homotopy theory is a logical extension of classical mathematics in which
equality behaves differently. It is also called higher mathematics.

Equality in classical mathematics

In classical mathematics, the equality of two objects is a truth value.

Fundamental principle of higher mathematics

An equality between two mathematical objects is itself a mathematical
object.

This entails in particular that there can be more than one equality
between two mathematical objects.
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Anima

The most basic concept in homotopy theory is that of anima, which is
the higher-mathematical analogue of set:

Definition

▶ An anima is any collection of mathematical objects.

▶ A set is an anima in which equality is a truth value.

By contrast, if X is a general anima, then equalities between two
elements x , y ∈ X form again an anima Eq(x , y), by the fundamental
principle.

Historically, this concept emerged from topology, category theory, and
logic. Correspondingly, anima are often called spaces, ∞-groupoids, or
types.

However, anima is a primitive concept, i.e., it does not reduce to simpler
concepts, just like set in classical mathematics.
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Understanding anima I: Depth

Recursive definition (depth)

▶ A one-point set has depth −2.

▶ An anima X is said to have depth n if Eq(x , y) has depth n − 1 for
all x , y ∈ X .

Equivalently: X has depth n ⇔ (n + 1)-equality in X is a truth value.

depth collection of objects categorical structure

−2 element ”
−1 truth value ”
0 set poset
1 groupoid category
...
∞ anima ∞-category

classical
mathematics


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Understanding anima II: Dimension
To construct an anima, one can start with a set and add equalities
between elements. One may represent this graphically by drawing lines
between points:

x z

y

x=y−−→
x z

y

= x = y
z

x=y−−→
x z

y

a

b
̸= x = y

z

a=b−−→
x z

y

= x = y
z

Recursive definition (dimension)

▶ An empty set has dimension −1.

▶ An anima is said to have dimension n if it is obtained from an anima
of dimension n − 1 by adding n-equalities.
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Depth vs Dimension

▶ Sets = anima of depth 0 = anima of dimension 0.

▶ A 1-dimensional anima has depth 1, but the converse fails.

▶ Almost all anima of finite depth ≥ 1 have infinite dimension, and
almost all anima of finite dimension ≥ 2 have infinite depth.

Example (Spheres)

We define the anima Sn inductively as follows:

▶ S−1 = ∅
▶ Sn is the pushout

Sn−1 ∗

∗ Sn.

PO

Then Sn has dimension n.
It also has depth n for n ≤ 1, but depth ∞ for n ≥ 2.
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Anima via topology

Homotopy theory began as the subfield of algebraic topology dealing with
homotopy invariants of topological spaces. These are functors

F : Top → C

sending homotopy equivalences to isomorphisms, e.g., π∗, H∗, etc.

Fact

The ∞-category of anima can be obtained from the category of
CW-complexes by forcing the homotopy equivalences to be isomorphisms:

Anima = TopCW[htpy equiv−1].

There are many other classical categories C such that Anima = C [M−1]
for a suitable class of morphisms M. We call these models of anima.
They allow us to indirectly talk about anima in classical mathematics.
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Higher integers: stable homotopy theory
The analogue of N in higher mathematics is the anima F of finite sets: it
is the free commutative monoid on one element, and happens to have
depth 1 (and dimension ∞). The analogue of Z is then:

Definition

The sphere spectrum S is the group completion of F. It is a commutative
ring, and modules over S are called spectra.

Theorem (Barratt–Priddy–Quillen–Segal)

S = colimn→∞ ΩnSn, where for X a pointed anima, ΩX is the pullback:

ΩX ∗

∗ X .

PB

Theorem (Pontryagin–Thom)

S = Cobsfr, the anima of stably framed cobordisms.
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Higher primes: chromatic homotopy theory

Spec(Z):

Q

F2 F3 F5 F7

. . .

Arithmetic fracture square:

A
∏

p A
∧
p

AQ

(∏
p A

∧
p

)
Q

PB

Spec(S):

Q

Kp,1

Kp,2

Kp,3

. . .

...
...

...
...

F2

Kp,∞
F3 F5 F7

▶ Kp,n = height n Morava K-theory

▶ height 1 is complex K-theory

Chromatic convergence:
A∧
p is the limit of the tower

· · · → Lp,n+1A → Lp,nA → · · · → Lp,1A
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Example: the classical Frobenius
Let R be a commutative ring and p a prime number. The p-power map

R
∆−→ R⊗p mult−−→ R, x 7→ x⊗p 7→ xp,

is not a ring homomorphism, because ∆ is not additive.

▶ Let G be a finite group acting on an abelian group A. The Tate
construction TateG (A) is the cokernel of

NG : AG → AG , [a] 7→
∑
g∈G

ga.

▶ The Tate diagonal of an abelian group A is the composition

∆Tate : A
∆−→ (A⊗p)Cp → TateCp (A

⊗p).

(x + y)⊗p − (x⊗p + y⊗p) ∈ im(NCp ) ⇒ ∆Tate is additive.

▶ The Frobenius of R is the ring homomomorphism

Frobp : R
∆Tate

−−−→ TateCp (R
⊗p)

mult−−→ TateCp (R) = R/p.

Marc Hoyois Homotopy theory and the Bloch–Kato conjecture



Example: the higher Frobenius

The construction of Frobp : R → TateCp (R) works mutatis mutandis
when R is a commutative ring spectrum.

Remark (Ambidexterity)

▶ For vector spaces over Q, the norm NG is always an isomorphism.

▶ Over Fp = Kp,∞, this is only true if p does not divide |G |.
▶ Over Kp,n with n < ∞, however, NG is always an isomorphism, even

though p = 0 in Kp,n!

If R is not classical, then TateCp (R) can be p-torsionfree. In this case,
the higher Frobenius gives a lift of Frobenius to mixed characteristic (aka
an “algebra over F1”).

▶ If R = Z, then Frobp encodes the Steenrod operations on ordinary
cohomology.

▶ If R = K, then Frobp encodes the Adams operations on complex
K-theory.

▶ If R = S, then TateCp (S) is the higher p-adic integers S∧p .
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The Bloch–Kato conjecture

Let k be a field and m an integer coprime to char(k).
Let ks be a separable closure of k with Galois group Gal(ks/k).

▶ Milnor K-theory is a quotient of the free associative ring on k×:

KM
∗ (k) =

( ∞⊕
i=0

(k×)⊗i

)
/⟨a⊗ b = 0 | a+ b = 1⟩

▶ Let µm ⊂ (ks)× be the group of m-th roots of unity.
The map k× = H0(Gal(ks/k),Gmult) → H1(Gal(ks/k), µm) induces
a ring homomorphism

KM
∗ (k) → H∗(Gal(ks/k), µ⊗∗

m ).

Theorem (Bloch–Kato conjecture 1986, proved by Voevodsky 2010)

KM
∗ (k)/m → H∗(Gal(ks/k), µ⊗∗

m ) is an isomorphism.
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A chromatic proof

Theorem (Bloch–Kato conjecture 1986, proved by Voevodsky 2010)

KM
∗ (k)/m → H∗(Gal(ks/k), µ⊗∗

m ) is an isomorphism.

▶ The cases ∗ = 0, 1 are trivial.
▶ The case ∗ = 2 is the Merkurjev–Suslin theorem (1982). Their proof

used the algebraic K-theory of Quillen as a key ingredient.
▶ Algebraic K-theory is a higher invariant of schemes:

Kalg : Schemesop → Spectra.

It is an algebraic counterpart of complex K-theory in topology.
▶ The main insight of Voevodsky was that one could prove

Bloch–Kato in degree n + 1 if one had an algebraic counterpart of
height n Morava K-theory:

Kalg
p,n : Schemesop → Spectra.

▶ Voevodsky developed various techniques to construct and study such
higher invariants of schemes.
This is the field of motivic homotopy theory.
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Thank you!
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