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Abstract

We establish a general “affine representability” result in A'-homotopy theory over a general base.
We apply this result to obtain representability results for vector bundles in A'-homotopy theory. Our
results simplify and significantly generalize F. Morel’s A!-representability theorem for vector bundles.
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1 Introduction

From its inception in the classical work of H. Cartan, S. Eilenberg and its development in the work of J.-P.
Serre and H. Bass (among others), the theory of projective modules over a (commutative) ring has drawn
inspiration from the theory of topological vector bundles. J.F. Adams in his MathSciNet review of Bass’s
paper [ ] writes that “[t]his leads to the following programme: take definitions, constructions and the-
orems from bundle-theory; express them as particular cases of definitions, constructions and statements
about finitely-generated projective modules over a general ring; and finally, try to prove the statements un-
der suitable assumptions.” The purpose of this paper is perhaps best understood from the standpoint of this
philosophy: we expose an algebro-geometric analog of the classical Pontryagin—Steenrod representability
theorem for vector bundles [ , 19.3].

To set the stage, fix a commutative Noetherian base ring k£ and suppose X is a smooth k-scheme. In
this setting, F. Morel and V. Voevodsky [ ] constructed a homotopy category for schemes H (k) in
which homotopies are, very roughly speaking, parameterized by the affine line A}C. Paralleling the notation
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in topology, set [X,Y]s1 := Homy ) (X,Y). Write V,.(X) for the set of isomorphism classes of rank
r algebraic vector bundles on X and Gr, = colimy_,o, Gr;,  for the infinite Grassmannian, which is an
ind-scheme and can also be viewed as an object of H (k).

There is a canonical map Hom(X, Gr,.) — 4}.(X) defined by pulling back the tautological bundle
on Gr,. If X is affine, this map is surjective since one may always choose generating global sections.
On the other hand, there is a canonical map Hom (X, Gr,.) — [X, Gr,]1 given by taking A'-homotopy
classes. The goal of this paper is to establish the following result, which is the “affine representability”
result mentioned in the title.

Theorem 1 (See Theorem 5.2.3). Suppose k is a Noetherian commutative ring that is regular over a
Dedekind domain with perfect residue fields (e.g., k is any field or k = 7). For any smooth affine k-
scheme X and any integer v > 0, there is a bijection V,.(X) = [X,Gr,]q1 such that the following
triangle commutes:

Hom(X, Gr,)
T
V(X)) —— [X, G,

Theorem 1 is essentially the best possible A!-representability theorem for vector bundles for which
one could hope, for reasons we explain below. It will be established as a consequence of a general rep-
resentability theorem in A'-homotopy theory (see Theorem 5.1.3). As with the classical Brown repre-
sentability theorem, the main idea is to reduce the above result to suitable “Mayer—Vietoris” and ‘“homo-
topy invariance” properties.

The functor X + %}.(X) cannot be representable on the category of all smooth k-schemes since
“Al-homotopy invariance” can fail, i.e., the map

(1.1) V(X)) — Vh(X x A1)

induced by pullback along the projection X x A! — X can fail to be a bijection. For example, bijectivity
of (1.1) can fail (i) if k is not regular, or (ii) when r > 2 and X is a smooth k-scheme that is not affine,
even if k is a field (see, e.g., [ ] for related statements about failure of A'-homotopy invariance). In
contrast, if one restricts attention to smooth affine schemes, the assertion that the map (1.1) is a bijection
for all » > 2 is effectively the Bass—Quillen conjecture, which is known to hold in a number of cases
[ ; 1.

If we restrict attention to smooth affine schemes, then the “Mayer—Vietoris property” must be reformu-
lated since, e.g., an open subscheme of an affine scheme need not be affine. Here, Morel had a key insight:
a good candidate for the “Mayer—Vietoris property” for affine schemes should involve squares arising from
certain analytic isomorphisms along non-zero divisors; he dubbed the result the “affine Nisnevich Brown—
Gersten property” [ , Definition A.7]. We prefer to call this property “affine Nisnevich excision” to
more clearly indicate the parallels with the classical topological situation.

Theorem 1 was first established by Morel [ , Theorem 8.1(3)] under the much stricter hypotheses
that % is a perfect field and r # 2.! Morel also states [ , p- 199 footnote] that the result holds in the
case r = 2, but this case depends on unpublished results of L.-F. Moser [ ]. The hypothesis that k

I"This form of the statement rests on a strong form of Gabber’s presentation lemma [ , Lemma 1.15], the published proof
of which requires k to be infinite.
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be a perfect field arises from Morel’s appeal to the structure theory of strongly and strictly A!-invariant
sheaves, which he developed in the first six chapters of [ ]. The hypothesis that » # 2 arises, in
part, from Morel’s reliance on results of T. Vorst regarding a K;-analog of the Bass—Quillen conjecture
[ ; I

This state of affairs was unsatisfactory: one has the feeling that all hypotheses beyond excision and
homotopy invariance are of a purely technical nature and the case » = 2 is undoubtedly important. Our
goal here is to give a proof of Theorem 1 that justifies this feeling. While affine Nisnevich excision is, not
unexpectedly, central to our discussion, our approach is entirely independent of Morel’s book.

Our proof relies on two ideas. First, instead of working directly with the Grassmannian, we work with
the classifying stack of vector bundles and only mention the Grassmannian at the very end; we learned this
idea from M. Schlichting, who used it to simplify Morel’s proof by avoiding appeal to Vorst’s K-analog
of the Bass—Quillen conjecture [ , Theorem 6.22]. This approach places the case r = 2 on the same
footing as r > 3. However, Schlichting’s proof still uses the results of [ , Appendix A] and therefore
implicitly on the results of the first six chapters of [ ]; as a consequence, his A!-representability
results are restricted to infinite perfect base fields.

The second idea appears in the proof of Theorem 3.3.4, which shows that affine Nisnevich excision is
sufficient for “Nisnevich local” representability. Part (i) of Theorem 3.3.4, which is a Zariski version of
the idea just mentioned is, in a sense, “classical”’; the idea goes back to Thomason and was exposed in a
special case by Weibel [ ], though we believe our proof gets to the heart of the matter as it makes
no mention of homotopy invariance. We view Part (ii) of Theorem 3.3.4 as the key new ingredient (cf.
[ , p- 231 before Theorem A.11]). In turn, the key technical ingredient in the proof of Theorem
3.3.4(i1) is Lemma 2.3.1, which is a geometric result about refining étale neighborhoods. This refinement
result, which is codified in Proposition 2.3.2, is considerably more subtle than its Zariski counterpart (i.e.,
Proposition 2.1.3). Combining these results with ideas of Voevodsky (see Theorem 3.2.5) then yields our
comparison between affine Nisnevich and Nisnevich excision.

Given Theorems 3.3.4 and 4.2.3, the proof of Theorem 1 is, as one would hope, formally reduced to
two classical inputs: (i) descent for vector bundles, which guarantees that affine Nisnevich excision holds,
and (ii) the solution to the Bass—Quillen conjecture, which guarantees that A'-homotopy invariance holds.
Descent for vector bundles holds in great generality, and the restrictions on &k in Theorem 1 are imposed
entirely to allow us to appeal to affirmations of the Bass—Quillen conjecture in the work of H. Lindel and
D. Popescu [ , ].

Theorem 1 is not just of abstract significance. When combined with techniques of obstruction theory,
the representability results above have already been used to make significant progress on a number of clas-
sical questions about vector bundles on smooth affine varieties. In brief, [ ] establishes a conjecture
of M. Nori on unimodular rows, [ ] establishes a cancellation theorem for rank 2 vector bundles on
smooth affine threefolds over algebraically closed fields, [ ] establishes the first non-trivial cases of
a splitting conjecture of M.P. Murthy, and [ ] describes new obstructions to existence of algebraic
structures on topological vector bundles on smooth affine varieties. Moreover, one can also establish exis-
tence results for vector bundles on motivic spheres over Spec Z using a clutching construction [ ].
We have focused this paper on representability results for vector bundles with the goal of keeping the
exposition as simple as possible.

Furthermore, the techniques developed in this paper are also very useful. In [ ], we will use
Theorem 1 (and some extensions) to establish affine representability results for principal G-bundles and
various homogeneous spaces for linear algebraic groups GG. For example, we establish affine representabil-
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ity results for oriented and symplectic vector bundles in the same generality as Theorem 1, and similar
representability results for more general reductive groups when the base is an infinite field. Not unex-
pectedly, such generalizations require much more background from the theory of algebraic groups, and
we have chosen to expose them separately to avoid encumbering the main arguments here with additional
terminological baggage.

Overview of sections

The beginning of each section contains more detailed information about its contents. Section 2 recalls
Voevodsky’s theory of cd-structures, which is a convenient language to study the various Grothendieck
topologies that we consider. The only prerequisites for this section are some knowledge about Grothendieck
topologies and some basic algebraic geometry. Section 3 studies fibrancy in the local homotopy theory
of simplicial presheaves and thus requires familiarity with model categories and their localizations and
local homotopy theory ([ ] is a standard reference for the former, and [ , Chapters 4-5] provide
a reference for the latter, though we caution the reader familiar with the local homotopy theory to pay
careful attention to our definitions). Section 4 studies a Bousfield localization of the homotopy category
of simplicial presheaves with respect to an “interval”; this abstract setting was studied by Morel and Vo-
evodsky in [ ], but can be read largely independently of their work. The results of Sections 3 and
4 are written to emphasize their largely formal nature. Finally, Section 5 puts everything together and
requires some familiarity with the definitions of [ ], but does not use any of the more difficult results
of that paper.
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Preliminaries/Notation

Throughout this paper, we use the symbol S for a quasi-compact, quasi-separated base scheme. We write
Smyg for the category of finitely presented smooth S-schemes, Smg” C Smyg for the full subcategory of
separated schemes (in the absolute sense), and Smgﬁ C Smge” for the full subcategory of affine schemes
(again, in the absolute sense).

We use the standard definition of a Grothendieck topology in terms of sieves [ , Exp. 1II,
Définition 1.1]. If C is a category equipped with a Grothendieck topology ¢, we call a family of mor-
phisms {U; — X }ier in C a t-cover if it generates a ¢t-covering sieve.

We define the Nisnevich topology on Smg, Smyg”, and Smgﬁ to be generated by finite families of étale
maps {U; — X} admitting a splitting sequence by finitely presented closed subschemes, in the sense of

[ , 83, p. 97]; this definition is studied, for example, in [ , §1]. This definition is equivalent to
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the standard definition [ , §3 Definition 1.2] if .S is Noetherian, by [ , 83 Lemma 1.5]. In fact,
one can show that they are equivalent even if .S is not Noetherian, but we will not need this fact.

2 Comparing topologies generated by cd-structures

In this section, we recall Voevodsky’s definition of a cd-structure on a category and the associated Grothendieck
topology [ , Definition 2.1]. For the purposes of applications in this paper, it suffices to observe that
Voevodsky’s theory provides a convenient axiomatization of topologies similar to the Zariski or Nisnevich
topology; see Example 2.1.2 for more details. Our main goal is to establish various comparison results for
topologies generated by different cd-structures on a given category.

The main result of this section is Proposition 2.3.2, which provides a particularly simple description of
the Nisnevich topology on smooth schemes in terms of a restricted class of “affine” distinguished squares.
As a warm-up to the main result, we begin by establishing Proposition 2.1.3 which provides an analogous
characterization of the Zariski topology in the spirit of our main results. The key technical step in our proof
of Proposition 2.3.2 is Lemma 2.3.1, which provides a refinement result for Nisnevich neighborhoods akin
to that used in the proof of Proposition 2.1.3. To streamline the proof of Lemma 2.3.1, we have collected
various results about henselization of pairs in Subsection 2.2.

2.1 cd-structures: definitions and first comparisons

Definition 2.1.1. Suppose C is a small category that has an initial object ().
1. A cd-structure P on C is a collection of commutative squares in C such that, if Q € P, and Q' is
isomorphic to @, then Q" € P; the squares in P will be called P-squares.
2. If P is a cd-structure on C, then the Grothendieck topology ¢p on C generated by P is the coarsest
topology such that:
e the empty sieve covers (J;
e for every square ) € P of the form

2.1 W——V
U——-X,
the sieve on X generated by U — X and V' — X is a t p-covering sieve.

Example 2.1.2. We will consider the following examples of cd-structures.
1. The Zariski cd-structure Zar on Smg consists of Cartesian squares

UxxV—=V

L

U X

where U,V C X are open subschemes such that U UV = X.
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2. The Nisnevich cd-structure Nis on Smg consists of Cartesian squares

UxxV—V

|k

U X

J

where j is an open immersion, 7 is étale, and 7 induces an isomorphism V' x x Z = Z, where Z is
the reduced closed complement of j.

3. The restricted Nisnevich cd-structure RNis on Smg " has squares as in the Nisnevich cd-structure,
where in addition 7 is affine.

4. The affine Zariski cd-structure AffZar on Smgﬁ consists of Cartesian squares

Spec(A 7y) — Spec(A,)

| |

Spec(Af) — Spec(A)

where f, g € A generate the unit ideal.
5. The affine Nisnevich cd-structure AfflNis on Smgﬁr consists of Cartesian squares

Spec(Bf) — Spec(B)

| X

Spec(Af) — Spec(A)

where f € A, 7 is étale and induces an isomorphism A/ f = B/ f.

Note thatif 7 : V. — X < U : j gives rise to a Nisnevich square in Smg, then 7 induces an
isomorphism V' X x Z — Z for any closed subscheme Z C X complementary to j, by the topological
invariance of the étale site [ , 18.1.2]. Since U is quasi-compact, there always exists such a Z which
is finitely presented over X [ ,2.6.1 (0)].

The topology tz, on Smg generated by the Zariski cd-structure is the usual Zariski topology, since
schemes in Smg are quasi-compact and quasi-separated.

The proof of [ , §3 Proposition 1.4, p. 96] shows that the topology #nis on Smg generated by the
Nisnevich cd-structure is the Nisnevich topology. The same proof works if Smg is replaced by Smgep , but
it breaks down for Smgﬁ , because an open subscheme of an affine scheme need not be affine. Our main
result below is that ¢ s gNis nevertheless coincides with the Nisnevich topology on Smgﬁ . Along the way,
we will also show that £ g7, coincides with the Zariski topology on Smgﬁ and that ¢tgyis coincides with

the Nisnevich topology on Smg”.

Proposition 2.1.3. The topology tagz., on Smgﬁ coincides with the Zariski topology.

Proof. Sett := tagyza.,. By definition, ¢ is coarser than the Zariski topology. Therefore, we have to show
that every Zariski cover in Smgﬁ is a t-cover. A general Zariski cover of X = Spec(A) is refined by
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one of the form {X,,..., Xy, } where (fi1,...,fn) = A. We prove that such a cover is a t-cover by
induction on n. For n < 2, there is nothing to prove. Choose g € (fi,..., fn—1) such that (g, f,) = A
Then {X,, X, } is a t-cover of X. By the induction hypothesis, {X,¢,,..., X4z, .} is a t-cover of X,.
Hence, {Xyf,,..., X451, Xy, } is a t-cover which refines the original cover. O

Proposition 2.1.4. The topology tgnis on Smgep coincides with the Nisnevich topology.

Proof. Sett := tgnis. By definition, ¢ is coarser than the Nisnevich topology. We first show that ¢ is
finer than the Zariski topology. Any Zariski cover of X & Sm“p is refined by an affine open cover
{U1,...,U,}. We prove that this is a t-cover by induction on n. If n < 2, there is nothing to prove. Let
Y = U1 U- ++UUp—1. Then {Y, U, } is a t-cover of X, since X is separated. By the induction hypothesis,
{U1,...,Up—1}isat-cover of Y. Thus, {Uj,...,U,} is a t-cover of X, as was to be shown.

We now prove that ¢ is finer than the Nisnevich topology. Since the latter is generated by the Nisnevich
cd-structure, it suffices to show that, for every Nisnevich square (2.1), &l = {j, 7} is a t-cover of X. Let
{Vi}ier be an affine open cover of V, and let X; = m(V;) C X. Since X is separated, the induced map
Vi — X is affine. Then {U, X, };cs is a Zariski cover of X, hence a t-cover. The restriction of L to U is a
cover for any topology, and the restriction of 4l to Xj; is refined by the ¢t-cover {U N X; — X;, Vi — X;}.
Hence, il is a t-cover. O

Corollary 2.1.5. For every restricted Nisnevich square Q as in (2.1) with X € Smgﬁ , let g C Smgﬂ /X
be the Nisnevich cover consisting of V' — X and all affine schemes mapping to U. Then the covers g,
together with the empty cover of (), generate the Nisnevich topology on Smgﬁ .

Proof. Let t be the topology generated by such covers. We must show that ¢ is finer than the Nisnevich
topology. For every X € Smgep , let J(X) be the collection of sieves R on X such that, for every
f:Y - XwithY € Sm , [Y(R) N Smgﬁ is a t-covering sieve of Y. It is straightforward to verify
that J is a Grothendieck topology on Smg” (in fact, it is the finest topology for which the inclusion
(Smgﬁ, t) C (Smg™®,J) is cocontinuous, cf. [ , Exp. 111, 3.7]). By definition of ¢, the covering
sieves in J contain all sieves generated by restricted Nisnevich squares, as well as the empty sieve on ().
Hence, by Proposition 2.1.4, J is finer than the lenevwh topology. In particular, if R is a Nisnevich
covering sieve of X in Sm Sﬁ and R is the sieve 1n Smy? g generated by R, then Risa J- -covering sieve.

By definition of J, this implies that R = RN Sm% g  Is at-covering sieve of X, as desired. O

2.2 Preliminaries on henselization of pairs

Next, we would like to compare the affine Nisnevich cd-structure with the Nisnevich topology on Smgﬁ .
To do this, we recall some facts about henselization of closed subschemes and henselian pairs. We will
only consider the affine case: a pair (X, Z) is an affine scheme X together with a closed subscheme Z.
A morphism of pairs (Y, W) — (X, Z) is a morphism Y — X such that the composite W C ¥ — X
factors through Z. Recall the definition of a henselian pair from, e.g., [ , Tag 09XD Definition 15.7.1].
The following lemma summarizes some properties of henselian pairs.

Lemma 2.2.1. The following statements are true.
(i) A pair (X, Z) is henselian if and only if, given any affine étale map 7 : V. — X, anymap Z — 'V
over X extends to a section of T.
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(ii) If (X, Z) is a henselian pair and if X' — X is an integral morphism, then the pair (X', Z x x X')
is also a henselian pair.
(iii) If (X, Z) and (Z, W) are both henselian pairs, then (X, W) is a henselian pair.

Proof. The first statement is contained in [ , Tag 09XD Lemma 15.7.7]. The second is [ , Tag
09XD Lemma 15.7.9]. For the third statement, given w : V' — X an étale affine morphism, set 7’ :
Z xx V — Z and consider the diagram

ZXXVHV

FL

w VA X.

A morphism W — V over X factors through a morphism W — Z xx V over Z. Because (Z, W)
is a henselian pair, the forward implication in (i) implies that the morphism W — Z x x V extends to
a section of 7’ and this section of 7’ yields a morphism Z — V over X. Since (X, Z) is a henselian
pair, the forward implication in (i) again yields a section of w. Since V' — X was arbitrary, the reverse
implication of (i) then allows us to conclude that (X, W) is also a Henselian pair. O

The forgetful functor from the category of henselian pairs to the category of pairs has a right adjoint
sending a pair (X, Z) to its henselization (X%, Z). The details of the construction will be important below.
Suppose X is an affine scheme and Z C X is a closed subscheme. A Nisnevich neighborhood of Z in X is
a pair (V, 7) where V' is an affine scheme and 7w : V' — X is an étale morphism inducing an isomorphism
V xx Z = Z. Nisnevich neighborhoods of (X, Z) form a category Neib(X, Z), where a morphism is a
commuting triangle. The category Neib(X, Z) is cofiltered since it has finite limits, and it is essentially
small since affine étale morphisms are finitely presented. By the proof of [ , Tag 09XD Lemma
15.7.13], the affine scheme X % is described explicitly as the limit over the category Neib(X, Z) of the
diagram (V, ) — V. For completeness, we record the following formal consequence of the adjunction
just described.

Lemma 2.2.2. If (X, Z) is a pair; then the henselian pair (X%, Z) is universal among henselian pairs
over (X, Z): any morphism of pairs from a henselian pair (Y, W) to (X, Z) factors uniquely through a
morphism of pairs (Y,W) — (X%, Z).

Lemma 2.2.3. If X is an affine scheme and W C Z C X is a chain of closed subschemes, then the
canonical map
arising from the universal property of the right-hand side, is an isomorphism.

Proof. The pair ((X2)%, W) satisfies the universal property for the henselization of X at IW. O

2.3 Refining Nisnevich neighborhoods

We now prove that the cd-structure ¢ agnis On Smgﬁr generates the Nisnevich topology. To see what the

difficulty is, consider a Nisnevich square (2.1) where X and V are affine and U is the union of two affines
U, and Us. Then V, Uy, and Us form a Nisnevich cover of X in Smgﬁ. However, {V, U1} and {V, Uz}
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need not be Nisnevich squares over X, because V' — X is only required to be an isomorphism over the
complement of U. The next result shows that V' — X can be refined by a composition of affine étale
maps Vo — Vi — X such that {V;, Uy } is a Nisnevich square over X and {V2, Us x x V1 } is a Nisnevich
square over V1. Thus, V5, Uy, and Uy X x V1 form a tagnis-cover of X that refines the given Nisnevich
cover.

Lemma 2.3.1. If X is an affine scheme, Z1,Zy C X are closed subschemes, and w: V — X is an affine
étale map that is an isomorphism over Z1 N Zs, then there exists a commutative square

‘/QLV1

Yy

V"= X,

of affine schemes with the following properties:
(a) the morphism w1 is étale and is an isomorphism over Z;
(b) the morphism ma is étale and is an isomorphism over Zy X x V1.

Proof. By two applications of Lemma 2.2.3, the canonical map
h \h h h
((le)zﬂxxgl )iz — X702,
is an isomorphism. Thus, there is a canonical map

h h \h
(22) leﬂZQ — (XZ1)Z2 XXXgl
exhibiting the left-hand side as the henselization of the right-hand side at Z; N Z5. We claim that the
map (2.2) is an isomorphism. By the universal property of henselization (i.e., Lemma 2.2.2), this claim is
equivalent to the claim that the pair

Rk \h
((le)ZQXXXgl 21N Zs)
is henselian. This pair is the composition of the pairs

((Xgl)%gXxX%17Z2 xx X% ) and (Zo xx X ,Z1 0 Zs).

By Lemma 2.2.1 (iii), it suffices to show that both pairs are henselian. The first is henselian by definition.
The second is the pullback of the henselian pair (X gl,Zl) by a closed immersion, and hence is also
henselian by Lemma 2.2.1 (ii).

To complete the proof we need to use the explicit description of the henselization as a limit. The pair
(V, ) is an object in Neib(X, Z; N Z3), so that we have a canonical projection X gm 7, — V. On the
other hand, since (2.2) is an isomorphism,

X% nz, & lim V.
(V',w/)eNeﬂo(Xg1 Za xXXgl )
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Since finitely presented O(X )-algebras are compact objects in the category of O(X)-algebras, finitely
presented affine X -schemes are cocompact in the category of affine X -schemes. In particular, there exists
a factorization

X}y —V —V

for some (V',7') € Neib(X} , Zy xx X7 ). Since

X} = lim i,
(Vi,m1)€ENeib(X,27)
and since 7’: V! = X gl is finitely presented, it follows from [ , 1.8.4.2] that 7’ is the pullback of a
finitely presented affine map mo: Vo — V; for some (Vi,71) € Neib(X, Z7).
Refining V] if necessary, it will automatically be the case that 75 is étale (by [ , 17.7.8]), that it is
an isomorphism over Zs X x V7 (by [ , 8.8.2.4]), and that 71 o7 factors through 7 (by cocompactness
of V). O

Proposition 2.3.2. The topology tagnis on Smgﬁ coincides with the Nisnevich topology.

Proof. Sett := tagnis- Suppose X € Smgﬁ , 4 C X is a finitely presented closed subscheme, and
m: V — X is an affine étale map that is an isomorphism over Z. Let 4l be the Nisnevich cover of X in
Smgﬁ consisting of 7 and of all affine schemes mapping to X \ Z. By Corollary 2.1.5, it will suffice to
show that il is a t-cover. We establish this statement by induction on the minimal number n of generators
of the ideal of Z.

If n =0, then Z = X and 7 is an isomorphism and there is nothing to check. If n = 1, then X \ Z =
Xy for some f € O(X), so il is a t-cover by definition of the affine Nisnevich cd-structure. Suppose that
n > 2, and choose f1,..., fn, € O(X) such that Z = V(f1,..., fn). Let Zy = V(f1,..., fn—1) and
Zy =V (fn),sothat Z = Z; N Zy. By Lemma 2.3.1, 7: V — X is refined by a composite of affine étale
maps m2: Vo — Vi and mp: Vi3 — X, where 7 is an isomorphism over Z; and s is an isomorphism over
Zy xx V1. Note that {V2, V1 \ (Z2 xx Vi1)} is a t-cover of Vi. Applying the induction hypothesis, we
see that {V;, X \ Z1} is refined by a t-cover of X. Thus, {V5,V} \ (Z2 xx V1), X \ Z1} is refined by a
t-cover of X, which clearly refines 41. Hence, 4 is a t-cover. O

3 Fibrancy and cd-structures

In this section, we study simplicial presheaves on a category equipped with a topology generated by a
cd-structure. Such categories may be equipped with a model structure for which the weak equivalences
are defined “locally” with respect to the topology. The main goals of this section are to establish Theorem
3.2.5 and Theorem 3.3.4.

Theorem 3.2.5 is a variant of a result of Voevodsky characterizing fibrant objects in this local model
structure in terms of a simple “excision” condition. Subsection 3.1 recalls some basic definitions from
local homotopy theory required to precisely formulate this result; as we hope is clear from the proof,
this result holds in great generality. We refer the reader to Remark 3.1.4 for a comparison of the local
homotopy theory we use to other commonly used versions in the literature.

The other main result of this section is Theorem 3.3.4. For this result, we restrict our attention to
the local homotopy theory of simplicial presheaves on smooth schemes with respect to the Zariski or Nis-
nevich topologies. Building on Theorem 3.2.5 and using the characterizations of the Zariski and Nisnevich
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topologies on smooth schemes established in Propositions 2.1.3 and 2.3.2, this result essentially provides
a convenient characterization of fibrancy in the local model structure in terms of the affine Zariski or
Nisnevich squares introduced in Example 2.1.2.

3.1 Descent

Let C be a small category. We denote by sPre(C) the category of simplicial presheaves on C, which we
regard as a model category with the injective model structure: the weak equivalences are the objectwise
weak equivalences, the cofibrations are the monomorphisms, and the fibrations are determined by the right
lifting property. We denote by Map(F, G) the derived mapping space between two simplicial presheaves
JF and G, in the sense of [ , Notation 17.4.2].

The model category sPre(C) is simplicial, proper, and combinatorial [ , Proposition A.2.8.2].
In particular, we may use the machinery of left Bousfield localizations [ , §A.3.7], which we briefly
recall. For any set S of morphisms in sPre(C), a simplicial presheaf F is S-local if, for every f: G — H
in S, the induced map

f*: Map(H,F) — Map(G, F)

is a weak equivalence. A morphism f: G — H is an S-equivalence if, for every S-local F, the above
map is a weak equivalence. The S-equivalences are the weak equivalence of a new model structure
S~ 1sPre(C) on sPre(C), called the S-local model structure. The cofibrations in S~!sPre(C) are still
the monomorphisms, and the fibrant objects are the fibrant objects in sPre(C) that are S-local. The
identity functors form a Quillen adjunction

sPre(C) == S~ !sPre(C).

Moreover, the right derived functor Ho(S~!sPre(C)) — Ho(sPre(C)) is fully faithful and its essential
image is precisely the subcategory of S-local objects.

Definition 3.1.1. Let C be a small category and ¢ a Grothendieck topology on C. Let S; be the set of
covering sieves for ¢, viewed as monomorphisms of simplicial presheaves R <— X with X representable.
We say that a simplicial presheaf on C satisfies t-descent or is t-local if it is S;-local, and we say that a
morphism of simplicial presheaves is a t-local weak equivalence if it is an S;-equivalence. We denote by
R; a fibrant replacement functor in the S;-local model structure.

Example 3.1.2. If F is a presheaf of sets, viewed as a discrete simplicial presheaf, then F is ¢-local if and
only if it is a t-sheaf. Moreover, R, F is weakly equivalent to the ordinary sheafification of F. Indeed, the
canonical map from ¥ to its sheafification is a t-local weak equivalence, by [ , Theorem A.5]. In
particular, a morphism between presheaves of sets is a t-local weak equivalence if and only if it becomes
an isomorphism after sheafification.

If 4 = {U; — X}ies is a family of maps in C, we denote by C(4l) its Cech nerve, which is a
simplicial presheaf on C with an augmentation to X (see [ , 84.1]). The following result gives a
useful characterization of ¢-local objects in terms of “Cech descent.”

Lemma 3.1.3. Suppose C is a small category. For every X € C, let K(X) be a set whose elements
are families of maps {U; — X }icr with target X. Suppose that, for every {U; — X }icq in K(X) and
every map Y — X in C, the fiber products U; xx Y exist and {U; xx Y — Y}ierisin K(Y) (up



12 3.2 Excision and descent

to reindexing). Let t be the coarsest topology on C such that the elements of K(X) are t-covers for all
X € C, and let
S={Cl) - X|X eC, e K(X)}

A simplicial presheaf F on C is t-local if and only if it is S-local, i.e., if and only if for every X € C and
every {U; = X }ier € K(X), the canonical map

F(X) — holimpen  [[ FUip xx - xx Us,).

10y esin €1
is a weak equivalence.

Proof. For any §l € K(X), the map C'(4) — X factors through the sieve R generated by §I, and the re-
sulting map C' (U) — R is a weak equivalence [ , Proposition A.1]. Hence, up to weak equivalence,
S is a subset of the set of all ¢-covering sieves. By assumption, the sieves in S are stable under pullbacks
and generate the topology ¢. The result now follows from [ , Corollary C.2]. O

Remark 3.1.4. The t-local model structure on simplicial presheaves defined above should not be confused
with the Jardine model structure defined in [ ] (which is Quillen equivalent to the Joyal model struc-
ture on simplicial sheaves used in [ 1). The Jardine model structure is the left Bousfield localization
of sPre(C) whose local objects are the simplicial presheaves satisfying t-hyperdescent, i.e., descent for
arbitrary hypercovers. Furthermore, for sites with enough points, the weak equivalences in the Jardine
model structure are precisely the stalkwise weak equivalences.

In general, the Jardine model structure is a left Bousfield localization of the ¢-local model structure
we consider, and the two model structures may actually differ: see [ , Example A.9] for an explicit
example. However, if S is a Noetherian scheme of finite Krull dimension, C = Smg and ¢ is the Nisnevich
topology, then the two model structures are equivalent: given the characterization of Nisnevich-local
objects provided by Theorem 3.2.5 below, this is the statement of [ , 83, Lemma 1.18]; see also
[ , Example A.10] for more discussion of this point.

3.2 Excision and descent

Definition 3.2.1. Let C be a small category with an initial object () and let P be a cd-structure on C. A
simplicial presheaf F on C satisfies P-excision if

e F () is weakly contractible;

e for every square Q in P, F (Q) is homotopy Cartesian.

Remark 3.2.2. Simplicial presheaves that satisfy excision as in Definition 3.2.1 have been given various
different names. In [ ], Voevodsky calls such presheaves P-flasque. Morel and Voevodsky [ ,
§3.1] and Morel [ , Appendix A] use different terminology, which pays homage to the foundational
work of Brown and Gersten.

Definition 3.2.3 ([ , Definition 3.4.6]). An initial object () of a category C is called strict if any
morphism X — () is an isomorphism.

Remark 3.2.4. Equivalently, the definition can be restated as saying that if X — () is any morphism, then
X is initial. The condition that an initial object is strict means that the canonical map () — Y is always
a monomorphism. If C is a Grothendieck topos, then by [ , Proposition 3.4.7] the initial object is
strict.
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The following theorem is a variant of [ , Corollary 5.10]; note that its hypotheses hold for each
cd-structure considered in Example 2.1.2.

Theorem 3.2.5 (Voevodsky). Let C be a small category with a strictly initial object and let P be a cd-
structure on C such that:

1. every square in P is Cartesian;

2. pullbacks of squares in P exist and belong to P;

3. for every square (2.1) in P, U — X is a monomorphism;

4. for every square (2.1) in P, the square

w V

N |a

WXUWHVXXV

is also in P.
Then a simplicial presheaf T on C satisfies P-excision if and only if it satisfies t p-descent.

Proof. Suppose Q) is a square in P as in (2.1). Let tlg = {U — X,V — X} be the tp-cover defined
by Q, and let cg: C'(8lg) — X be its Cech nerve. By (1) we know that ) is Cartesian, so we can write
W =U xx V. Let Kq be the homotopy pushout of the diagram

U+ UxxV —V.

The map from the homotopy pushout to the ordinary pushout induced by the universal property yields a
map kg: Kg — X.

Let e be the map from the empty presheaf to the presheaf represented by the initial object of C (this
map is never an isomorphism). Consider the sets of maps

C={cglQe PyuU{e} and K = {kg|Q € P}U{e}

in sPre(C). By (2) and the assumption that the initial object of C is strictly initial, the ¢p-covers Lo,
together with the empty cover of the initial object, satisfy the hypothesis of Lemma 3.1.3. It follows that
a simplicial presheaf F satisfies ¢ p-descent if and only if it is C-local. On the other hand, by definition,
F satisfies P-excision if and only if it is KC-local. Thus, to establish the claim, it will suffice to show that
every map in K is a C-equivalence, and conversely that every map in C is a K-equivalence.

For @ as above and Y € {U,V,U xx V}, thecover {U xx Y — Y,V xx Y — Y} is split, and
therefore its Cech nerve CQxxY: C’(MQ) X x Y — Y has an additional degeneracy; in particular, cgx v
is a weak equivalence. Form the homotopy Cartesian square of simplicial presheaves:

C(tlg) ! Ko —= Kq

3 lk‘?

C(slg) X.

cQ

Since homotopy base change preserves homotopy colimits in the category of simplicial sets (see, e.g.,
[ , Theorem 1.4]), we can conclude that the projection ps is the homotopy pushout of the three maps



14 3.3 A criterion for Descent

CQxxY " C’(ﬂQ) xxY =Y, forY € {U,V,U x x V}, all of which are weak equivalences. Thus, p is a
weak equivalence. By 2-out-of-3, it remains to show that p; is both a K-equivalence and a C-equivalence.

Fori,j > 0andi+j > 1, let Q;; = @ Xx U? x x V7, where U is the i-fold fiber product of U
with itself over X and similarly for V7. The map p; is the homotopy colimit over n € A°P of the maps
Hz‘+j:n+1 kq, ;- Since each square (); ; is in P, by (2), this shows that p; is a K-equivalence.

Assume for a moment that both legs in ) are monomorphisms. Then one of the legs of Q; ; is
always an isomorphism. For such squares it is clear that k¢, ; is a weak equivalence, so that p is a weak
equivalence. This shows that k¢ is a C-equivalence for such ().

Let us prove that, in general, p; is a C-equivalence. Since U — X is a monomorphism by (3), one of
the legs of (; ; is an isomorphism as soon as ¢ > 1, so we only have to show that k¢, ; is a C-equivalence
for j > 1. The square Qg ; is the lower square in the following diagram:

yi-t xXx W Vit xxV

| |

yi-1 X x (WXUW)HV]‘_I X x (VXXV)

l l

yi-l xx W yi-l xx V.

Let Q' be the top square. Since the composite of the vertical morphisms are the identity maps, kQq ; 1s
a retraction of a homotopy cobase change of k¢ . Therefore, it suffices to show that k¢ is a C-equivalence.
By (4) and (2), the top square @’ is in P, and by (3) its legs are monomorphisms. We have already proved
that k¢ is a C-equivalence for such @' O

Remark 3.2.6. The conditions of Theorem 3.2.5 imply by [ , Lemma 2.5 and 2.11] that the cd-
structure P on C is complete and regular. Voevodsky also introduces the notion of a bounded cd-structure
[ , Definition 2.22] and shows that, for P a bounded, complete and regular cd-structure, a Jardine
weak equivalence between P-excisive simplicial presheaves is a weak equivalence [ , Lemma 3.5].
This means that for such a cd-structure, P-excision is equivalent to ¢ p-hyperdescent (cf. Remark 3.1.4).
Theorem 3.2.5 shows that boundedness of P is not relevant for the equivalence of P-excision and ¢p-
descent.

3.3 A criterion for Descent

Let us denote by
i Smgﬁ —— Smg

the inclusion functor. It induces an adjunction
i* : sPre(Smg) =—= sPre(Smgﬁ) Dl

Since i* preserves weak equivalences and cofibrations, (i*, i, ) is a Quillen adjunction, and we will denote
by (i*, Ri,) the derived adjunction. The functor R, is given by homotopy right Kan extension along i:

if F e sPre(Smgﬁ) and Y € Smyg, then
Ri.F(Y) = hOhmxesmgﬁ“/y F(X).
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Lemma 3.3.1. The functor Ri, is fully faithful.

Proof. The claim is equivalent to the assertion that the counit map i*Ri, — id is an isomorphism. To
demonstrate this latter statement, simply observe that if Y is affine, then the category Smgﬁ /Y has Y as
a final object, and therefore holim . esmd /v F(X)~F(Y). O]

Lemma 3.3.2. Let t be either the Zariski or the Nisnevich topology. The functors i* and Riy pre-
serve t-local simplicial presheaves and they restrict to an equivalence between the full subcategories
of Ho(sPre(Smg)) and Ho(sPre(Smgﬁ)) spanned by the t-local simplicial presheaves.

Proof. That i* preserves t-local presheaves follows at once from the characterization of ¢-local presheaves
in terms of Cech descent (Lemma 3.1.3). Since

Map(X, Ri.(F)) ~ Map(i*(X), F),

R, preserves t-local objects if and only if, for every t-covering sieve R — X on Smg, the restriction
i*(R) < *(X) is a t-local weak equivalence. Recall from Example 3.1.2 that t-local weak equivalences
between discrete simplicial presheaves are simply the ¢-local isomorphisms. That ¢* sends ¢-covering
sieves to t-local isomorphisms is in turn equivalent to ¢, preserving t-sheaves of sets; this follows from
[ , Exp. III, 2.2] together with the fact that ¢ is cocontinuous for either topology.

Thus, the derived adjunction ¢* - Ri, restricts to an adjunction between the subcategories of ¢-local
presheaves, where the right adjoint is fully faithful (by Lemma 3.3.1). To conclude that it is an equivalence,
it remains to show that the left adjoint is conservative. Indeed, given an adjunction (F,G) with G fully
faithful and F’ conservative, it follows from the commutativity of the triangle

F——FoGoF

N

F

that GG is a quasi-inverse to F'.

Let f be a morphism between t-local simplicial presheaves on Smg such that i*(f) is a weak equiv-
alence. Since any separated scheme admits a ¢-cover whose Cech nerve consists of affine schemes, it
follows that f is a weak equivalence on Smgep . Similarly, since any scheme admits a ¢-cover whose Cech

nerve consists of separated schemes, we deduce that f is a weak equivalence on all of Smg. O

Remark 3.3.3. In[ , §A.2], the simplicial presheaf Ri.i*(F ) is called the affine replacement of F .

The first part of the following theorem is a strengthening of [ , Lemma A.10]; Schlichting gives
a different proof of this result in [ , Theorem A.2]. The second part of the next result is a significant
generalization of [ , Theorem A.14]; in particular, it provides an answer to the question posed in
[ , Remark A.15].

Theorem 3.3.4. Let F be a simplicial presheaf on Smg.
(i) If F satisfies affine Zariski excision, then, for every X € Smgﬁ , the map

F(X) — Rzar F (X)

is a weak equivalence.
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(i) If F satisfies affine Nisnevich excision, then Ry, F is Nisnevich-local.

Proof. (i) We consider the commutative square

Z*(,{]:) i*(RZar.{}—)

| |

RZari*(.{]’-) EE—— RZari*(RZarg:)

in sPre(Smgﬁ ). By Proposition 2.1.3 and Theorem 3.2.5, i*( ) is Zariski-local, so the left vertical map
is a weak equivalence.

By Lemma 3.3.2, *(Ryza, F ) is Zariski-local, so the right vertical map is a weak equivalence. Since
R, preserves Zariski-local objects (Lemma 3.3.2), ¢* preserves Zariski-local weak equivalences, so the
bottom horizontal map is a weak equivalence. Hence, the top horizontal map is a weak equivalence, as
desired.

(ii) By Proposition 2.3.2 and Theorem 3.2.5, ¢*(F) is Nisnevich-local. By part (i), we deduce that
i*(Ryzar F ) is Nisnevich-local. By Lemma 3.3.2, Ry, F ~ Ri,i*(Rza: F ) and Ri, preserves Nisnevich-
local objects. Hence, Ry, F is Nisnevich-local. O

4 Sites with interval and homotopy localization

The main goal of this section is to establish Theorem 4.2.3, which is an abstract form of a result due
originally to Schlichting. Morel and Voevodsky initially constructed categories like the A'-homotopy
category in the more general context of “sites with interval” and we work roughly in this setting. We use
a variant of the notion of an interval object that is slightly more restrictive than that considered by Morel—
Voevodsky; see Section 4.1 for more details. The homotopy category of a site with interval is obtained as a
Bousfield localization of the local model structure on simplicial presheaves on a site (with interval) which
forces the interval object to be contractible. Essentially, Theorem 4.2.3 provides a convenient framework
for producing fibrant objects in this further localized model structure, though it is not phrased in this
way. In fact, the proof of Theorem 4.2.3 can be read independently of the main results of Section 3.
Furthermore, Corollary 4.2.4 places the general result in the form in which it will be used in the remainder
of the paper.

4.1 Interval objects and the singular construction

Definition 4.1.1. Let C be a small category. A representable interval object in C is a quadruple (I, m, i, 1)
consisting of a presheaf I on C, a morphism m : I xI — I (“multiplication”), and morphisms ig, i1 : * — |
(“endpoints”) such that the following statements are true:
1. for every X € C, the presheaf X x I is representable;
2. if p : I — * is the canonical morphism, then there are equalities of the form:
° m(i(] X Zd) = m(zd X i(]) = ’iop, and
° m(il X Zd) = m(id X il) = id;
3. the morphism 4o [ [ 41 : % ][ * — I is a monomorphism.
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Remark 4.1.2. The notion above is a special case of the notion of interval object studied in [ ,82.3
p. 85], which omits the first condition. The third condition is not needed in any of the arguments below
and is included only to conform to the definition in loc. cit.

Example 4.1.3. If C = Smg or Smgﬁ , then I = A} with its usual monoid structure is a representable
interval object. Indeed, there is nothing to check in the former case. In the latter case, since AIS — Sisan

affine morphism, if X € Smgﬁ , then the fiber product X xg Ag is affine over X and thus affine.

Definition 4.1.4. Let C be a small category and I a representable interval object in C. Let St be the set
of all projections X x I — X with X € C. We say that a simplicial presheaf on C is I-invariant if it is
Si-local. In other words, F € sPre(C) is I-invariant if, for every X € C, the projection X x I — X
induces a weak equivalence ¥ (X) ~ F (X x I).

Using the two endpoints ig, 91 : * — I, one defines a cosimplicial presheaf I* on C' with I"* = I*"™ (see
[ , §2.3.2 p. 88] where the notation A7 is used for this cosimplicial object). We define the functor
Sing": sPre(C) — sPre(C) by the formula:

Sing! F (X) = diag F (X x I*).

There is an obvious natural map ¥ — Sing' ¥, and for every F & sPre(C):

e Sing' ¥ is I-invariant (see [ , 82 Corollary 3.5]);

e the map F — Sing' ¥ is an Sj-equivalence (see [ , §2 Corollary 3.8]).
These properties imply that Sing' preserves weak equivalences and that the induced endofunctor of the
homotopy category Ho(sPre(C)) is left adjoint to the inclusion of the subcategory of I-invariant simplicial
presheaves.

4.2 Excision and the singular construction

Lemma 4.2.1. Assume given a commutative diagram of bisimplicial sets of the form

12 1
2" ——= 2,

.

72— 79

that is degreewise homotopy Cartesian. If mo(Z2) and mo(Z}) are constant simplicial sets, then the
induced diagram

diag(Z,?) — diag(Z;)
diag(Z7) — diag(Z?)
is homotopy Cartesian.

Proof. This is a consequence of the Bousfield—Friedlander theorem [ , §B.4]. By assumption, the
map 7o(Z}) — mo(Z?) is a map of constant simplicial sets and thus a fibration. It remains to show that a
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bisimplicial set Z, such that mo(Z,) is constant satisfies the 7.-Kan condition. Such a bisimplicial set can
be written as a coproduct, indexed by the set m(Z), of bisimplicial sets W, with 7o(W,,,) = = for all m.
It is proved in [ , §B.3] that such a W, satisfies the 7,-Kan condition. To conclude, one observes that
the 7,-Kan condition is preserved under coproducts. O

Remark 4.2.2. In [Rez, Proposition 5.4], it is shown that the conclusion of Lemma 4.2.1 holds assuming
only that 7o (Z?) is constant. This also follows from [ , Lemma 5.5.6.17] applied to the co-topos of
presheaves on 7 (Z{)).

The following result, which abstracts some ideas of [ , Proof of Theorem 6.22], gives a general
procedure to produce spaces having the affine Nisnevich excision property.

Theorem 4.2.3. Let C be a small category with a strictly initial object, 1 a representable interval object
in C, and P a cd-structure on C such that

QeP=QxIlePl

If F is a simplicial presheaf on C satisfying P-excision such that wo(F ) is I-invariant, then Sing' F also
satisfies P-excision.

Proof. Let () € C be the initial object. Since () x I" maps to §, it is initial. It follows that Sing' F (()) is
weakly contractible. Let () be a square
W——V

L

U——X

in P. The square Sing' F (Q) is the diagonal of the square of bisimplicial sets

F(X xI*) — F(U xI*)

| |

F(V xI*)—— F(W x1°*)

which is degreewise homotopy Cartesian by the assumption on P. Moreover, since mo(F ) is I-invariant,
the 7o of each entry is a constant simplicial set. By Lemma 4.2.1, we deduce that Sing! F (@) is homotopy
Cartesian. O

Corollary 4.2.4. Let F be a simplicial presheaf on Smgﬁ . Suppose that T satisfies affine Zariski (resp.

affine Nisnevich) excision and that mo(‘F) is A'-invariant. Then SlngA F satisfies affine Zariski (resp.
affine Nisnevich) excision.

Proof. Via Example 4.1.3, this result follows immediately from Theorem 4.2.3. 0
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5 Al-representability results for vector bundles

The goal of this section is to establish our general representability result in the A'-homotopy category
and then to specialize this result to obtain the geometric representation of vector bundles on smooth affine
schemes discussed in Theorem 1. We begin by establishing Theorem 5.1.3, which contains a general
“affine representability result”. This result relies on the main results of the previous sections, namely
Theorem 3.3.4 and Corollary 4.2.4. Finally, we establish Theorem 5.2.3, which, building on some com-
mutative algebra results related to the Bass—Quillen conjecture (see Theorem 5.2.1), is deduced by suitably
specializing Theorem 5.1.3 to classifying spaces for vector bundles.

5.1 A general representability result

We now apply our results in the context of A!-homotopy theory. The A'-homotopy category H(S) is
constructed as the homotopy category of a left Bousfield localization of sPre(Smg). Recall from Defini-
tions 3.1.1 and 4.1.4 that Syjs is the set of Nisnevich covering sieves R < X and that S,1 is the set of
projections X x A' — X. We define

H(S) := Ho((Snis U Sy1)~'sPre(Smg)).

Using the adjunction described at the beginning of Section 3.1, we may identify #(S) with the full
subcategory of Ho(sPre(Smg)) consisting of Nisnevich-local and A'-invariant simplicial presheaves. If
X, € sPre(Smg), we set

[X, 0] = Homyy ) (X, ).

Recall that this can be computed as follows: if 9" — 9" is an (Snis U Sy1)-equivalence where 9 is
Nisnevich-local and Al-invariant, then

[Xa y]Al = HomHo(sPre(Sms))(xa 9//)

In particular, if X € Smg, then [X, Y51 = 109" (X).

Remark 5.1.1. Note that our definition of #(S) differs slightly from that studied in [ , §3,2.1].
Indeed, Morel and Voevodsky define the A'-homotopy category as the homotopy category of a left Bous-
field localization of the Joyal model structure on simplicial Nisnevich sheaves on Smg. However, they
assume from the outset that the base scheme S is Noetherian and has finite Krull dimension. Under these
assumptions, their category is equivalent to ours (see Remark 3.1.4).

Lemma 5.1.2. Let F be a Zariski-local simplicial presheaf on Smg. If F is A'-invariant on affines (i.e.,
forany X € Smgﬂ, the map F (X) — F (X x Al) is a weak equivalence), then F is A'-invariant.

Proof. We must show that the map F(—) — F(— x Al!) is a weak equivalence. This is a map between
Zariski-local simplicial presheaves that is a weak equivalence on affines, hence it is a weak equivalence
by Lemma 3.3.2. 0

Theorem 5.1.3. Let F a simplicial presheaf on Smg. Suppose that
(i) F satisfies affine Nisnevich excision;
(ii) mo(F) is Al-invariant on affine schemes.
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Then Ry, SingAlf is Nisnevich-local and A'-invariant. Moreover, for every U € Smgﬁ , the canonical
map

moF (U) — [U, Flar
is an isomorphism.

Proof. By Corollary 4.2.4, SingAl F satisfies affine Nisnevich excision. Therefore, applying Theorem 3.3.4
1

(i1), we conclude that Ry, SingA F is Nisnevich-local. On the other hand, Theorem 3.3.4 (i) shows that

the map

.1) Sing® F (U) — Ry Sing® T (U)

is a weak equivalence for every affine U. Since SingAl F is Al-invariant by definition, it follows immedi-

1 1
ately that Rz, SingA F is Al-invariant on affines. Applying Lemma 5.1.2 we conclude that Ryz,, SingA T
is also A!-invariant. Now, taking the connected components of (5.1), we see that for U affine,

o Sing® F (U) = [U, Flar.
Moreover, condition (ii) of the statement implies that
70 F (U) = mo Sing™ F (U)
for affine U, and this is precisely what we wanted to prove. 0

Remark 5.1.4. Condition (ii) of Theorem 5.1.3 cannot be dropped: even if F is a Nisnevich-local sim-
1

plicial presheaf, Ryis Sing® F need not be Al-invariant. One example of this phenomenon is given in

[ , §3 Example 2.7]. For an example where ¥ is a smooth projective scheme over C, see [ ,

64.1].

5.2 Homotopy invariance and geometric representability

Suppose r > 0 is an integer. If X is a scheme, write ,.(X) for the set of isomorphism classes of rank r
vector bundles on X. Let A be a commutative ring. Say that the Bass—Quillen conjecture holds for A in
rank r if, for every integer n > 0, the map

V,(Spec A) — V,.(Spec Alt1, ..., t,])
is a bijection. We recall the following result regarding the Bass—Quillen conjecture.

Theorem 5.2.1 (Lindel, Popescu). Let A be a ring such that, for every maximal ideal m C A, Ay is
ind-smooth over a Dedekind ring with perfect residue fields (for example, Ay, is Noetherian and regular
over such a Dedekind ring). Then the Bass—Quillen conjecture holds for A in every rank r > 0.

Proof. The fact that every regular ring map (see, e.g., [ , Tag 07BY Definition 15.32.1] for a defini-
tion) between Noetherian rings is ind-smooth is Popescu’s desingularization theorem [ , Tag 07GC
Theorem 16.12.1]. By Quillen’s patching theorem [ , Theorem V.1.6], we may assume that A is

ind-smooth over a Dedekind ring R with perfect residue fields. Since any finitely generated projective
module over a filtered colimit of rings is extended from some ring in the diagram, we may further assume
that A is smooth over R. In that case, we can apply [ , Theorem 4.1] (see also [ , Theorem 2.2]
for clarifications). O
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Example 5.2.2. The Bass—Quillen conjecture holds for any regular Noetherian ring A such that for every
prime p € Z, A/pA is regular. Indeed, such a ring is a direct product of rings that are regular over Z or
over [, for some prime p.

For U € Smg, write Vect,(U) for the groupoid of rank r vector bundles over U. The groupoids
Vect,(U) are the fibers of a category fibered in groupoids over Smg that we denote by Vect,. These
fibers are only functorial in U in a weak sense, but this is easily rectified by considering the equivalent
groupoids I'(Smg /U, Vect, ), which are strictly functorial in U’ this trick is due to Grayson and we refer
the reader to [ , p- 169-170] or [ , C.4] for more details. We write BVect, for the simplicial
presheaf on Smg whose value on U is the nerve of the latter groupoid. Thus, by construction, 9B Vect,
is isomorphic to the presheaf U — V,.(U).

Let Gr, be the infinite Grassmannian colim y Gr;. v, considered as a colimit of representable presheaves
on Smg. The tautological vector bundles on the Grassmannians Gr,. ; induce a morphism

~: Gr, — BVect,

in sPre(Smg). By [ , §4, Proposition 2.6], ~, is an isomorphism in #(S).> For any X € Smg,
composition with 7, gives a map Hom(X, Gr,.) — ¥.(X), which is surjective if X is affine.

Theorem 5.2.3 (Affine representability for vector bundles). Let r > 0 be an integer. Suppose that, for
every X € Smgﬁ , the Bass—Quillen conjecture holds for O(X) in rank r. Then, for every X € Smgﬁ ,
there is a bijection

{VT(X) = [X7 GrT]Al

such that the following triangle commutes:

Hom(X, Gr,)

.

~

V(X)) ——— [X,Gr,] a1

In particular, this holds for all r if S is ind-smooth over a Dedekind ring with perfect residue fields.

Remark 5.2.4. Theorem 5.2.3 is trivially true when 7 = 0. When r = 1, the bijection of Theorem 5.2.3
holds for S regular and X an arbitrary smooth S-scheme, by [ , 84 Proposition 3.8].

Proof. Consider the commutative square

(5.2) Hom(X, Gr,) [X, Gry] a1

i |

V(X) [X, BVect, |1,

where X € Smgﬁ and the vertical maps are induced by ~,.. Since ;- is an isomorphism in #(.9), the right
vertical map is a bijection. It remains to show that the bottom horizontal map is a bijection.

In [ ], it is assumed that .S is Noetherian and has finite Krull dimension, but this is not used in the proof.
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The classical theory of faithfully flat descent for vector bundles shows that Vect, is a stack for the
étale topology on Smg. By [ , Theorem 1.1], this is equivalent to BVect, being étale-local, in the
sense of Definition 3.1.1. In particular, by Theorem 3.2.5, BVect, satisfies Nisnevich excision. The
hypothesis regarding the Bass—Quillen conjecture guarantees that moBVect, is Al-invariant on affine
schemes. Therefore, the simplicial presheaf B'Vect, satisfies the hypotheses of Theorem 5.1.3 and we
conclude that the bottom map in (5.2) is a bijection, as desired. The final statement follows immediately
from Theorem 5.2.1. 0
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