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Introduction

The subject of this Master thesis was motivated by the article [TVO08] from B. Toén and G. Vez-
zosi. In this article they define categorical sheaves on schemes and use a construction from
derived algebraic geometry to define the Chern character of such a sheaf. The original goal of
this thesis was to go as far as possible towards a precise understanding of these constructions.
In the end, the focus has shifted to the related construction of the Chern character of an “ordi-
nary” sheaf, culminating in Chapter 4 with a computation of this character for vector bundles
on derived affine schemes, and only a very small part of this text is dedicated to the study of
categorical sheaves themselves.

The first chapter discusses Hochschild homology, cyclic homology, and the Chern character
in the classical context of algebras. It was written first and in certain places is only remotely
related to the remaining chapters. The material here is also much older. I believe however that
some parts of the presentation are new, namely, the explicit formula for the map on Hochschild
complexes induced by a bimodule and the emphasis on Morita invariance which is used to lift
the Chern character to negative cyclic homology (and accessorily to give a simple proof that
Hochschild and cyclic homology preserve finite products).

The second chapter reviews the theory of stacks on model categories as presented in [HAGI,
§4]. The third chapter develops the basic setup for derived algebraic geometry in the language
of stacks on model categories. We give detailed proofs of two results from [HAGII]: the flat
descent theorem (Theorem 24) and a characterization of dualizable objects in the homotopy
category of simplicial modules (Theorem 37).

Chapter 4 comes back to Hochschild and cyclic homology and gives geometric interpretations
of these constructions in term of the loop space of a derived stack. In §4.3, we give a detailed
construction of the Chern character of a vector bundle on a derived stack, and we successfully
prove the claim made in [TVO08] that it is compatible with the classical Chern character of
Chapter 1.

Chapter 5 was originally meant to be an exposition of the construction of the Chern character
for categorical sheaves outlined in [TV08]. Categorical sheaves are defined there as sheaves
of differential graded categories on derived stacks. As it appeared that most of the results
beyond the basic homotopy theory of differential graded categories would be conjectural and that
there was not enough time to tackle their proofs, I decided to modify slightly the construction
by replacing dg categories with simplicial categories. The two approaches are not unrelated
since it is proved in [Tab07a] that the homotopy theories of nonnegatively differential graded
categories and of linear simplicial categories are equivalent through a generalized normalization
functor; so the only added value of dg categories is the possibility of having unbounded complexes
of morphisms. There are similarly two approaches to derived stacks, one that uses dg rings
and another that uses simplicial rings, and since this text presents the simplicial approach to
derived stacks it is only natural to use the simplicial approach to categorical sheaves as well.
Indeed, in the “mixed” setting of [TVO08], one has to use the normalization functor to be able
to speak of a dg category over a simplicial ring. All the propositions of Chapter 5 stated
as “conjectures” are known to be true if one replaces simplicial categories by dg categories
(see [Toé06b, TVO07, Tab07b]), and I believe that many of them can in fact be derived as
consequences of these known results using the above equivalence. The construction of the Chern
character itself is almost word for word the same as that presented in Chaper 4.

Unfortunately, there remain a few unproved results in the text, the most important one being
Theorem 48. The other ones are three small technical results, namely

e Proposition 16,
e an argument in the proof of Proposition 22, and
e Lemma 27.

all of which are claimed to be true in [HAGII].
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Notations, terminology, etc.

Our conventions regarding categories are mostly self-explanatory. We use the definition of model
category of [Hir03]: it has functorial factorizations but they need not be part of the model
structure. Our notions of monoidal model category, (closed) C-module (C a symmetric monoidal
category), and C-model category (C a symmetric monoidal model category) are those defined
in [Hov99, §4]. The following rule is applied to distinguish between the multitude of hom objects:
the hom sets of a category C are always denoted by C(x,y), and the notations Map(z,y) and
Hom(z,y) are used respectively for the simplicial mapping spaces of a simplicial category (and
in a few instances for enriched hom sets of an enriched category) and the internal hom objects
of a closed monoidal category. The category of simplicial objects (resp. cosimplicial objects) in
C is denoted by sC (resp. by cC). The objects of the simplicial index category A will simply be
denoted by 0, 1, 2, etc. If n > 0, s,,C denotes the category of functors from the full subcategory
of A°P spanned by 0, ..., n to C. Decorated arrows follow no strict convention. For instance,
an arrow —» may denote either an epimorphism or a fibration depending on the context.

Although universes are never mentioned in the text, they are implicitely used starting from
Chapter 2 in the following manner. We fix two universes U € V and we assume that the base
commutative ring k belongs to U. The base model category C of Chapter 2 is an U-bicomplete
category whose set of objects belongs to V and whose sets of morphisms between any two objects
belong to U. In forming the functor category sSet® the target category sSet is the category of
V-small simplicial sets (i.e. simplicial sets belonging to V). This is extremely important as it
allows the values of a functor C — sSet to be as big as the category C itself. In our application to
derived algebraic geometry in Chapter 3, sMody, is the category of U-small simplicial k-modules.
The word “small” will always mean U-small (except when it is used informally).



1 The classical Chern character

Let k be a commutative ring and A an associative and unital k-algebra (henceforth simply a
k-algebra). Then the Chern character of A is a natural map of graded groups

chy : K, (A) = HCC(A)

where K, (A) is the K-theory of A and HC, (A) is the negative cyclic homology of A. In this
chapter we shall review the definitions and the elementary properties of the objects involved to
arrive at the definition of the Chern character in degree 0.

As an example, suppose that k is an algebraically closed field and consider the group algebra
k[G] of a finite group G whose order is not a multiple of the characteristic of k. Here, Ky(k[G]) is
the Grothendieck group of the category of finite-dimensional representations of G (this category
being equivalent to that of finitely generated projective k[G]-modules), and HCy(k[G]) is the
group of complex-valued functions on the conjugacy classes of G. Then if p: G — Aut(V) is a
finite-dimensional representation of G over k, chg(p) is just the usual character of p: for C C G
a conjugacy class and g € C,

cho(p)(C) = tr(p(g))-

We first recall the definition of the functor Ky. Let A be a k-algebra. We define K((A)
as the Grothendieck group of the category of finitely generated and projective (f.g.p.) left A-
modules. In other words, if u(A) is the monoid of isomorphisms classes of f.g.p. left A-modules,
with the law of composition induced by the direct sum, then p(A) — Ko(A) is the universal
monoid map from p(A) to groups. If A is commutative, the tensor product gives u(A) the
structure of a “semiring” which makes Ko(A4) into a commutative ring, and u(A) — Ko(A)
is the universal semiring map from p(A) to rings. A map of k-algebras f: A — B induces a
map of monoids (or semirings) fi: u(A) — p(B) by extension of scalars, which lifts to a map
of groups (or rings) f.: Ko(A4) — Ky(B) by universality. Thus, Ky is a covariant functor on
Alg. The Ky construction also exhibits a contravariant behaviour if we impose some finiteness
condition on maps of algebras. Specifically, if f: A — B is a map of k-algebras that makes
B into an f.g.p. left A-module, then restriction of scalars along f induces f*: u(B) — u(A),
whence f*: Ko(B) — Ko(A). This makes Ky into a contravariant functor on a subcategory of
Algy.. In the sequel we shall view K primarily as a covariant functor.

1.1 Hochschild and cyclic homology of algebras

Throughout this section, A denotes an associative and unital algebra over some commutative
ring k, and M is an A-bimodule. We first review the definitions of the Hochschild homology
and the various cyclic homologies of A.

The Hochschild complex C(A, M) of A with values in M is the simplicial k-module with
Cn(A, M) =M @ A®" with face maps d;: Cp(A, M) — Cy,—1(A, M) given by

ma; ®az ® -+ @ an if i =0,
di(m®a® - Qap) ={MOa1 @ a1 @ - ®a, fl<i<n-—1,
aym@a1 Q- @ Ap_1 if ¢ = n,

and with degeneracy maps s;: Cp (A, M) — Cp11(A, M) given by
5iMPa1®- @ap) =MRa1 @ Qa; D11 @ - @ an.

The Hochschild homology H (A, M) of A with values in M is then the graded k-module with
H,(A,M) =m,C(A, M).

It is clear that C(A, M) is a functor of M, and it is even a functor from the fibered category
of k-algebras and bimodules over them. That is, if N is a B-bimodule, then a pair of maps
f+A— B, m: M — f*N induces a simplicial map C(f,m): C(A,M) — C(B,N), and this
construction respects identities and compositions.

5



6 THE CLASSICAL CHERN CHARACTER 1.1

When M = A, we write C(A, M) = C(A) and H(A, M) = HH(A); HH(A) is the Hochschild
homology of A. Tt follows from the functoriality of C'(A, M) that C(A) (resp. HH(A)) is a
functor from k-algebras to simplicial k-modules (resp. to graded k-modules).

Before introducing cyclic homology we recall a categorical construction. Let | be an index

category and C a monoidal category with colimits. The tensor product over | of two functors
F:I°°P - Cand G: | — Cis defined as the coend

FeG— /iel Fli) 2 GG).

This is the usual “geometric realization” construction: F ®; G is the coequalizer of the two
obvious maps [, _,; F'(j) ® G(k) = [[;¢, F'(i) ® G(i). Suppose moreover that C is abelian and
that the tensor product in C is biadditive, e.g. C = Modj. Then C'™ and C' are also abelian
categories and ®) is a biadditive functor, so we may consider the classical left derived functors
of F' ® 7 which, when they exist, are denoted Tor'n (F,?7). These are of course bifunctors and
reduce to the usual Tor objects when | is a point. For | = A and C = Modj, we have the following
result (whose proof is detailed from [Lod92, §6.2]).

Theorem 1. The nth homotopy module functor m, : sMod; — Mody, is isomorphic to Torﬁ(?, k),
where k is viewed as a constant cosimplicial k-module.

Proof. Left derived functors are computed using projective resolutions. Let K, denote the
free cosimplicial k-module generated by the cosimplicial set A, = A(n,?). For ¢: m — n,
let K(¢): K,, = K,, be the morphism of cosimplicial modules induced by precomposition by
¢. The functor K is then a simplicial cosimplicial k-module with a canonical augmentation
Ky — k to the constant cosimplicial module k£ that sends all the generators to 1. Thus, it has
an associated augmented chain complex K, — k of cosimplicial k-modules. We claim that this
is a projective resolution of k.

That each K, is projective follows from the Mody-enriched Yoneda lemma. More precisely,
if we apply the free k-module functor to every set of morphisms of A we obtain a Mod-enriched
category k[A] and the cosimplicial k-module K, is just the functor represented by n on k[A].
The Yoneda lemma then says that the functor Mod% (K, ?) is isomorphic to the “evaluation at
n” functor Mod2 — Mody,, which is exact. By definition, this means that K, is projective.

Homology of complexes of functors to abelian categories is computed pointwise, so we must
check that each complex

o+ = Ka(m) — Ki(m) = Ko(m) — k(m) =k

is a resolution of k. From the definition of K(¢$) we see that this complex is associated to
the augmented simplicial k-module L — k freely generated by the augmented simplicial set
A™ = A(?,m) — . This augmented simplicial set admits an “extra degeneracy” h,: A™(n) —
A™(n + 1) given by h_1(x)(0) = m and

o(j) f0<j<n,
m if j=n+1,

for n > 0. It induces an extra degeneracy on L — k, which is therefore aspherical.

If E is a simplicial k-module, it follows that we can compute Tor*A(E, k) as the homology
of the complex F ®a K.. Hence it will suffice to prove that £ ®a K, is naturally isomorphic
to the chain complex associated to E (whose homology modules are the homotopy modules
of E). We prove more generally that the simplicial k-modules E ®a K and E are naturally
isomorphic. Define a,: F ®a K, = E, and B,: E, — E ®a K, by a,(y @ ¢¥) = E(¥)(y)
and B, (z) = 2 ® id,. It is clear from the coequalizer description of E ®a K, that these maps
are well-defined, natural in F, and inverse to each other. For ¢: m — n, we must verify the
relations E(¢)a, = an(idp @a K(¢)) and (idg ®a K(9))Bn = BmE(¢); the former is trivial
and the latter is  ® ¢ = E(¢)(z) ® id,, which is true because ¢ = K,,(¢)(id,,). O
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This theorem suggests that for index categories | other than A, we can define “generalized
homotopy groups” of functors F': I°°P — Mody, as the k-modules Torln(F k). Cyclic homology is
just one example of this idea, when | is the cyclic category.

The cyclic category A is an extension of A with the same objects but having for each n a
permutation n — n of order n+1 as an additional morphism, satisfying some relations displayed
(in dual form) below. The structure theorem for A says that any morphism in A factors uniquely
as an automorphism followed by a map in A. A cyclic (resp. cocylic) object in a category C is
a functor A°? — C (resp. A — C). It can be shown that defining a cyclic object X amounts to
defining objects X,,, n > 0, and morphisms d;: X,, = X1, s;: X5y = Xnt1,and ¢ 0 X, — X,
(0 <i < n) satisfying the usual simplicial identities as well as

dicp, = cpn_1di—1,
8iCp = Cnpy15i—1, and

n+1 _ -
ey =1id,

where d_1 = c;ildn and s_1 = cp415,. Here ¢, is the image by X of the cyclic permutation
n — n which sends 0 to n, 1 to 0, 2 to 1, etc. (Dually, cocyclic objects are determined by
morphisms d?, s%, and ¢, satisfying the same identities with compositions reversed.)

We endow the Hochschild complex C(A) with a cyclic k-module structure by defining

Cn(a0®"'®an):an®a0®"'®an—1-

In this way we obtain a functor from k-algebras with values in cyclic k-modules (in fact, the
morphisms C(f) will commute with any permutation of the factors, not only cyclic ones).

We introduce some useful operators on a cyclic object X in a category enriched over abelian
groups. We usually write b, : X,, = X,,_ for the differential of the chain complex associated to
the underlying simplicial object of X, and we write b/, for b, — (—=1)"d, = 3./ (~1)d;. The
map b’ also defines a chain complex since > = 0. There is a signed version of ¢, defined by
tn, = (—1)"¢,. The averaging operator N, is id 4+ t,, + - - - + t7; it satisfies t, N, = Npt, = N,
and in particular (id — ¢t)N = 0. We spare the reader the straightforward computations of the
identities (id — )b’ = b(id —t), ¥’ N = Nb, and s_1b'+b's_1 = id (see [Lod92, 1.1.12 and 2.1.1]).
Finally, we define B, : X,, = X,,41 by B, = (id — t;,+1)s—1N,,. From the previous formulas we
obtain immediately that B? = 0 and bB + Bb = 0.

By analogy with the Tor definition of Hochschild homology, we define the cyclic homology of
a cyclic k-module E to be the graded k-module

HC,(E) = Tor(E, k).

We prove that this is well-defined by producing a projective resolution of the constant cocyclic
k-module k. It will be constructed as the total complex of a double complex K., of cocyclic
k-modules. Let Kpq = k[Aq—p] = k[A(¢ —p,?)] if ¢ > p > 0 and let K, = 0 otherwise. Each
column K. obviously has a structure of cyclic cocyclic k-module, and we take for the vertical
(downward) differentials b the ones associated to the underlying simplicial object. The horizontal
(leftward) differentials By, : k[A,] = k[Ap4+1] are (1 — tp4+1)5—1N,,. The complex K, looks like
this:

Lol Ll

1 l l
1 l

E[A1] < E[Ao]
I

k[Ao].

We have explained above that this is indeed a bicomplex (with anticommuting squares). There
is an augmentation Kyg — k sending Ay to 1.
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Theorem 2. Tot K,. — k is a projective resolution of the constant cocyclic k-module k.

Proof. Since K, is a representable functor on k[A], it is projective by the Mody-enriched Yoneda
lemma (cf. the proof of theorem 1), and so is any finite product of the K,4’s.

Let us prove that Tot K, — k is a resolution of k. Here we may safely forget the cocyclic
structures and view Tot K, and k as chain complexes of cosimplicial k-modules. We introduce
an auxiliary bicomplex L., of cosimplicial k-modules:

k[As] +—— k[A3] k[As] k[As]
b —v b —

P R ) P ) Sy PLL=A) ¥ P o)
b —v b —

FIAL] €975 BIAL] <Y k(AL ] <O RAL]
b —v b —v

K[Ao] €25 k[Ao] <X k[Ao] €47 K[Ag] - -+

with the same augmentation Tot L., — k as Tot K,.. We let M,, be the bicomplex obtained
from L., by annihilating the even-numbered columns. Let ¢: Tot K., — Tot L., be the map
induced by (id,s—1N;): k[A;] — Kk[A;] @ k[A,41] and let ¢: Tot L., — Tot M, be the one
induced by —s_1 N, +1id: k[A,] @ k[Ar41] — k[Ar+1]. The proof that ¢ and ¢ are chain maps
uses only the relations between b, ¢, id — t, N, and B that we already wrote down. Moreover,
¢ is compatible with the augmentations to k as ¢ is the identity. Thus we have a commutative
diagram

0 = Tot K.y -5 Tot Ly, ~% Tot M,, — 0

] ®

00— k=———%k >0 >0

whose rows are obviously exact. To complete the proof we will show that the last two vertical
arrows are quasi-isomorphisms: it will then follow from the associated long exact sequences
and the five lemma that the first vertical arrow is also a quasi-isomorphism. From the identity
s_1b' + b's_1 = id we obtain that each column of M,, has zero homology, and hence that that
the third vertical map in (3) is a quasi-isomorphism. Next we show that each row in (2) has
zero positive homology, so that the homology of Tot L., can be computed as the homology of
the zeroth column of horizontal homology of L,..T This can be proved pointwise, so consider a
part of the nth row evaluated at m:

- = KA, m)] —25 B[A(n, m)] — k[A(n,m)] = - - . (4)

By the structure theorem for A, we have A(n,m) = Z,4+1 X A(n,m), where Z, 1 is the set of
automorphisms of n in A, and we see that (4) is obtained from a complex of k-modules

id—
e K Zng1] 5 Kl Zg1] — K[ Za] = 5)

by applying the exact functor M + MA2(™) so we need only prove that (5) is exact. Let
x = (zo,...,%n) € k[Zny1]. Suppose first that (id — ¢,)z = 0; then we obtain successively
xo = (—1)"x; = -+ = (—1)""x, and hence x = N(z0,0...,0). Suppose then that Nz = 0, i.e.
that > (—1)"z; = 0; then putting yo = 0, y1 = —Z0, Y2 = —To—T1, ..., Yn = — Z?;ol Ti, We

TThe proof of this fact given here is from [Con83]. We should note that the shorter proof in [Lod92] is
incorrect.
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find (id — t,,)y = . These calculations also show that the image of id — t,,: k[Zn41] = k[Zn+1]
is exactly the kernel of the surjective map k(Z,11] — k, (zo,...,2n) = Yo o(—1)"x;, so
that the homology of the nth row in degree 0 can be identified with k[A,]. Moreover, the map
k[A,] — k[A, 1] induced by b is exactly the differential of the chain complex k[A.] considered in
the proof of Theorem 1. Since we know that the latter is a resolution of the constant cosimplicial
k-module k, this proves that Tot L., — k is a resolution of k, i.e., that the second vertical arrow
in (3) is a quasi-isomorphism. O

Let E be a cyclic k-module. We let Z(E) denote the bicomplex of k-modules obtained by
applying the functor E ®a ? to (1). Using the same maps a and 8 as in the proof of theorem 1,
we obtain a natural isomorphism of simplicial k-modules E ®p Kp «4p = E,, and so the nth
column of #(F) is just the complex associated to E with Ej in degree n. We still write B,, for
the horizontal differential idgy ®a By, which is identified to ay41(idg ®p Bn)Bn: En — Eny1.
Explicitly, we have B,, = (1 — t;41)5-1Ny.

By definition, the cyclic homology of E is the total homology of Z(E). The bicomplex #Z(E)

has an obvious periodic pattern, and it is useful to fill it on the left to obtain the bicomplex
B (E):

I Lol

"(—E3(*E2(—E1(—EO

L 14
By Ei+— Ej
U
"(—El(*EO
1

- Ey

The complex Z(FE) is obtained from %P (E) by removing the negatively graded columns. If one
removes the positively graded columns instead, one obtains a bicomplex #~ (F). In figurative
terms, the bicomplexes Z~ (F) and #(E) “cover” #P°*(E) and their “intersection” is just the
Oth column, which we denote by #°(E). Then the total homology of #P*(E) (resp. of 7 (E))
is called the periodic cyclic homology (resp. the negative cyclic homology) of E, and it is denoted
by HCP*(E) (resp. by HC~(E)).

If C is a bicomplex, C[m, n] will denote the bicomplex with C[m, n],q = Cpim,q+n; One has
(Tot C)gtm+n = (Tot C[m,n])r. The periodicity of #P'(E) is then expressed by #P°(E) =
#Per(E)[1,1]. It is obvious that there are diagrams of short exact sequences

0% 11| =% ——# ——0 0+ B 1)+ B +—HF° «—0
l I* B [ IF ik
02" [1,1] > B —— # ——0 0B 1,1+ B +——H+—0
£ | + i | J
0—H# — B*" > H[-1,-1]—0 0—H «— HB*" + B[-1,—-1]+0
) ) | ) 9 I
00— %" —— % —B[-1,-1] -0 0¢— B ¢—— B <+—B[-1,-1]+0

)

where pairs of arrows are retract pairs. From these two diagrams we obtain eight functorial long
exact sequences and morphisms between them.

Corollary 3. Let E and F be cyclic k-modules and let f,g: E = F be maps of cyclic k-
modules. Then HH(f) = HH(g) if and only if HC(f) = HC(g). When this is the case
HCPe" () = HCP* (g) and HC~(f) = HC~ (g).

Proof. The first statement follows from an inductive five-lemma analysis of the long exact se-



10 THE CLASSICAL CHERN CHARACTER 1.2

quences

--+— HC,_1(F)— HH,(E) —» HC,(E) - HC,,_2(F) - HH,_1(E) — - --

1 1 s s s
---— HC,_1(F)— HH,(F)— HC,(F) - HC,_2(F) - HH,_1(F) — - --

-+ — HCy(F) - HH,(E) - HC1(E) - 0— HHy(E) - HCy)(E) — 0

s 3 U 3 1 s
-+ = HCy(F) — HH,(F) — HC1(F) —0— HHy(F) - HCy(F) — 0

induced by the last line of the diagram on the left above, where the vertical maps are induced by
f and g. The other results come from the fact that maps of bicomplexes that are homologically
equal on each column are globally homologically equal. This is proved using either a staircase
argument or a spectral sequence argument. |

Of course, if A is a k-algebra, HC(A), HCP**(A), and HC~(A) stand for HC(C(A)),
HCP**(C(A)), and HC~(C(A)).

1.2 Morita invariance

Let A and B be k-algebras. A well-known theorem of commutative algebra (see e.g. [Bas68,
Thm. 2.3]) says that there is a bijection between isomorphism classes of (B, A)-bimodules and
isomorphism classes of colimit-preserving k-linear functors Mod4 — Modp (here Mod4 denotes
the category of left A-modules). This correspondence is given explicitly as follows: to a (B, A)-
bimodule g M 4 we associate the functor g M 4 ®7?, and to a k-linear functor F': Mod4 — Modg we
associate the (B, A)-bimodule F(A) whose right A-module structure is given by the composition

A—=" Homu (A, A) —E— Homp(F(A), F(A)),

where the first map is the action of A on itself by multiplication on the right. This bijection
transforms tensor products of bimodules into compositions of functors.! In particular, the
categories Mods and Modp are k-linearly equivalent if and only if there exist bimodules pPa
and 2@Qp and isomorphisms sQp ® pPa = A and P4 ® sQp = B of A-bimodules and B-
bimodules, respectively; if F' and G are mutually inverse equivalences, we can choose P = F(A)
and Q = G(B). When either of those two conditions is satisfied, we say that A and B are Morita
equivalent, and P, Q, F, and G are called Morita equivalences.

Let us quickly review the main results of Morita theory (proofs can be found in [Bas68]
or [Lam98]). Let A be a k-algebra. A left A-module P is automatically an (A, End(P)°P)-
bimodule, and its dual P* = Homa (P, A) is an (End4(P)°P, A)-bimodule. There is a canonical
map of End 4 (P)°P-bimodules

P*®4 P — Enda(P)

given by € ® x > &(?)z and a canonical map of A-bimodules
P®EndA(P)°P P* — A

given by z ® £ - &(x). It is well-known and easy to prove that the first map is an isomorphism
if and only if P is a finitely generated projective module. It can also be proved, but we will
never use it, that the the second map is an isomorphism precisely when P is a generator of
Mod, in the categorical sense, i.e., when the functor Mod (P, ?) is faithful; we then say that P
is generating.

The Morita theorems say that P is an f.g.p. and generating left A-module if and only if
the categories Mods and Modgyq ,(p)er are equivalent; P* ®4 7 and P ®gpq,(p)er 7 are then
quasi-inverse equivalences. Moreover, all Morita equivalences are of this form, in the following
sense: if A and B are k-algebras, then a (B, A)-bimodule pP,4 is a Morita equivalence if and

TOther formal properties of this bijection could be succintly summarized by proving that it comes from an
equivalence of suitable 2-categories.
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only if it is generating and f.g.p. as a left B-module and the action of A induces an isomorphism
A — Endp(P)°P. When this is the case, B — End(P) is also an isomorphism of k-algebras,
and Homy4 (P, A) and Hompg (P, B) are isomorphic as (A4, B)-bimodules and are inverse to g P4.

In this section we shall prove that the functors Ko, HH, HC, HC'~, and HCP®" send Morita
equivalent k-algebras to isomorphic objects. But we want to express this fact more functorially
so that the Chern character becomes “Morita natural”. The obvious category to consider is
that with k-algebras as objects and isomorphism classes of bimodules as morphisms between
them. However, the functor Ky does not lift to this category because tensoring with arbitrary
bimodules does not preserve f.g.p. modules. This motivates the following definition.

Define the category Mory as follows. Its objects are (associative and unital) k-algebras, and
a morphism from A to B is the isomorphism class of a (B, A)-bimodule pM4 that is f.g.p. as
a left B-module. The composition of two morphisms pM4 and ¢Np is the (C, A)-bimodule
cNp ® pM 4, and the identity morphism at A is 4 A4. There is a functor Algy — Mory which
sends a map f: A — B to the (B, A)-bimodule B4 whose right A-module structure is induced
by f. This functor is faithful, for if f and g have the same image, then for all « € A and b € B,
bf(a) =bg(a); taking b =1, we get f =g.

Let F' be any functor defined on Algy. We say that F' is Morita invariant if it factors
through the functor Algi — Morj, defined above. This implies in particular that F’ sends Morita
equivalent k-algebras to isomorphic objects. If F' and G are two Morita invariant functors with
given factorizations, then we have two notions of a natural transformation ' — G. When F
and GG are viewed as functors on Mory a natural transformation F' — G will be called Morita
natural. Any Morita natural transformation is in particular a natural transformation between
functors on Algy.

We shall see that the functors that interest us are all Morita invariant in this sense. Here is
an easy example of a Morita invariant functor, which motivated our definition of Mory.

Theorem 4. The functors p and Ko are Morita invariant.

Proof. Tt suffices to prove the theorem for y. Let g P4 be a morphism from A to B in Mory.
It induces a colimit-preserving functor between the categories of f.g.p. left A-modules and f.g.p.
left B-modules, whence a monoid morphism p(gPa): p(A) — pu(B). When pPy is the image
of a map f: A — B, this is exactly how we defined u(f). The fact that this defines a functor
on Mor;, is obvious. O

We continue to write p and Ky for the extensions of these functors to Mory. Observe that
W is just the functor represented by k on Mory, and similarly Ky is the functor represented by
k on the category obtained from Mory by turning the monoids of morphisms into groups. Note
however that if g P4 is a bimodule where A and B are commutative algebras, then Ko(pPa) is
not a morphism of rings in general.

Less trivial is the fact that Hochschild homology and the various cyclic homologies are Morita
invariant. The construction of their lift that we present here is slightly simplified from that in
Loday [Lod92].

Let A and B be k-algebras and let g P4 be a morphism in Mory. Write P* for Homp (P, B).
Then P* is an (Endp(P)°P, B)-bimodule, and also an (A, B)-bimodule thanks to the map of
k-algebras A — Endp(P)°P. Recall from the beginning of this section that we have canonical
maps

u: P*®p P — Endg(P), m®p+ m(?)p,

and
v: P @gnagpyr P*— B, p@7 = 7(p),

of End g (P)°P-bimodules and B-bimodules, respectively. We think of these two maps as products
and we write simply 7p for u(nw ® p), pr for v(p @ ), wbp for u(wdb @ p) = u(w ® bp), and par
for v(pa ® ) = v(p ® am). These products are then associative: we have (mp)n’ = w(pr’) and
(pm)p’ = p(wp’), as is clear from the definitions of u and v. Other associativity identities follow
formally using the linearity of u and v, such as (pm)(p'7’) = p(7p’)7’. In these notations we also
identify elements of A with their image in Endp(P)°P. For example, if a € A, par stands for
v(pa @ m) = v(p ® aw) = w(pa). This turns out to be a very effective formalism.
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By definition of the morphisms in Morg, u is an isomorphism. Thus there is a canonical
element m; ® p/ of P* @p P such that m;p? = idp (here and in the sequel we use Einstein’s
sum convention). Let N be any B-bimodule and let 4M4 = P* ® g N @ 5 P. We then define a
k-module map ¢,,: C,(A, M) — Cp, (B, N) by the formula

on(TRYRP) ®a1 @ -+ @ an) = (PPm)y(pr),) @ plarmj, @ -+ @ PP anj, . (6)

We omit the easy proof that if k: P — P’ is an isomorphism of (B, A)-bimodules, then the map
¢!, defined from P’ is equal to ¢, as long as we use the decomposition (k*)~!(7;) ® k(p?) of
the canonical element of P* @p P’.

Lemma 5. The map ¢ is a morphism of simplicial k-modules. If we are given different decom-
positions of the canonical element of P* ®p P, the resulting maps are simplicially homotopic.
In particular, the map induced by ¢ on Hochschild homology depends only on P.

Proof. For the first statement we only verify that d;¢, = ¢,_1d; for 1 < i < n — 1, but the
method is the same for the other cases. We have

dipn(TRY@P)@a1 @ @ay) =
(pjoﬂ)y(pﬂjl) ® pjl a1, &+ & (pjiaiﬂ-jiﬂ)(pji+1ai+17rji+2) @ ® pjnanﬂ'jo

and

Pn1di(TRYRP) a1 ®@ - Ray) =
(Pom)y(pr),) @ parimj, @ -+ @ PP (aiaig1) Ty @ -+ @ P anmy,

where we have judiciously indexed the indices in the second expression. To see that the two
expressions are equal, just insert idp = mj,,, pJi+1 between a; and a;1; in the second expression
and use associativity.

For the second statement, suppose that we are given another decomposition ki ® ¢* of the
canonical element for P, and let ) be the map defined from it. For 0 < ¢ < n, define a map
hii Cn(A,M) — Cn+1(B,N) by

hi((T@y®p)®a1® - ®an) =
(Pom)y(prk,) @ ¢ arki, @ -+ @ M aike,,, @ ¢, @ P 4T, © - @ pragT,.

The identites for simplicial homotopies that we must check are dohy = ¢, dpy1hn = ¥n,
dihj = hj_ldi for 7 < 7, d;h; = d;h;—1, and dlh] = hjdi_l for ¢ > 7+ 1. All are seen to hold
without writing anything down, keeping in mind that m;p’ = krg® = idp. O

Lemma 6. Let A, B, C be k-algebras, pPa and ¢Qp morphisms in Morg, L a C-bimodule,
BN =Q*"®cL®cQ, and aAMs = P*@pN®pP. Define as above maps of simplicial k-modules
¢: C(A,M) — C(B,N), v: C(B,N) — C(C,L), and x: C(A,M) — C(C,L) from P, Q, and
Q ®p P, respectively. Then ¢ and x are simplicially homotopic.

Proof. Suppose that ¢ and 1 were defined from the decompositions m; ® p’ and rj @ q* of
the canonical elements for P and Q). In the statement of the lemma, we have tacitly used the
canonical morphism of (4, C)-bimodules P* ®p Q* — (Q ®p P)* to define x. This morphism
sends ™ ® k to the left C-linear form ¢ ® p — ¢(pm)k, and because P and @ are left f.g.p. it is
actually an isomorphism whose inverse sends an element ¢ € (Q ®p P)* to m; ® keC(q® @ p?).
We shall write 7 ®  for either an element of P* @ p Q* or of (Q ®p P)*.

Now (7} ® k1) ® (¢¥ ®p7) is the canonical element for Q®p P, because for any ¢®p € Q®p P,

(g ®p)(mj @ ki) (¢ @ p’) = q(pm;)krg” @ p = qpmj) @ P = q@ prjp’ = q@p.

By lemma 5, the map C(A4, M) — C(C, L) obtained from this decomposition is simplicially
homotopic to x, so we shall assume that it is x and we shall prove ¥»¢ = x. On the one hand

¢n¢n((W®H®Z®Q®p)®a1 ®®an) =
(g™ (P m)K)z(q(pmj, )y ) @ ¢° (PP a1y, )by ® -+ @ ¢ (D7 an Ty )Rk



1.2 MORITA INVARIANCE 13

and on the other hand

Xn(TRE®2RIRP)Ra1®- - ®ay) =
(" @ p) (7 @ K))2((¢ ® p) (), ® ki) ® (¢" @ P’ )as (m), @ Ky
® - @ (¢" @ P )an(mj, @ Ki,)-

These expressions are seen to be equal by inspection. O

Lemma 7. Let A and B be k-algebras, gPa a morphism in Morg, and N — N’ a morphism of
B-bimodules. Then the square

J |

C(A,P* Rp NI®B P)—)C(B,N/)

is commutative, provided that the same decomposition of the canonical element of P* ®p P is
used to define both horizontal maps.

Proof. This is obvious from (6). O

Finally, we note that if B4 is the image of a map of k-algebras f: A — B and if N is any
B-bimodule, then the map C(A, f*N) — C(B,N) induced by pBj is simplicially homotopic
to C(f,id). In fact, they are equal if one uses the decomposition idg ® 1 € B* @ B of the
canonical element, for then in the formula (6) the factors are of the form la;, which is f(a;) by
definition of the action of A on B.

Let us gather the consequences of these results for the special case where the B-bimodule N
is just B (where A, B, P, ¢ are as before). We define a map C'(A4) — C(B) as the composition

C(A, A) = C(A, P* @5 P) —2— C(B, B) (7)

where the first map is induced by the map of A-bimodules

A Endg(P) “ P opP.
If C is a third k-algebra and ¢@p is a morphism in Mory, we can form the diagram

C(AA)—— > C(A,P* @3 P) —— C(B, B)

T |

CA,P"®pQ" ®c Q®p P)—C(B,Q" ®c Q)

T |

c(C,C)

in which all the maps have been defined. The upper left triangle commutes by the classical
functoriality of the Hochschild complex; the square commutes by lemma 7; and the lower triangle
commutes up to simplicial homotopy by lemma 6.

In case pP4 = pB, is the image of f: A — B, the second map in (7) can be chosen to be
C(f,id), as we have just seen above, so by functoriality of the Hochschild complex, (7) is exactly
C(f). Thus, the Hochschild complex functor with values in the homotopy category of simplicial
k-modules lifts to Mor. If now we pass to the homotopy groups, we obtain:

Theorem 8. The functor HH from k-algebras to graded k-modules is Morita invariant.



14 THE CLASSICAL CHERN CHARACTER 1.3

In fact, lemmas 6 and 7 prove more generally that the functor HH lifts from the fibered
category of pairs (A, 4My4) to the category with the same objects but in which a morphism
from (A, M) to (B, N) is a morphism P4 of Mory together with a map of A-bimodules M —
P*®p N ®p P. If we wanted to state this fact precisely we would run into problems with the
use of isomorphism classes (we would probably need to define Mory, as a 2-category), so we shall
not attempt it.

We continue to write HH for the lift of HH to Morg. We can of course give an explicit
description of HH(pPa): HH(A) — HH(B). If m; ® p’ is a decomposition of the canonical
element, it is induced by the simplicial morphism ¢: C(A) — C(B) given by

Pn(ag ® -+ ®ay) =pPagmj, @ p"army, @ - @ prapT,. (8)

We sometimes write ¢ = C(pPa) when the fact that it is only well-defined up to simplicial
homotopy is irrelevant.

There remains to handle the various cyclic homologies, but this is now easy. It is obvious
from the structure of the map ¢,, above that it commutes with the cyclic operator t,,, so that it
is in fact a map of cyclic k-modules. We still have to prove that the map induced by ¢ on cyclic
homology does not depend on the choice of a decomposition of the canonical element, and that
composition is preserved, but this follows from corollary 3. Thus:

Theorem 9. HC, HC~, and HCP?®" are Morita invariant.

We continue to write HC', HC—, and HCP®" for the lifts of these functors to Mory.

One can think of the category Mory as an “additivization” of Algy. Indeed, Mory is an
additive category: it is enriched over abelian monoids (that one can replace by abelian groups if
one wants to, but this is not necessary), it has a zero object, and it has biproducts. The monoid
structure on Morg (A, B) is of course induced by the direct sum of bimodules, and composition
in Morg, becomes biadditive. The zero element is the zero algebra 0, because any left or right
0-module is zero (if M is a 0-module and x € M, then x = 1o = (14 1)z = x4+ whence z = 0).
Finally, for any k-algebras A and B there is a biproduct diagram

AAAxB BBaxB
At———=Ax Bz——B.
AxBAA AxBBB

where A X B acts on A or B via the projections. The identites for biproducts that we must
check are

AAAxB @ axBAA = 4AA,
BBAxB ® axBBp = pBp, and
(axBAA ® AAAxB) D (AxBBB ® BBaAxB) = axB(A X B)axB,

all of which are clear. In any category enriched over abelian monoids, a biproduct provides at
the same time the product and the coproduct. Since the bimodules 4 Aaxp and gBaxp are
the images of the projections in Alg, and since 0 is terminal in Algy, we see that the functor
Algj;, — Morj, creates finite products.

The Hochschild complex functor is additive on Mor, up to simplicial homotopy. To see
this, note that if =; ® p’ (resp. ki ® qk) is the canonical element for P4 (resp. pQ4), then
(m; +0)® (p? +0) + (0 + k) ® (0+ ¢*) is the canonical element for P& Q. From the formula (8)
we obtain at once C(P® Q) = C(P)+C(Q). It follows that each of the functors HH, HC, HC~,
and HCP®" is additive on Mory and hence preserves zero objects and biproducts. In particular,
any of these functors preserves finite products when viewed as a functor on Algy.

1.3 The Chern character in degree zero

We begin with another description of the Ky of a k-algebra A. Let Mat, (A) denote the ring
of left A-linear endomorphisms of A", and let Mat(A4) = lim Mat,(A) (this is a nonunital k-
algebra). Using the canonical basis of A™, we can, and we will, identify elements of Mat,,(A)
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with square matrices that act on the left A-module A™ of row vectors by multiplication on the
right. To any idempotent e in Mat(A) we can associate an element [e] of p(A), namely the
isomorphism class of the image Ime of e: if we factor e as

p i
A" sy Ime ¢ > A"

)

then p is a retraction of i, showing that Ime is an f.g.p. module. Conversely, if M is an f.g.p.
left A-module, there is an integer n > 0 and a commutative diagram

then the composite ip is an idempotent in Mat(A), and M is in the isomorphism class [ip)].
Moreover, two idempotents e and e’ determine the same isomorphism class of f.g.p. modules if
and only if there exists & € GL(A) such that ¢’ = aea™!. Only the necessity is nontrivial, but
if e € Mat,,(A4), ¢’ € Mat,,(A), and if f: Ime — Ime’ is an isomorphism, then

e 0 h 1—¢€|le 0 g l1—ce h 1—¢€ g 1—e¢
[O 0:|:|:1€ g }{O O} [le' h] and |:1€ g :||:1€I h]:L
where g: A" — A™ and h: A™ — A" denote the extensions of f and f~! by zero. Hence, there
is a bijection between p(A) and the set of orbits of idempotents in Mat(A) under the action of
GL(A) by conjugation.
We now define the Chern character chg with values in HH(A) = HCy(A) = A/[A, A]. If e
is an idempotent in Mat(A), chg([e]) is the image of e by the composition

Mat(A) —5+ A — A/[A, A].

Let us check that this is well-defined. If [e] = [e’], we have seen above that there exists a €
GL(A) such that ¢/ = aea™', so by linear algebra tr(e) — tr(e’) belongs to the commutator
submodule [A, A]. Moreover, chg is a morphism of monoids because the direct sum of [e] and
[¢'] is represented by the idempotent

e 0
ed 6/ - |:0 e/:| )
and the trace of this idempotent is the sum of the traces of e and €’. Thus, by universality, we
obtain a morphism of groups
Cho: Ko(A) — HCO(A)

We want to prove that the map chg is natural when A varies in Alg and even in Morg. To do
this we have to make explicit the way a left f.g.p. bimodule 5 P4 acts on idempotents in Mat(A).
Let m; ® p’ be the canonical element of P* @ P with 1 < j < r. For any matrix x € Mat, (4),
we write Pz € Mat,,(B) for the matrix

plem  plam
plrm  plam

where pz7; is computed coefficient by coefficient. An easy computation shows that = - P is
a map of nonunital k-algebras. In particular, if e is an idempotent, so is Pe. We claim that

BPA® sIme = gIm Pe. (9)

Define a left B-linear map a: P ®4 A™ — B™ by a(p ® a) = (pary,...,par,). If ae = a, it is
clear that a(p ® a)Pe = a(p ® a), and so « restricts to a map o': P ®4 Ime — Im Pe. Define
B: B™ — P @4 A" by B(b) = bjp’ @ u’, where the vector b is divided in 7 chunks of length n
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and where u’ is the ith vector of the canonical basis of A™. Observe that Ba = id. Suppose that
b = bPe, or equivalently that bj; = blkplefﬂj. Then
(bjip’ @ u')e = blkplefﬂjpj @' =bypef @et =bup' @ eFe’ = byp' @ (e2)*
=bpp' @ " = byp' @ efut = byplel @ u' = byplefmip’ @ ut = b’ @,
that is, 8(b)e = B(b). Thus, f restricts to a map £: Im Pe — P ®4 Ime. It remains to check

that o/’ = id, or explicitly that for b € Im Pe, b;; = by,;pm;. This equality becomes obvious
if we multiply both sides on the right by Pe:

(bPe);; = blkplefﬂj = bmkpmmplefﬂj = (O/ﬂ'(b)Pe)ﬂ.

Using equation (9) and the formula (8) for n = 0 it is now clear that chg is Morita natural,
because the trace of Pe is exactly p’ tr(e)m; = Co(pPa)(tr(e)).
[The matrix Px has the following origin. If P is the unique lift of P as in

Mat,, (4) —— A

Mat,.,(B) —— B,

IR

then the decomposition of the canonical element for P induces one of the canonical element
7 @ pF for P, and Px is just pFady.]

We use this description of Pe to prove that, if A is commutative, chy is a morphism of
rings. Let e € Mat,(A) and ¢’ € Mat,,(A) be idempotents. The tensor product Ime ® 4 Im €’
can also be viewed as the image of Im e’ under the map u(alme,), and so it is represented by
the idempotent (Ime)e’. The canonical element of (Ime)* ®4 Ime is 7; ® e/ where 7; is the
restriction of the jth projection of A" and e’ is the jth row of e (i.e., the image by e of the jth
vector of the canonical basis). Using this decomposition of the canonical element, the matrix
(Ime)e’ becomes the classical tensor product matrix e ® e/, whose trace is tr(e) tr(e’).

We are now going to prove that chg factors through HCj . This is actually trivial thanks to
our work on Morita naturality. As we have noted in §1.2, the functor p from Mory to abelian
monoids is represented by k. Let F': Mori, — Ab be any additive functor. Then, by the Yoneda
lemma and the universality of Ko, 7 + 75 (k) is an isomorphism from the group of Morita natural
transformations Ky — F to F(k) which is natural in F. Since the canonical map HC; — HCy
is an isomorphism on k (as an explicit computation reveals), it follows that any Morita natural
transformation 7: Ky — HCj has a unique Morita natural lift 7~ as in the diagram

Ky L} HCO

Explicitly, if M is an f.g.p. left A-module, then
T (aM) = HCy (aMy)(r~ (xK)),

where 77 (k) is the preimage of 7(ik) by the isomorphism HC| (k) — HCy(k). Applying this
to chy we obtain the Chern character ch : Ko — HC| .

Remark 1. It may seem that we have not gained much in passing from chg to chy, whose
construction was almost entirely formal. However, we now have natural maps chg ,,: Ko = HCs),
for all n > 0 by composing ch, with the canonical maps HC; — HCY® = HCY™ and HCY" —
HC5,. On the category of commutative k-algebras, there is also a canonical map of graded
k-module-valued functors HC — H® where HI® is the de Rham homology functor. Thus, the
Chern character chy of the proposition induces a map from K((A) into the even-valued de Rham
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homology of A (in fact, the Chern character chg , arose as a generalization of this map to the
noncommutative case). This provides the connection between the algebraic version of the Chern
character discussed here and the topological version discussed elsewhere. If X is a paracompact
space, then it is well-known that there exists an isomorphism K°(X) — Ko(Cc(X)) where
K°(X) is the Grothendieck ring of finite-dimensional complex vector bundles on X and Cg(X)
is the C-algebra of complex-valued continuous functions on X. This isomorphism is constructed
by associating to a vector bundle on X its Cc (X )-module of sections. When X is a C° manifold,
the inclusion i: CZ°(X) — Cc(X) induces an isomorphism i, : Ko(Cg®(X)) = Ko(Cc(X)). A
famous theorem of de Rham says that there is an isomorphism

H™(CF (X)) = H(X, 0),
where the H on the right is singular cohomology. All said, we obtain a map
K°(X)— H(X,C)

when X is a manifold. This can be extended to all paracompact spaces using the fact that any
vector bundle on a paracompact space X is the pullback of a vector bundle on a manifold (the
universal bundle). In this way, it seems, we recover up to a coefficient the Chern character for
paracompact spaces as defined in algebraic topology (e.g. using Chern classes).

Remark 2. All that we have done in this chapter generalizes straightforwardly from commuta-
tive k-algebras to schemes over k. We mention without proofs the steps of this generalization.
First, the Ky of a scheme X is defined using the category of @x-modules that are locally free
of finite rank (this is equivalent to being locally f.g.p.); it is now a contravariant functor, and,
when precomposed by the contravariant spectrum functor, gives back the covariant Ky for com-
mutative k-algebras. The Hochschild complex of a scheme is defined in exactly the same way as
for k-algebras, using the structural sheaf Ox instead. Thus, we obtain the Hochschild homology
and the various cyclic homologies as sheaves of graded k-modules. To obtain k-modules from the
latter, we cannot simply take global sections because this operation would not give an invariant
of the Hochschild complex under weak equivalences (e.g. simplicial homotopy equivalences). In-
stead, we have to apply first the total right derived functor RI" of global sections before taking
homology. There are several categories with weak equivalences in which this derived functor can
be defined (simplicial sheaves, nonnegatively differential graded sheaves, unbounded differential
graded sheaves), but the results obtained are compatible through the Dold-Kan equivalence or
the truncation functor (see 4.1). We can still define the Chern character chy and its lift ch; in
the same way, and they are natural transformations between contravariant functors.

In the affine case we have seen that Kj is also a covariant functor (a contravariant functor on
algebras) if we impose some finiteness condition on the morphisms. The same is obviously true for
all schemes. The Hochschild homology and cyclic homologies of a scheme X are also covariant
functors under the same restriction on morphisms. In the case of k-algebras, for example, a
map f: A — B that makes B into an f.g.p. A-module induces a map C(4Bg): C(B) — C(A)
between the Hochschild complexes. We can then ask if the Chern character for schemes is a
natural morphism between covariant functors as well. This is true for affine schemes by Morita
naturality. In the general case, however, we guess that there is a Grothendieck—Riemann—Roch
formula instead.



2 Stacks over model categories

In this chapter we summarize the results of [HAGI] about stacks on model categories. We
should note that there exists a more general notion of stack over (oo, 1)-categories and that the
two notions are compatible via simplicial localization. But for convenience we state at once the
results in a form suited for their applications later on.

2.1 Mapping spaces in model categories

We recall some facts about mapping spaces in model categories. All of them are proved
in [Hov99]. Let | be an index category. For any category C with colimits, there is an equivalence
between the category C' and the category of adjunctions Set'™ — C. If A is a functor | — C, its
image by this equivalence is an adjunction with left adjoint written ? ® A: Set'"” — C and with
right adjoint written C(A,?): C — Set"”; for K a functor I°° — Set, K ® A can be described by

the glueing procedure
il
K®A= / I 46,
)

zEK (i

while C(4, X)(i) = C(A(:),X). When K is the functor represented by i € |, we have K ®
A = A(7). For example, when | = A, C is the category of topological spaces, and A is the
cosimplicial space such that A(n) is the standard topological n-simplex, then K ® A is the
geometric realization of K and C(A, X) is the singular simplicial set of X.

Suppose now that C is a model category. We recall the definition of the Reedy model structure
on the category of simplicial objects sC whose equivalences are the pointwise equivalences. Since
C has all limits and colimits, one can certainly define the skeleton and coskeleton functors
sk, : sC — sC and cosk,, : sC — sC as the compositions

*
no

Skn = ('Ln)ll*

v and  cosky, = (in)«i

where i} : sC — s,C is the truncation at n with left adjoint (i, )1 and right adjoint (i,). (this
is defined for all n > —1). A morphism X — Y in sC is a (trivial) fibration (resp. a (trivial)
cofibration) for the Reedy structure if and only if the induced maps

X — coskn1(X)n Xcosk,_1(Y), Yn (resp. skn_1(Y)n e, | (x), Xn = Ya)

are (trivial) fibrations (resp. (trivial) cofibrations) for all n > 0 (see [Hir03, 15.3.15] for this
characterization of trivial fibrations and trivial cofibrations). We shall make use of the following
result.

Proposition 10. Let C be a model category and endow the category sC with its Reedy model
structure. For any n > 0, the functors sky,: sC — sC and cosk,: sC — sC form a Quillen
adjunction.

Proof. We check that cosk,, preserves fibrations and trivial fibrations. For a map f: X — Y in
sC we write M,,, f for the induced map

Xm — COSkmfl(X)m X coskm—1(Y)m Y.

Suppose that f: X — Y is a Reedy (trivial) fibration. Using the isomorphisms cosk, cosk, =
cosk, cosk,, = cosk,, if p < ¢ and cosk,,(?)n, = 7 if m < n, we obtain that M,, cosk,,(f) can be
identified with M,,, f if m < n, in which case it is a (trivial) fibration by hypothesis, and is an
isomorphism if m > n. Thus cosk,(f) is a Reedy (trivial) fibration. O

A cosimplicial resolution functor on C is a functor I'*: C — C2 together with an isomorphism
I'Y — idc such that for every cofibrant object A of C the adjoint map I'*(A4) — A is a Reedy
cofibrant replacement of the constant cosimplicial object A. One defines dually the notion of
simplicial resolution functor. The axioms of a model category (with functorial factorizations)
imply that cosimplicial and simplicial resolutions always exist. So fix a cosimplicial resolution

18
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functor I'*: C — C2 and a simplicial resolution functor I'y: C — CA™ on C. Composing these
functors with the equivalences of the previous paragraph, we obtain four bifunctors

sSet x C—>C, (K, X)—» K® X,
CP x C — sSet, (X,Y) = Map,(X,Y),
sSet®” x C — C, (K,Y) — Y¥, and
C x CP — sSet’”, (X,Y)  Map,(X,Y),

with the property that ?® X is left adjoint to Map,(X,?) and Y” is right adjoint to Map,.(?,Y).
It turns out that these four bifunctors preserve sufficiently many weak equivalences to have
total derived functors (K,X) — K @Y X, (X,Y) — RMap,(X,Y), (K,Y)  YRE and
(X,Y)— LMap,(X,Y). These derived functors do not depend on I'* and T, in the sense that
different choices of cosimplicial and simplicial resolutions yield naturally isomorphic derived
bifunctors. Moreover, R Map, is actually canonically isomorphic to (L Map,)°P; we simply
denote by RMap one of these two bifunctor (it is further isomorphic to the simplicial hom-
set functor of the simplicial localization of the model category C). Now, although the two
adjunctions above are not Quillen adjunctions in general, they are if X is cofibrant and if YV is
fibrant. Thus if QX denotes a cofibrant replacement of X, then ? ® QX and Map,(QX, ?) form
a Quillen adjunction for any X, and hence their derived functors, which are exactly ? @% X and
R Map,(X,?), are adjoint. Similarly, we obtain an adjunction between L Map,.(?,Y) and YR’
for any Y. To summarize, there are isomorphisms

[K @ X, Y] = [K,RMap(X,Y)] = [X, YRE] (10)

which are easily seen to be natural in K, in X, and in Y (one only needs to check that the
first one is natural in X and the second one in Y'). In particular, we obtain that K @ ? is left
adjoint to 7% It can be proved that the adjunctions (10) are part of a closed Ho sSet-module
structure on the category Ho C, where Ho sSet is endowed with the monoidal structure given by
the direct product. These canonical closed Ho sSet-module structures on the homotopy categories
of model categories are moreover functorial for Quillen adjunctions: in fact, if F: C — D is a
colimit-preserving functor between model categories that also preserves cofibrant objects and
cofibrations and equivalences between them, then LF': HoC — HoD is the underlying functor
of a morphism of left Ho sSet-modules, so that LF(K ® X) &2 K @Y LF(X) (this is only proved
in [Hov99] when F is left Quillen, but exactly these properties of the functor F' are used in the
proof). Dualizing the hypotheses we obtain that RF(YRX) =~ RF(Y)RK.

In the special case that C is a simplicial model category, there are canonical choices for
resolution functors induced by the sSet-module structure of C, namely I'*(4) = A* ® A and
I'.(A) = A%". By abstract nonsense the bifunctors K ® X and Y¥ induced by these resolutions
coincide with those from the sSet-module structure of C. In particular, Map, = (Map,.)°? = Map
are just the simplicial hom’s of C and the functors K ® ? and ?¥ are already adjoint at the
underived level, and this is in fact a Quillen adjunction.

2.2 Prestacks

Let C be a model category and W its set of weak equivalences. We endow the category sSet®”
of simplicial presheaves on C with the projective model structure for which equivalences and
fibrations are defined pointwise (this does not use the model structure of C). By virtue of the
adjunction between the constant simpicial set functor Set — sSet and the evaluation at 0 functor
sSet — Set, a simplicial presheaf on C is the same thing as an sSet-enriched presheaf if we view
C as an sSet-enriched category with constant morphism objects. Therefore, by the sSet-enriched
Yoneda lemma, there is a fully faithful simplicial functor h: C — sSet®”, x —+ h,, and for any
simplicial presheaf I’ there is an isomorphism of simplicial sets

F(z) 2 Map(h,, F)

natural in F' and in z. This implies that h, is cofibrant for any x € C. Indeed, to show that h,
has the left lifting property with respect to a trivial fibration F' — G, it suffices to prove that
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F(x)o = G(x)p is surjective. But, by definition of the projective model structure, F(z) — G(x)
is a trivial fibration in sSet and hence any map * — G(z) lifts to * — F(x). Objects of the form
he will be called representables. The model category sSet®” is in a precise sense the homotopical
version of the presheaf category Set®” and has many analogous properties. One of them is that
any object in HosSet®” is in a canonical way a homotopy colimit of a diagram of representables:
see [Dug01, §2.6].

Recall that sSet®” is a proper, cellular, and simplicial model category (see [Hir03, 13.1.14
and 12.1.5]). We can therefore consider the left Bousfield localization of sSet®”” along the image
h(W) of W by the simplicial Yoneda embedding, which is again a left proper, cellular, and
simplicial model category ([Hir03, 4.1.1]); it is denoted by C" and is called the model category of
prestacks on C. It has the same underlying category, cofibrations (hence also trivial fibrations),
and simplicial structure as sSet®”, while its equivalences are the h(W)-local equivalences in
sSet®”. By definition, the identity sSet®” — C” is an equivalence-preserving left Quillen
functor enjoying the following universal property: any left Quillen functor sSet®” — D whose
total derived functor sends elements of A(WW) to isomorphisms in Ho D lifts uniquely to a left
Quillen functor C* — D. Its derived right adjoint Rid: HoC" — HosSet®" is simply the
functor induced by a fibrant replacement functor in C*, and it is fully faithful by [Hir03, 3.5.1
()
By [Hir03, 3.4.1 (1)], an object F' € C" is fibrant if and only if it is h(WW)-local in sSet®™
i.e., if and only if it is pointwise fibrant and for any equivalence y — z in C, RMap(h,, F) —
R Map(hy, F') (mapping spaces in sSet®”) is an isomorphism in HosSet. Since h. and hy are
projectively cofibrant and F' is projectively fibrant, those mapping spaces can here be chosen
to be the simplicial hom’s of sSet®”. Then the simplicial Yoneda lemma gives us the following
criterion: a functor F': C — sSet is fibrant in C” if and only if

e it is pointwise fibrant and
e it preserves equivalences.

This implies that the essential image of Rid: HoC” — HosSet®" consists of the equivalence-
preserving functors; such functors are called prestacks.

Observe that the simplicial Yoneda embedding h: C — C” preserves weak equivalences by
definition, so that it has a total right (and left) derived functor Rh. Fix a cosimplicial resolution
functor I'* on C and a functorial cofibrant replacement Qx — x, and define a functor A: C — C"
by

h,(y) = Map,(Qy, ) = C(I'"(Qy), z).

Here we take a cofibrant replacement of y so that I'*(Qy) — Qy is a cosimplicial resolution of
Qy in the sense of [Hir03] (which is only guaranteed for cofibrant objects with our definition of
cosimplicial resolution functors). If R is a fibrant replacement functor on C, there is a canonical
map

h = hpg, (11)

adjoint to C(y,z) — C(Qy,z) = C(I(Qy), ) — C(T°(Qy), Rx).

Proposition 11. The functor h: C — C preserves fibrant objects, fibrations between fibrant
objects, equivalences between fibrant objects, and all trivial fibrations. In particular, h has a total
right derived functor Rh: Ho C — Ho C" which underlies a morphism of right Ho sSet-modules.

Proof. As a functor to sSet®”” | h preserves fibrant objects ([Hir03, 16.5.3 (1)]), all fibrations and
trivial fibrations ([Hir03, 16.5.4 (2)]), and weak equivalences between fibrant objects ([Hir03,
16.5.5 (2)]). Now take h: C — C". To prove that h, is fibrant for z fibrant, we must prove that
for any equivalence y — z in C, h,(z) — h,(y) is an equivalence in sSet: this is is [Hir03, 16.5.5
(1)]. Since fibrant objects in C* are h(W)-local in sSet®””, it follows from [Hir03, 3.3.16 (1)]
that h also preserves fibrations between fibrant objects. Finally, h preserves weak equivalences

TThe statement of Lemmas 3.5.1 and 3.5.2 in [Hir03] should include a hypothesis of left (right) properness
for the proofs given there to work. The missing hypothesis is restored in Proposition 3.5.3. Alternatively, one
should replace the condition of (co)locality with the stronger condition of being (co)fibrant in the localization; it
is this modified statement that we use here.
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between fibrant objects and all trivial fibrations since the identity sSet®” — C” preserves
equivalences and trivial fibrations. O

Proposition 12. The map (11) is an equivalence in C, so that Rh = Rh and the latter does
not depend on the choice of a cosimplicial resolution functor. For any fibrant ' € C" and any
x € C, there is an isomorphism

F(z) = R Map(Rh, , F)
in HosSet which is natural in F and in x. In particular, Rh is fully faithful.

Proof. The first assertion is proved in [HAGI, Lem. 4.2.2]. As F' is fibrant and h,, is cofibrant
in C*, it implies that R Map(Rh,,, F') = Map(h,, F') in HosSet, so the other statements follow
from the simplicial Yoneda lemma. [l

We call Rh the derived Yoneda embedding.

2.3 Model sites and hypercovers

Let C be a model category. A model topology on C is defined to be a topology on Ho C. A model
category endowed with a model topology is called a model site.

In the remaining of this section we will discuss the notion of hypercovers which will be used
to formulate the relevant descent condition for stacks in the next section. Hypercovers are a
generalization of the classical notion of Cech cover, which we recall first.

Let (C,7) be a classical site with fibered products. To a covering family U = {z; — z};
of an object € C (this means that the sieve generated by U is a covering sieve for 7), one
associates an augmented simplicial object Cy(U) — x, called the nerve of U, which in degree n
is a “formal disjoint union” of intersections

The classical descent condition is that a presheaf of sets F' on C is a sheaf if and only if for
every covering family U the map F'(z) — lim F'(C,(U)) is an isomorphism, where by definition
F transforms formal disjoint unions into products. One can get rid of these imprecise formal
disjoint unions using the Yoneda embedding h: C — Set®” which freely adds colimits to C. For
U a covering family as above, C,(U) is really an object in s(Set®” | h,), and the presheaf F is
a sheaf if and only if the presheaf on Set®” that it represents identifies h, with the colimit of
C.(U); explicitly, this means that the map

F(x) 2 Set<” (hy, F) — Set” (lim C, (U), F) = lim Set” (C..(U), F)

is an isomorphism. (Since h_H)l = 7y and @ = 70, limits and colimits here are really equalizers
and coequalizers.)

To understand hypercovers it is useful to consider first a covering family {u — x} consisting
of a single morphism, so that there is no need to embed C in Set®” to express the descent
condition relative to u — x. The simplicial object C, in (C | ) is

~~~§uxzuxmu§uxmu:}u%x

where only the faces are displayed. The crucial observation is that this simplicial object is
determined inductively up to isomorphism by the condition that the canonical maps

Cpn — cosk,—1(Ci)n

be isomorphisms in (Clx) for all n > 1 (and it is by hypothesis a covering map for n = 0). Here
cosky,: s(Cl x) = s(CJ z) is the nth coskeleton functor. A representable hypercover of x in the
site (C, 7) is defined to be a simplicial object C, in the site (C | ) (with the induced topology)
such that for every n > 0 the canonical map

Cpn — cosk,—1(Ci)n
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is (not necessarily an isomorphism but) a covering map, i.e., generates a covering sieve.
The general definition is the following. First we endow Set®” with the topology for which a
family of presheaves {F; — G}, is a covering if the map

HFZ-%G

induces an epimorphism between the associated sheaves, or equivalently has the local surjectivity
property. This topology extends the one on C since a family {z; — x}; is a covering family if
and only if {h,, — h.}; is a covering family: in this case the local surjectivity property says
that the pullback of the sieve generated by {z; — z}; along every y — x is a covering sieve, and
by the axioms for a topology this is the case if and only if {x; — x}; is a covering family. A
hypercover of z in C is a representable hypercover C, of h, in the site Set®”, such that each C,, is
a small coproduct of representables. Clearly Cech nerves are hypercovers. With this definition
of hypercover, it is still true that a presheaf is a sheaf if and only if it satisfies descent with
respect to all hypercovers. Indeed, suppose that F' is a sheaf, that C, — h, is a hypercover,
and that C, — hy is the Cech nerve generated by the covering map Cy — hy; then one has a
commutative diagram

Ch——=Cy—h,

L

01 :kéo—)hz

in which the leftmost vertical arrow is a covering map, and since F is a sheaf Set®” (?,F)
transforms covering maps into monomorphisms. Although generalising from Cech covers to
hypercovers is not necessary for sheaves of sets, the correct characterization of simplicial sheaves
must require descent with respect to all hypercovers, not just Cech nerves (see [DHIO04]; the
only differences is that one uses the simplicial Yoneda embedding into sSet®” and a family of
maps in this category is defined to be a covering family if one obtains a covering family in Set®™
by taking connected components, see below). What makes this the “correct characterization”
will become clear in the next section.

It is now straightforward to formulate the correct definition of hypercovers in a model site.
Let (C,7) be a model site. We first define the functor of connected components nj: HoC" —
Sh(Ho C) from prestacks to sheaves of sets on Ho C (recall that by definition 7 is a topology on
this homotopy category). For F': C°P — sSet, define 7§ (F) to be the sheaf associated to the
presheaf z — mo((RF)(x)) where R is a fibrant replacement functor on C”. This is a well-defined
presheaf on Ho C since RF, being fibrant in C”, preserves equivalences. Moreover, this presheaf
does not depend on the fibrant replacement functor R since different fibrant replacements of
F are equivalent in C" and hence pointwise equivalent by [Hir03, 3.3.5 (1)]. Thus we obtain
a well-defined functor C* — Sh(HoC). Now if I — G is an equivalence in C", RF' — RG
is a pointwise equivalence by [Hir03, 3.3.5 (1)] and in particular mo(RF(?)) — mo(RG(?)) is
an isomorphism of presheaves. By the universal property of the homotopy category we get
a functor nj: HoC" — Sh(HoC). Define a map F' — G in HoC" to be a 7-covering map
if 7j(F) — 7§(G) is an epimorphism of sheaves of sets. A map in C" will also be called a
T-covering map if its image in Ho C" is.

Lemma 13. Let (C, 1) be a model site. A family of morphisms {y; — x}; in Ho C is a T-covering
family if and only if ]_LL Rh,, — Rh, is a T-covering map.

Proof. Let h': HoC — Sh(Ho C) be the Yoneda embedding Ho C — SetH°9* composed with
the associated sheaf functor. Up to a natural isomorphism, A’ is the composite

HoC —2 4 Ho €N —™° 5 Sh(Ho C).

We already know that {y; — z}; is a covering family if and only if []; h;, — hl is an epi-
morphism. We complete the proof by showing that n]: HoC" — Sh(Ho C) commutes with
coproducts (recall that coproducts indexed by a set I in HoC are derived coproducts under
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the isomorphism Ho(C!) = (HoC)!). Factor 7J as m: HoC" — Set°O” followed by the
associated sheaf functor. The latter preserves colimits (being left adjoint), so it suffices to prove
that 7, preserves coproducts. Let (F;);e; be an arbitrary family of objects in Ho C*. We may
suppose that each F; is fibrant and cofibrant. Then their coproduct in Ho C”" coincides with
their coproduct G = [[, F; in C". Since each F; is a prestack and coproducts of simplicial
sets preserve equivalences, GG is a prestack. Therefore, a fibrant replacement G — RG is just a
pointwise fibrant replacement. Using that my: sSet — Set preserves colimits (it is left adjoint to
the inclusion), we find 7y(G)(2) = mo((RG)(2)) = m0(G(2)) = L1, mo(Fi(2)) = [, 70 (Fi)(z). O

We shall consider for G € C" the comma category (C" | G) which we endow with the
induced model structure (equivalences, fibrations, and cofibrations are as in C"). The forgetful
functor induces a functor Ho(C" | G) — Ho C". Fix a fibrant object z € C. Since C" and hence
(C"|h,) have all limits and colimits, one can certainly define the skeleton and coskeleton functors
sk, : s(C" | hy,) — s(C" | h,) and cosk,,: s(C" | h,) — s(C" | h,). Recall from Proposition 10
that this is a Quillen adjunction for the Reedy model structure. A 7-hypercover of x in C is a
simplicial object C, in (C* | h,) such that

e for every n > 0, the image in Ho C" of the canonical map C, — Rcosk,_1(Cy), is a
T-covering map and

e cach C,, is equivalent in C" to a small coproduct of representables.

If x is not fibrant, a 7-hypercover of x in C is defined to be a hypercover of some fibrant
replacement of z; it is therefore an object of s(C" | Rh,). Observe that in Ho C" a coproduct
of representables is the same thing as a homotopy coproduct of Rh,’s, because hy is a cofibrant
replacement of Rh, (Proposition 12). Thus a hypercover of x is an augmented simplicial object
of the form

L L L
.- [I R, 3 [ Rhy, = [ Rh,, — RA,. (12)

i€l i€l i€lo

The reason that we need x to be fibrant in this definition is the following. One could define a
model topology 7" on C” such that the 7-covering maps defined above are exactly the maps
generating a 7°-covering sieve. If h, is not fibrant one cannot necessarily pull back 7" through
the functor Ho(C" | h,) — HoC”" (see Lemma 14), which is what we really do in the first
condition above.

We discuss two especially useful kinds of hypercovers. A representable hypercover is a hyper-
cover of the form Rh, — Rh, induced by an augmented simplicial object y. — x in C. In this
case we also say that y. — x a 7-hypercover. Using Lemma 13 and the fact that A commutes
with limits and hence with coskeletons, we obtain the following characterization of representable
hypercovers. An augmented simplicial object y. — x is a 7-hypercover if and only if for every
n > 0 the canonical map y, — R cosk,_1(y«)n in Ho C generates a 7-covering sieve.

If U = {y; — x}, is a 7-covering family, then by Lemma 13 ]_[f‘ Rh, — Rh, is a T-covering
map and we define inductively a 7-hypercover C,, called the Cech hypercover associated to U
or the homotopy nerve of the covering U, by

L
Cy = HRﬁyi and Cp, = Rcosk,—1(Cy)n.

(Here R cosky,_1(C,) really means R(in_1).(i5_1Cs) where s,_1(C | Rh,) is given the Reedy
model structure. The construction is well-defined up to a pointwise equivalence.) Since h
commutes with limits, C', — Rh, has the form

L L L
§ I Rewi, xF i x5 i) 3 [ Rhvio x5 vi) = [ RAy:,) — Rh,.

10,%1,12 10,21 10

It may seem that since we restricted the values of a hypercover to certain coproducts we
should also restrict the face maps and degeneracy maps to be “morphisms of coproducts” (as is



24 STACKS OVER MODEL CATEGORIES 2.4

the case in a Cech hypercover). This is in fact automatically the case. Precisely, any morphism
hy — 11, hy, factors through h,, for a uniquely determined index 4 (it is the index of the
component into which id, goes). This follows from the simplicial Yoneda lemma: there are

bijections

sending a morphism h, — h,, to the composition h, — h,, — []; hy,. Thus an arbitrary
morphism [[; hz; — []; by, is induced by an element of

HHCA(h‘JEw hyj) = HHC(xz;yj)

2.4 Stacks

In the classical situation of presheaves of sets on a category C, a topology 7 on C allows us to
define a sheaf as a presheaf F' which satisfies the following descent condition: for any covering
family U = {x; — x}; of an object x, the map

F(x) 2 Set®” (hy, F) — Set” (lim C, (U), F) = lim Set®” (C..(U), F) (13)

is an isomorphism, where C,(U) is the Cech cover associated to the covering family {z; — 2};
(as we already mentioned, this will then hold for arbitrary hypercovers). The category Sh(C)
is the full subcategory of Set®” consisting of sheaves. A basic result is that the inclusion
i: Sh(C) — Set®” has a left adjoint left inverse a, called the associated sheaf functor. Moreover,
the counit ia — id of this adjunction is a 7-local isomorphism, where a map of presheaves
F — @ is called a 7-local isomorphism if for any € C there exists a 7-covering sieve S such
that F'(u) — G(u) is an isomorphism for all v — x in S. These formal properties imply at once
that the category of sheaves, together with the functor a, is a localization of the category of
presheaves along 7-local isomorphisms. Indeed, if f: Set®” — D is a functor that sends 7-local
isomorphisms to isomorphisms, then fia 2 f, and any functor g: Sh(C) — D satisfying ga = f
must be fi because g = gai = fi. Writing presheaves as colimits of representables, it is not
difficult to prove that the functor a is also universal among colimit-preserving functors on Set®”
that send lim Cx — h, to an isomorphism for every x and every hypercover C — hy.

These three descriptions of the category of sheaves of sets on a site (the descent property,
the localization with respect to 7-local isomorphisms, and the cocontinuous localization with
respect to hypercovers) have analoguous counterparts in the context of prestacks. We shall
follow the second one to define the model category of stacks: it will be the localization of C*
along 7-local equivalences, which are to equivalences as local isomorphisms were to isomorphisms.
Here of course localization must be understood in the context of model categories, as Bousfield
localization. There are several ways to define 7-local equivalences. Our official definition can be
summarized as follows: a morphism is a 7-local equivalence if it induces 7-local isomorphisms
on all presheaves of homotopy groups. To make this precise we need a lemma.

Lemma 14. Let (C,7) be a model site and let x € C be fibrant. There is a model topology on
(Clx) for which a sieve is a covering sieve if and only if its image by the functor Ho(Clz) — Ho C
generates a T-covering Sieve.

Proof. We first note that for an arbitrary functor ¢: D — E where E is a site, the sieves in D
whose images by ¢ generate covering sieves always satisfy all the axioms for a Grothendieck
topology except possibly the stability axiom. This axiom reads: for any f: z — y in D and any
covering sieve S of y, f*(S) = {g| fg € S} is a covering sieve of z. Let us prove that this axiom
holds when D = Ho(C | z), E = HoC, and ¢ is induced by the forgetful functor (C | z) — C.
Let S be a sieve on y — x and let f: (z — ) — (y — ) be a morphism in Ho(C | x). The
hypothesis is that the sieve generated by ¢(S) is a covering sieve of y, and one must prove that
the sieve generated by ¢(f*(S)) is a covering sieve of z. It will suffice to prove that

o(f)* (sieve generated by ¢(S)) C sieve generated by ¢(f*(.5))
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since the left-hand side is a covering sieve and the other inclusion is obvious. An arbitrary
morphism g: w — z on the left is such that ¢(f)g = ¢(h)k for some h € S and k: w — v. We
must find morphisms m in Ho(C | ) and n in Ho C such that g = ¢(m)n and fm € S.

Let us abbreviate an object y — z in (Clx) to y,. We choose once and for all an isomorphism
Yz = ¥, in Ho(C | z) where g, is both fibrant and cofibrant. The forgetful functor (C | z) — C
obviously preserves cofibrant objects, and since x is fibrant it also preserves fibrant objects. Thus
g is also fibrant and cofibrant. Define similarly Z,, @,, and 9. The induced maps f: Z, — ¥z
and h: 0, — §j, are represented by maps in (C | z); factor the first one into a trivial cofibration
Zy — %, followed by a fibration 2, — ¥, and denote by u, the pullback 2, x4, 0, in (C| ).
Observe that 2, is fibrant and cofibrant. The maps w — 2 and w — v in Ho C are represented
by maps in C, and we have a diagram in C

’lu—>
v ——>

in which the square is a pullback (the forgetful functor (CJ x) — C is a right adjoint and hence
preserves pullbacks). The two maps from @ to § become equal in the homotopy category and
so they are homotopic. By [Hir03, 7.3.12 (2)], one can replace @ — £ by a homotopic map (i.e.,
another representative of the same map in Ho C) that makes the boundary of the above diagram
strictly commutative, and we get a map w — u in C as shown above. If m is the composite
Uy —> 25 = 2z, in Ho(C | ) and n is the composite w = @ — u in HoC, all this implies that
g = ¢(m)n. It remains to prove that fm € S. But fm is the composition of u, — ¥, = v, and
h, so we are done. O

Sy &—

Let (C,7) be a model site and let « be a fibrant object in C. We continue to write 7 for the
model topology of the lemma on (Clx). Let s: hy — F be a morphism in Ho C" (or equivalently,
by the derived Yoneda lemma, a connected component of (RF')(x) for some fibrant replacement
RF of F). For n > 1, we define the nth homotopy sheaf of F pointed at s to be the sheaf on
Ho(C | z) associated to the presheaf

(u: y — x) = m ((RF)(y), shy).

Here shy: hy — F is a morphism in Ho C" that one identifies with a connected component of
(RF)(y). This presheaf is well-defined on (CJ ) and descends to Ho(C | x) for exactly the same
reasons as the presheaf of connected component defined in §2.3. We denote the resulting sheaf
by 77 (F,s). This defines for each fibrant 2 and each n > 1 a functor

77 : (hy L Ho(C™)) — Sh(Ho(C | x))

which obviously factors through the category of sheaves of groups on Ho(C | z) and even of
abelian groups if n > 2.
A morphism f: F — G in C" is called a 7-local equivalence if

o 7] (f) is an isomorphism;
e for any fibrant x € C and any morphism s: h, — F in HoC" the map 77, (f): n7(F,s) —
77 (G, fs) is an isomorphism.

Because of the first condition any 7-local equivalence is in particular a 7-covering map.

Just as it is the case for simplicial sets, it is possible to give a more compact “basepoint-free’
definition of local equivalences: a morphism f: F' — G is a 7-local equivalence if and only if for
each n > 0 the induced map

)

F — Rcosk,—1(f)n

is a 7-covering map in Ho C", where f is viewed as a constant simplicial object in s(C" | G). We
do not give a proof of this fact but it is essentially the same as the proof of the corresponding
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fact for classical simplicial presheaves (see [Jar87, Thm. 1.12]): one must first interpret this
condition as the right 7-local lifting property of a fibration replacement of f with respect to
the inclusions JA™ C A", and the latter is seen to be equivalent to f being a weak equivalence
(when C is a point this is just the fact that OA™ C A™ are generating cofibrations in sSet).

Let (C,7) be a model site. The model category of stacks on (C,7) is the left Bousfield
localization of C” along 7-local equivalences; it is denoted by C™~7. The existence of this left
Bousfield localization is not obvious because 7-local equivalences do not form a sufficiently
small set for the general existence theorem to apply. The definition of C™7 in [HAGI] uses
a different route to overcome this problem, and only afterwards is it proved that it is a left
Boustfield localization along 7-local equivalences. Here we shall assume that this localization
exists. Again, C™7 is a left proper, cellular, and simplicial model category. By the theory of
Bousfield localizations, the cofibrations (resp. the trivial fibrations) in C™7 are the projective
cofibrations (resp. the projective trivial fibrations). The identity id: C* — C™7 is a left Quillen
functor, and its derived right adjoint Rid: Ho C™"™ — Ho C" is fully faithful; its essential image
consists of those objects that are equivalent in C" to fibrant objects in C™7. The functor
Lid: C* — C™7 is called the associated stack functor; it is left inverse to Rid. One often
identifies Ho C™7 with a subcategory of Ho C", and with this identification the associated stack
functor is just induced by a fibrant replacement functor in C™7.

It turns out that stacks can be characterized among prestacks in exactly the same way as
sheaves are characterized among presheaves (if one is willing to use all hypercovers and not just
Cech covers). We say that a functor F': C°P — sSet has hyperdescent if for every hypercover C.
of z the map

(RF)(z) 2 RMap(Rh,, F) = R Map(holim C,, F') 2 holim R Map(C,, F),

induced by the map holim C. — Rh, in HoC" adjoint to C, — Rh,, in HosC”, is an isomor-
phism in HosSet. If C,. — Rh,, is of the form (12) and if F' € C" if fibrant, then by the derived
Yoneda lemma R Map(C,, F) is the cosimplicial simplicial set

IROEIIROEIIRDERS
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We omit the rather complicated proof of the next theorem which can be found in [HAGI].

Theorem 15. Let (C,7) be a model site. Then C™~7 is the left Bousfield localization of C™ with
respect to the set of morphisms MC’* — Rh, where C, — Rh,, runs through T-hypercovers.
FEquivalences in C™7 are exactly the T-local equivalences, and fibrant objects are exactly the
fibrant objects in C having hyperdescent.

In the proof one actually defines C™" as the left Bousfield localization of C" along the maps
holim €', — Rh,, associated to sufficiently few hypercovers C'x — Rh,, and one proves that the
equivalences in C™7 are exactly the 7-local equivalences. The basic step of the proof is the
observation that a morphism h, — h, (x and y fibrant) is a 7-local equivalence if and only if it
is a hypercover when viewed as an object in s(C" | Qy), which follows at once from the second
description of 7-local equivalences. The last part of the theorem is just the characterization of
fibrant objects in left Bousfield localizations of left proper model categories that we already used.
This characterization also implies that a fibrant object F' € C" has hyperdescent if and only if
for every 7-local equivalence G — H the induced map

R Map(H, F) — RMap(G, F) (14)

is an isomorphism in HosSet. Conversely, a map G — H is a 7-local equivalence if and only
if, for every object F € C” having hyperdescent, (14) is an isomorphism (this is a general
characterization of equivalences in a model category which is also a direct consequence of the
derived Yoneda lemma).

Call a hypercover C. — Rh, finite if each C), is a finite coproduct of representables. Recall
that a topology is quasi-compact if every covering sieve contains a covering sieve generated by a
finite family.
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Proposition 16. Let (C,7) be a model site such that T is quasi-compact. Then C™7 is the

left Bousfield localization of C™ with respect to the set of morphisms holim Cx — Rh, where
—

Cy = Rh, runs through finite T-hypercovers.

In view of Theorem 15 and our previous results on prestacks, Ho C™7 is equivalent to the
full subcategory of HosSet®” consisting of the functors F': C°P — sSet such that

e [ preserves weak equivalences and
e F has hyperdescent.

When these conditions are satisfied, we say that F' is a stack.

To avoid confusing the two model structures C* and C™" we use henceforth the following
rules. We continue to write R Map(F, G) for mapping spaces in C"* and we use R, Map(F, G) for
the mapping spaces in C™~7. Similarly, we shall use the letter R for fibrant replacements in C*
while R, will be used for fibrant replacements in C™~7 (we make no such distinction for cofibrant
replacements since a cofibrant replacement in C” is in particular a cofibrant replacement in

C™~T7). Thus
R Map(F,G) = Map(QF, RG) and R, Map(F,G) = Map(QF, R,G),

the canonical map R Map(F,G) — R, Map(F, G) being an isomorphism for all F' if and only if
G has hyperdescent.

We remark that the identity C* — C™7 preserves homotopy colimits since it is left Quillen.
It follows that if C\. — Rh, is a hypercover and C, — Rh,, is any object in s(C" | Rh,) that is
levelwise 7-locally equivalent to C'x — Rh,,, then holim C! — Rh, is an isomorphism in Ho C™7.

We say that a model topology 7 on C is subcanonical if, for any « € C, the prestack Rh,, is a
stack (i.e., has hyperdescent). This means that the derived Yoneda embedding factors through
HoC™7" as in

RA
HoC—— HoC"

N TRid
A

HoC™7.

The category sSet®”", viewed as a monoidal category for the direct product, is closed. This
is a general fact about presheaves of enriched categories, and the exponential Hom(F, G) of two
such presheaves is given by

Hom(F,G)(x) = Map(F X hy, G)

where h is the enriched Yoneda embedding. As explained in [HAGI, 3.6], C™" need not be
a monoidal model category. However, there exists another model structure on sSet®”, called
the injective model structure, whose equivalences are also the 7-local equivalences and which
is compatible with this monoidal structure. This model structure is simply the left Bousfield
localization of sSet®” along the same set of morphisms that was used to define C™7, but now we
endow sSet®” with the model structure in which equivalences and cofibrations are defined ob-
jectwise. It follows that the homotopy category Ho C™7 is cartesian closed, and its exponentials

can be computed by
llHOIn(F7 G) = HOIn(F7 Rinj G)

where Ri,;G is a fibrant replacement of G for the injective model structure (and F is a cofibrant
replacement of itself since left Bousfield localization does not alter cofibrations).



3 Derived algebraic geometry

3.1 Introduction

Let us first recall the definition of a scheme over a base commutative ring k, from the functorial
point of view. The category Affy of affine k-schemes is defined to be the opposite of the category
Commy, of commutative k-algebras (associative and with unit). We write suggestively X =
Spec A to mean that X is the object of Aff; corresponding to the algebra A. Let h denote the
Yoneda embedding of Aff into the category of presheaves of sets on Aff. A morphism f: A - B
between k-algebras is called a Zariski open immersion if it is flat, if f*: Modp — Mod 4 is fully
faithful, and if the functor (A4 | Commyg)(B,?) preserves filtered colimits. The category Affy
is endowed with a Grothendieck topology, called the Zariski topology, generated by the finite
families {Y; — X}, of Zariski open immersions such that the preimages of the prime spectra
(i.e., the sets of prime ideals) of the Y; cover the prime spectrum of X. The Zariski topology is
subcanonical, that is, representable presheaves have effective descent relative to Zariski coverings,
so we have a fully faithful embedding h from affine k-schemes to sheaves on the site of affine
k-schemes. Now if ¥ — h(Spec A) is any monomorphism of sheaves, call it a Zariski open
immersion if there exists Zariski open immersions A — B; such that Y, viewed as a subfunctor
of h(Spec A), is the image of [[, h(Spec B;) — h(Spec A). Finally, a general morphism ¥ — X
between sheaves is a Zariski open immersion if it becomes so after pulling back along any
morphism h(Spec A) — X. The category Sch of schemes is then the full subcategory of sheaves
of sets on the Zariski site Affi whose objects X are locally affine in the following sense: there
exists affine schemes Y; and Zariski open immersions h(Y;) — X such that the induced map
LI ~(Y;) — X is an epimorphism.

The Zariski topology has its origin in the geometric point of view for schemes, where it is
actually the name of a classical topology on the prime spectrum Spec A of a k-algebra A. In this
topology an open set D(I) is the set of prime ideals which do not contain a given subset I of
A. The topological space Spec A has a canonical sheaf of k-algebras whose stalks are local rings,
namely the one associated to the presheaf D(I) — S(I)"1 A, where S(I) is the set of elements of
A which do not belong to any element of D(I). With this point of view a geometric scheme is a
locally k-ringed space covered by open affine schemes. The full subcategory of geometric schemes
that are isomorphic to spectra is equivalent to the category Aff; of the previous paragraph.
Since any geometric schemes is a colimit of spectra by definition, the functor that restricts a
presheaf on the category of geometric scheme to a presheaf on the category Affy is a fully faithful
embedding. Precomposing with the Yoneda embedding, we obtain a fully faithful embedding of
the category of geometric schemes into the category of presheaves on Affy. Its essential image
is exactly the category of schemes, and the Zariski open immersions correspond precisely to the
open immersions of ringed spaces.

Put simply, homotopical algebraic geometry has vocation to replace the category of commu-
tative k-algebras in the above construction by the category of monoids on an arbitrary monoidal
(00, 1)-category C. Most notions of classical algebraic geometry can be formulated in such a way
that they remain meaningful in this more general context. An example of such a reformulation
is the definition of Zariski open immersions given above. Classical algebraic geometry is recov-
ered by taking C = Modj, with the trivial co-structure. The category Affc of affine schemes is
defined as the opposite of the category of commutative monoids in C. Then one assumes given
an “oo-topology” on Affc, and one defines a scheme to be a stack on Affc that is obtained by
glueing representable stacks using morphisms playing the réle of Zariski open immersion. More
generally, there are analogues to algebraic stacks as well as their higher-categorical versions. All
of them are examples of geometric stacks.

Our main reference for homotopical algebraic geometry is [HAGII]. In this chapter we shall
only be interested in the following special case: C is the model category of simplicial k-modules.
The resulting geometry is called derived algebraic geometry. With the exception of the second
half of the proof of Theorem 21 and the proofs of Lemmas 32 and 33, all proofs in this chapter
are from [HAGII] unless otherwise stated in the text.

28
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3.2 Derived stacks

We start from the base symmetric monoidal model category sModj, of simplicial k-modules over
a commutative ring k. This is a proper simplicial model category whose equivalences and fibra-
tions are defined through the forgetful functor Map(k, 7): sMody — sSet, left adjoint to the free
simplicial k-module functor ? ® k (here k is a constant simplicial k-module). Recall from the
Dold—Kan equivalence that the homotopy groups of the underlying simplicial set of a simplicial
k-module are base-point invariant and agree with the homology groups of the associated non-
negatively graded complex, and that a map M — N is a fibration if and only if the induced map
M — mo(M) Xz, (ny N is degreewise surjective. In particular degreewise surjective morphisms
and morphisms between constant objects are fibrations. The tensor product is defined levelwise
while the internal hom’s are given by Hom(M, N),, = sMody (M ®j k[A™], N) with the k-module
structure coming from the target.

We let sCommy, be the category of commutative monoids in sMody, or in other words the cat-
egory of simplicial commutative k-algebras. The category sCommy, is a proper simplicial model
category whose equivalences and fibrations are defined on the underlying simplicial k-modules
(hence on the underlying simplicial sets). If A € sCommy, we denote by sMods the model
category of simplicial A-modules. Equivalences and fibrations are defined on the underlying sim-
plicial k-modules and this is again a proper simplicial model category. The homotopy relation
is compatible with the additive structure, so that the localization functor sMod4 — HosMod 4
is enriched in abelian groups. Moreover, this model category is a monoidal model category for
the tensor product ® 4. This tensor product is left balanced in the sense that M ® 4 7 preserves
equivalences as soon as M is cofibrant. If A — B is a cofibration in sCommy, we also have
that the extension of scalars ? ® 4 B: sMods — sModp preserve equivalences. As a formal
consequences of these facts we have the following important result: if A — B and A — C are
maps in sCommy, then the canonical map in HosMod, from the underlying A-module of the
homotopy pushout of B and C' over A to the derived tensor product in sMod4 of B and C is
an isomorphism. This is fortunate since the standard notation scheme yields the same notation
B ®Y% C for both constructions.

We recall that for K a simplicial set and X an object in any of these simplicial model
categories, K ® X is the diagonal of the bisimplicial object given in degree (p, q) by

I .. (15)

z€K)

with horizontal simplicial maps defined from the simplicial structure of K and vertical ones
defined from the simplicial structure of X (see [GJ99, ch. II, §2]).
A morphism f: A — B in sComm;, gives rise to a Quillen adjunction

f«:sMods 2 sModpg : f*

where f, is extension of scalars. If f is a weak equivalence, then this adjunction is a Quillen
equivalence. Indeed, a map ¢: M — f*(IV) is, as a map of simplicial k-modules, the composition

b
M2Mos A vro, BN

where M ® 4 f is a weak equivalence if M is cofibrant, in which case the two-out-of-three axiom
imply that ¢ is an equivalence if and only if ¢” is.

If A is a commutative simplicial k-algebra, then 7. (A) is endowed with a graded k-algebra
structure (induced by the shuffle map), and 7, is a functor from simplicial commutative k-
algebras to nonnegatively graded k-algebras. In particular, mo(A) is a k-algebra and m,(4) is a
mo(A)-module for every n > 0. Similarly, if M is a simplicial A-module the shuffle map endows
m«(M) with a structure of graded m.(A)-module. Note that the functors m, preserve finite
products and filtered colimits.

Let A € sCommy. The functor mp: sModa — Mody,(4) is left adjoint to the functor
i: Modg,(4) — sModa which associates to a m(A)-module M the constant simplicial 7o(A)-
module (M), viewed as a simplicial A-module through the canonical projection A — mo(A).
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Moreover, if we endow the category Mod 4y with the trivial model structure, then my pre-
serves all equivalences and cofibrations and so is left Quillen. In particular there is a derived
adjunction

L7T0: Ho SMOdA <:> MOdwO(A) :Ru.

Since both my and i preserve equivalences, we will often write abusively mg = Lmg and i =
Ri. Note that the counit of the underived adjunction is an isomorphism. Since 7y preserves
equivalences the counit of the derived adjunction is an isomorphism as well. Although neither of
the functors 7y and 7 is a (co)monoidal functor for general A, the right adjoint ¢ has a structure
of nonunital monoidal functor: there is a canonical map

i(M) @4 i(N) = i(M ®ry(a) N)
which is always an isomorphism since A — my(A) is surjective in each degree. Adjoint to
i(Homy, () (M, N)) @4 i(M) — i(Homz, 4) (M, N) @rya) M) — i(N)
we find a natural map
i(Homyg(ay (M, N)) — Hom (i(M),i(N)).

We claim that this is also an isomorphism. It is clearly so in degree 0 by definition of the
A-module structure on (M) and i(N), so it remains to prove that Hom4 (i(M),i(N)) is con-
stant. An explicit computation shows that the degeneracy map Mod,;(ay(M, N) — sModa (A" ®
1(M),i(N)) is just the adjunction isomorphism under the identification M = 7o(A™ @ i(M)). It
follows by monoidal nonsense that the canonical map

(M @4 i(N)) = mo(M) @ryay N
is always an isomorphism. Since M ®% i(N) = QM ®4 i(N), we find an isomorphism
Lro(M ®% i(N)) 2 70 (M) ®ry(a) N. (16)
Let A € sCommy and let M be a simplicial A-module. We call M strong if the induced map
T (A) @y () To(M) — i (M)
is an isomorphism. A morphism A — B in sCommy, is called strong if B is a strong A-module.

Lemma 17. Let A be a simplicial commutative k-algebra and let M and N be simplicial A-
modules such that N is strong and wo(N) is a flat mo(A)-module. Then the natural map

(M) @ro(ar) To(N) = m(M @F N)
s an tsomorphism.
Proof. This follows from the Kiinneth spectral sequence
qu = TOYZ*(A)(W* (M), 7(N))g = Tptq(M ®£ N)
of [Qui67, §6]. Since N is strong, we have
? @ (a) T(N) =7 @r_(a) (T (A) @ry(a) To(N)) = 7 @rya) mo (V)

and so the flatness of 7o(IN) over mo(A) implies the flatness of 7.(N) over m,.(A). Therefore
Ef,q = 0 unless p = 0 and we obtain the required isomorphism E2, = m, (M ®% N). O

Under the hypotheses of the lemma, we say that N is flat over A.

Corollary 18. Strong morphisms are stable under composition and derived base change.
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Proof. Composition follows directly from the definition and base change is a consequence of the
lemma. ([l

A morphism A — B in sCommy is called flat (resp. unramified; étale) if it is strong and the
induced morphism 7(A) — 7o(B) of commutative k-algebras is flat (resp. unramified; étale).
Recall that a map A — B of k-algebras is unramified if B is of finite type over A and if the
B-module of differentials {2p/4 is zero, and that it is étale if it is both flat and unramified.
Thus a morphism in sCommy is étale if and only if it is flat and unramified. Since flat and
unramified morphisms in Comm;, are stable under compositions and base change, we obtain
using Lemma 17 and its corollary that flat, unramified, and hence étale morphisms are all stable
under composition and derived base change.

We put dAff;, = sComm}* and we endow dAffj, with the “opposite” model structure. When
we think of a simplicial algebra A as an object in dAff; we often denote it by Spec A instead.
As the model category dAffy is a simplicial model category, we shall always use the canonical
cosimplicial and simplicial resolution functors in applying the definitions of Chapter 2, and, since
all objects of dAff;, are cofibrant, we use the identity functor as cofibrant replacement functor.
For instance, the functor h: dAff;, — dAff} is defined by

hSpecA(B) = scommk(Av F*(B)) = Map(A, B),

where Map is the simplicial hom set of sCommy,.
We shall endow dAff;, with two model topologies. A family of maps {A — B;}icr in sCommy,
is called a flat covering (resp. an étale covering) (of Spec A) if

e cach morphism A — B; is flat (resp. étale);

o there exists a finite subset J C I such that every prime ideal in mo(A) is the preimage of
a prime ideal in [ ], ; mo(B;).

These are equivalent to the conditions
e cach morphism A — B; is strong;
o {mo(A) = mo(Bi)}ier is a flat covering (resp. an étale covering) in Commy.

In both cases, {mo(A) — m(B;)}icr is a flat covering meaning that the family of base exten-
sion functors {7mo(fi)«: Mod,(a) — Modr (B, }: preserves and detects exact sequences (and in
particular isomorphisms). In general we shall say that a family of functors is conservative if it
detects isomorphisms.

Lemma 19. Let {f;: A — B;}; be a flat covering in sCommy. Then the family of derived base
change functors {L(f;)«: HosMods — HosModpg, }; is conservative.

Proof. Tt suffices to prove that {(fi)«}:; detects weak equivalences between cofibrant objects.
Suppose that M and N are cofibrant and that M — N induces weak equivalences M ® 4 B; —
N ®4 B; for all 4, i.e., it induces isomorphisms

(M ®a B;) = 7 (N ®4 By)
for all 7 or equivalently, by Lemma 17, isomorphisms
(M) @ro(a) T0(Bi) = () @y (a) To(Bi)-
But {mo(f;)«}: is conservative, and so M — N induces isomorphisms 7, (M) — . (N). O

One defines a model topology on dAffy, called the flat topology, as follows: a sieve S over x
is a covering sieve if and only if it is generated by the image in Ho dAff;, of a flat covering of x.
It will be denoted by fl. We also define in the obvious way the étale topology, denoted by ét.

Proposition 20. fl and ét are model topologies on dAffy.
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Proof. This is an easy consequence of the analogous fact in the underived situation and the
properties of strong morphisms. Let us prove for example that the stability axiom is satisfied
(this is the only potentially nontrivial axiom to verify), say for the étale topology. Let S be the
sieve generated by the image of an étale covering {A — B;};, and let f: A — A’ be a morphism
in HosCommy, represented by a morphism QA — A’ in sCommy,. Using the same argument as
in the proof of Lemma 14 (where we really proved the weak universality of homotopy pullbacks),
we obtain that f*(.59) is the sieve generated by the image in Ho dAff;, of the family of morphisms
{A — A ®5A B;} which are strong by Corollary 18. By Lemma 17, the mp of this family
is {mo(A") = 7o(A’) ®ryca) T0(B;)} which is an étale covering in Commy, since étale coverings
generate a classical topology on Comm;”. O

It is clear from the definitions that these model topologies are quasi-compact, and Proposi-
tion 16 is therefore applicable.

Theorem 21. Let 7 denote either the flat or the étale topology. Let (X;)ier be a family of
objects in dAffy, with I finite. Then the canonical map

L
[T RAx, = Rhye_ x,
iel

is an equivalence in dAff".

Proof. By induction it suffices to prove the lemma for I empty or with exactly two elements. If
I is empty then the claim is that the unique map @ — Rh, is a 7-local equivalence, where {) is
the constant functor sCommy — sSet with value the empty set and 0 is the zero algebra. Now
the empty family is clearly a covering family of 0 € dAffy, so if C, — Rh, denotes its homotopy
nerve, holim C. — Rhy, is a 7-local equivalence. But C,, = ) for all n (it is an empty coproduct)
and hence holim C, = 0. [Note that  — Rh, is an isomorphism on every object of sComm;,
except on the zero algebra where Rhy(0) = AY; the situation should be compared with that
of the empty presheaf of sets on a topological space, or on any site in which the empty family
covers the initial object, whose associated sheaf is everywhere empty except on the initial object
where its value becomes the one-point set.]
It remains to prove that

Rhy - Rhy — Rhyyry = Rhxpy

is a T-local equivalence. We again use the obvious fact the the family {X — X1IY,Y —» XIIY'}
is a T-covering family. Its homotopy nerve C, — Rhxpy is

s 3 RA(X x%HY X) - RA(X x%HY Y) - RA(Y x%HY X) i RA(Y x%HY Y)
= Rhy I" Rhy — Rhyqy-

We will prove that C. is levelwise equivalent in dAff."" to the constant simplicial object Cp. It
will follow that holim C, = holim Cj in dAfF;’T; since the colimit functor and the constant functor
form a Quillen adjunction for the Reedy structure (see [Hir03, §15.10]), we have holim Cy = Cy
and the proof will be complete. Write X = Spec A and Y = Spec B. We shall prove below that

A% s B=0. (17)

In C, there is one term which is an (n + 1)-fold derived tensor product of A over A x B, one
which is an (n + 1)-fold derived tensor product of B over A x B, and all the other derived tensor
products have a factor of the form A®%, ;B 2 0. Recall that the underlying simplicial k-module
of a homotopy pushout A @% B of simplicial commutative k-algebras is also the underlying k-
module of the derived tensor product of A and B in sMod¢; this implies 0 ®% . 5 C =2 0 for any
C and so all these mixed tensor products vanish. Using the first part of the proof we obtain
that C. — Rh,, is levelwise 7-locally equivalent to

= 3:7/10.¢ xRy X) Y RA(Y x¥yy YV) = Rhy IV Rhy — Rhypy -
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More precisely, we have proved that the obvious inclusion of this simplicial object into Ci is
a levelwise 7-local equivalence. We can map the constant simplicial object C into the above
simplicial object diagonally, and we claim that this is a levelwise equivalence in dAff}. For this
it suffices to prove that the folding map induces an equivalence

ARY, 5 A=A (18)
We now prove (17) and (18). First we note that A and B are strong over A x B since
T2 (A X B) @ro(axp) T0(A) = (1 (A) X 7(B)) @rg(4)xmo(B) To(A) = mu(A),

and m(A) and 7wo(B) are flat over mo(A x B) = mo(A) x mo(B) (they are localizations of the
latter). Lemma 17 then tells us that

T (A®% 5 B) = 1(A) Ory(a) xmo(B) To(B) =0
and that the map 7.(A ®Y%, 5 A) — m.(A) is identified with the map
T (A) o (A)xmo(B) To(A) = Tx(A)
which is clearly an isomorphism. (|

Proposition 22. Let 7 be either the flat or the étale topology. The model category dAff"" is
the left Bousfield localization of dAff}, along the morphisms

L
holim Rhy, — Rhy and [[Rhy, — Rhx_ 7,
el

where Rhy — Rhy is a T-hypercover and {Z;}icr is a finite family of objects in dAffy.

Proof. Let Hy and Hy denote these two sets of morphisms and let H be the set of all morphisms
of the form holim Cs — Rh, for Cs — Rh, a finite hypercover. By Proposition 16, dAff7
is the left Bousfield localization of dAff;} with respect to H. By Theorem 21, Hy and Hy are
7-local equivalences, so it suffices to prove that an (H; U Hs)-local object in dAff} is H-local.
Let F be an (Hy U Hy)-local object, and let C,, — Rh, be an arbitrary finite hypercover which
in degree n is

L
Cn = [] Ra,,.
iel,

Recall that the face and degeneracy maps are induced by morphisms in dAff; between the various
yi’s. Let C, — Rh, be the augmented simplicial object which in degree n is

C, =Rhyp

icl, Yi

and with face and degeneracy maps induced by those of C.. [To prove: C, — Rh, is a
hypercover.] Then holim C, — Rh, belongs to H; and there is a morphism of hypercovers
C. — C! which belongs to Hs at each level. Using H; and Hs-locality we find

R Map(Rh,, F') = holim R Map(C., F') = holim R Map(C., F). O

Using the derived Yoneda lemma one can rephrase Proposition 22 as follows. Recall that a
prestack on dAffy is an equivalence-preserving functor sCommj — sSet.

Corollary 23. Let 7 be either the flat or the étale topology and let F be a prestack on dAffy.
Then F is a stack if and only if

o for every T-hypercover Y, — X in dAffx, F(X) — holim F(Y.) is an equivalence of sim-
plicial sets;



34 DERIVED ALGEBRAIC GEOMETRY 3.2

o for every finite family (Z;); in dAffy, F(11, Z;) — 11, F(Z;) is an equivalence of simplicial
sets.

The model category of derived stack is dSty = dAfF;’ét. Its homotopy category can be
identified with the full subcategory of Ho sSets®®™™x consisting of equivalence-preserving functors
having étale hyperdescent; such functors are called derived stacks. An object X € dSty is a
derived stack if and only if it is pointwise equivalent to a fibrant object in dSty.

In the remaining of this section we shall give a proof of the most basic result in the theory
of derived stack which is the derived analogue to the faithfully flat descent theorem for affine
schemes. It characterizes the “gluing data” necessary to define a module locally on a flat hy-
percover. As in all our proofs so far it will be proved by reduction to the known situation of
commutative k-algebras. As a consequence we shall deduce that the flat and étale topologies are
subcanonical. We recall first some results about (nonsimplicial) commutative k-algebras. To dis-
tinguish between our generalized hypercovers and the hypercovers in the context of presheaves
of sets on a site, we call the latter Set-hypercovers. Let Affy, = Comm;”. Faithfully flat descent
for affine k-schemes can be formulated as follows. If A — B* is an augmented cosimplicial object
in Commy, which is also a Set-hypercover for the flat topology, then the adjunction

?®4 B*: Moda ¥ cMod- :lim = 7°

restricts to an equivalence between Mod,s and the full subcategory of cModp- consisting of
cartesian objects, where a cosimplicial B*-module E* is cartesian if for every ¢: m — n in A
the induced map

E™ @pm B" — E"

is an isomorphism of B™-modules.

A general result about representable Set-hypercovers on arbitrary ringed sites is that they
can be used to compute cohomology by means of a spectral sequence (see [AM69, Cor. 8.15]).
For the flat or étale site this has the following consequences. Let A — B* be a Set-hypercover
and let F be an A-module, corresponding to the cosimplicial B*-module E* = F ® 4 B*. There
is a convergent spectral sequence

E} = P (HY(B*,E*)) = HP"9(A, E)

where H*(A, M) denotes the flat (resp. étale) cohomology of Spec A with values in a module
M. This cohomology is known to vanish in positive degrees ([Mil80, III, 3.7 and 3.8]), so the
spectral sequence says that 7P(E*) = HP(A, E) which is zero unless p = 0, in which case it
gives the already known isomorphism 7°(E*) = E. In other words, the augmented cosimplicial
module E — E* is aspherical.

Finally, we prove that if Y, — X is a flat (resp. étale) hypercover in dAffy, then m(Y.) —
mo(X) is a flat (resp. étale) Set-hypercover in Affy. By hypothesis, mo(Y;,) — 7o (R cosky,—1(Yi)n)
is a covering map in the site Affy, so it suffices to check that

cosky,—1(mo(Yi))n = mo(R cosky—1(Yi)n).

We may assume that Y, is Reedy fibrant since my preserves equivalence. Then the formula follows
from the fact that my: dAffy, — Affy is right adjoint and hence commutes with the formation of
coskeletons.

We now consider the derived situation. Let A — B* be an augmented cosimplicial object in
sCommy. We endow the category csMod g+ of cosimplicial simplicial B*-modules with the model
structure for which equivalences and fibrations are defined pointwise. Extension and restriction
of scalars give an adjunction

?®4 B*: csMod s 2 csModp- :U,

which is a Quillen adjunction as the right adjoint preserves equivalences and fibrations. There
is also an adjunction
i: HosMod 4 2 HocsMod 4 :holim
jgohm
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by definition of the homotopy limit. Putting these together we obtain an adjunction
? @% B*: HosMod4 & HocsModp- :holim . (19)

An object E* in csModp- is called cartesian if for every morphism ¢: m — n in A the induced
morphism
Em @k, B" — E"

is invertible in HosModgn. Since ®4 is left balanced, if M is a simplicial A-module, M @% B* =
QM ®4 B*. Tt follows that any object of the form M ®% B* is cartesian.

Theorem 24. If A — B* is a flat hypercover, the adjunction (19) restricts to an equivalence
between HosMod 4 and the full subcategory of Ho csModp« consisting of cartesian objects.

Proof. We first prove that the counit of the restricted adjunction is an isomorphism, i.e., that
for any cartesian E* € csModpg+ the map

(holim E*) @& B* — E*

is a weak equivalence of cosimplicial simplicial B*-modules. Since each A — B™ is flat, we have
by Lemma 17
7¢((holim E*) @% B*) = my(holim E*) @, (4) mo(B*)

and so we must prove that the map
g (holim E*) @1y mo(B) = m,(E”) (20)
is an isomorphism, for all ¢ > 0. To this end we will use the Bousfield-Kan spectral sequence
B3t = nPmg(E") = mg—p(holim £).
For any ¢: m — n in A the morphism ¢.: B"™ — B"™ is flat and hence, by lemma 17,
7o (B™ @51 B") 2 1y (B™) @y (5m) mo(B").

Since E* is cartesian this means that the cosimplicial 7mo(B*)-module 7, (E*) is cartesian (in the
underived sense). By faithfully flat descent for k-algebras, we obtain that

LiLnﬂq(E*) ®ro(a) To(B”) = mq(E™) (21)

is an isomorphism for all ¢ > 0 and that 7P7,(E*) = 0 if p # 0. This implies, on the one hand,
that the Bousfield-Kan spectral sequence converges (by [GJ99, VI, Cor. 2.21]) and, on the other
hand, that it collapses at Es, showing that the canonical map

g (holim E) — lim 7, (E£™) (22)

is an isomorphism. By (21) and (22) we obtain that (20) is an isomorphism, as required.

It remains to prove that the unit is an isomorphism. For this it is enough to show that
the left adjoint is conservative (by the triangular identities). It is clear that 4 is conservative.
Let us prove that ? @ B*: HocsMods — HocsModpg- is conservative. Let f: M* — N* be
a morphism between cofibrant cosimplicial simplicial A-modules inducing a weak equivalence
M*®4 B* - N*®4 B*. By Lemma 19, each functor ? ®% B™: HosMod4 — HosModgm
is conservative, and so each f™ is an equivalence. By definition, this means that f is an
equivalence. [l

Corollary 25. If A — B* is a flat hypercover, then A — holim B* is an equivalence.

Proof. A — holim B* is the unit of the equivalence of the theorem for the simplicial A-module
A. O

Corollary 26. The flat and étale topologies are subcanonical.



36 DERIVED ALGEBRAIC GEOMETRY 3.3

Proof. Let A € sCommy, and W = Spec A. We must prove that Rh, has flat (and therefore
étale) hyperdescent. We use Corollary 23. Let Y, — X be a representable flat hypercover. Then
by Corollary 25 and the fact that Rhy;, preserves equivalences,

Rhy, (X) = Rhyy (holim Y,) = R Map(holim Y, W) 2 holim R Map(Y,, W) 2 holim Rhy, (Y2).

If (Z;); is a family of objects in dAffy, then

REW(H Z;) = RM&P(H Zi, W) = HRMap(ZZ—, W)= HRQW(Zz‘)- L

Thus, for any A € sCommy, Rhg, 4 is a stack for the flat and étale topologies; an object
of dSty, is called an affine derived stack if it is equivalent in dSt; to a derived stack of the form
Rhgec 4- The derived Yoneda embedding induces an equivalence between the category Ho dAffy,
and the full subcategory of Ho dSty consisting of affine derived stacks.

The tautological stack is A' = hg . k) Where k[T7] is a constant simplicial algebra. As k[T is
cofibrant and ét is subcanonical, A! is indeed a derived stack. For A € sCommy, since A is fibrant,
A'(A) = Map(k[T], A) = A. Thus, A is isomorphic to the forgetful functor sComm; — sSet.
We let ¢ be the contravariant simplicial functor represented by A! on the simplicial category
dSty: O(X) = Map(X,Al); since Al is a k-algebra object in dSty, ¢ underlies a simplicial
functor dSty — dAff,, which we still denote by . By the properties of mapping spaces ¢ has a
total right derived functor L& = Rg Map(?, A') underlying a morphism of left Ho sSet-modules.
Moreover, the composition LORA is isomorphic to the identity by the derived Yoneda lemma.

3.3 Derived versus underived

In this section we briefly compare classical “underived” stacks to derived stacks. The conclusion
is that the homotopy theory of underived stacks is fully embedded into the homotopy theory of
derived stacks, but that this embedding does not preserve the monoidal structure. We fix 7 to
be either the flat or étale model topology on dAff, and we also write 7 for the classical flat or
étale topology on Affy, = Comm;”. We endow Aff, with the trivial model structure so that it
becomes a model site with the topology 7. The model category Aff;”" will be called the model
category of underived stacks. The characterization of derived stacks given in Corollary 23 applies
to underived stacks as well (the proof is indeed the same, except that all the arguments explicitly
involving simplicial commutative k-algebras become simpler for commutative k-algebras).

The inclusion 7: Affy, — dAffy is right adjoint to the evaluation at zero functor and left adjoint
to the connected component functor my: dAff, — Affi. Since the latter obviously preserves
fibrations and equivalences, (i, 7) is a Quillen adjunction. The functor ¢ induces an adjunction

iy sSet®MME = gGersCommE .t

where i*(F)(A) = F(i(A)) and 4, is given by left Kan extensions. This is a Quillen adjunction for
the projective model structures since i* preserves fibrations and equivalences. Moreover, since
ith = hi and ¢ preserves equivalences, if x — y is an equivalence in C, Li; sends h, — hy to an
isomorphism in Ho dAff},. By the universal property of left Bousfield localization, we obtain a
Quillen adjunction

ir: Aff 2 dAFFp 0. (23)

The functor ¢* also has a right adjoint, namely the functor
mg: Affpy — dAfFL, w5 (F)(A) = F(mo(A)).

It is obvious that 7 preserves projective equivalences and fibrations, so it is right Quillen for
the projective model structures. But the model structure on Aff} is just the projective model
structure, and by universality we get a Quillen adjunction

i dAffL 2 AfF i (24)

Lemma 27. The functor i preserves hypercovers.
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Proposition 28. The adjunctions (23) and (24) are Quillen adjunctions between the model
categories of stacks Aff,"" and dAfF"".

Proof. To prove these statements it suffices, by the universal property of left Bousfield localiza-
tion and [Hir03, 3.1.6], to prove that the right adjoints preserve fibrant objects. Let F' € dAff,""
and G € Aff"" be fibrant. We already know that ¢*(F) and n§(G) are fibrant in Aff; and dAffy,
respectively, so it remains to verify that i*(F') and 7(j(G) satisfy the two conditions of Corol-
lary 23. Let Y, — X be a representable hypercover on the model site (Affg, 7). By the lemma,
1(Yi) — i(X) is a hypercover on (dAffg, 7); therefore

i*(F)(X) = F(i(X)) = holim F(i(Y.)) = holim i* (F)(Y.).

If (Z;); is a family of objects in Affy,

(A 2) = FaQ]2)) = iz = ][ F6(z:) = T (F)(Z).

K2 K2

Now let Y. — X be a representable hypercover on dAff;. Recall that m(Y.) — m(X) is a
hypercover, so that

75 (F)(X) = F(mo(X)) 2 holim F(m(Y.)) = holim 5 (F)(Y. ).

Let (Z;); be a finite family of objects in dAffy. Since mo preserves finite coproducts (i.e. finite
products of simplicial algebras), we find

([ 2) = P [ 2) = F(Tmo(z) = [ Firo(2) = [[ m(F)(2). O

Proposition 29. The functor Liy: Ho Aff;’ét — Ho dAfF;’ét is fully faithful.

Proof. The derived left adjoint Li;: Ho Aff;’ét — Ho dAfF;’ét is fully faithful if and only if for
any F: Commy — sSet the unit F — Ri*Li)(F) is an isomorphism. We prove this first when
F = Rhg . 4 is an affine scheme. Since i1h = hi and since h, is a cofibrant replacement of Rh,,
the functor LijRh is induced by the equivalence-preserving functor hi. Thus, Li|(F) = hgpeci(a)-
The canonical map F(B) — Ri*Li)(F)(B) is then the composite

Commy (A, B) — sCommy(i(A),i(B)) = hgpeci(a)(i(B)) = Ri*Li(F')(B)

which is obviously an isomorphism. So the unit is an isomorphism in this case. An arbitrary
F € Aff’" may be written as a homotopy colimit of representables in sSet®m™mr - and since the
identity sSetCommx — Aff7 is left Quillen F is also a homotopy colimit of affine schemes in
Aff"". A consequence of Proposition 28 is that Ri* = Li* is the derived functor of a left Quillen
functor. Therefore Ri*Li; commutes with homotopy colimits and the general case is reduced to
the affine case. O

One can thus see any underived stack X (e.g. a scheme) as a derived stack i(X). However, sev-
eral constructions are not preserved by this embedding. For example, since the functor RA com-
mutes with homotopy limits, for affine underived stacks X = Rhg,cc 45 ¥ = Rhgpec gy and Z =
Rhgpee o one has i(X x3Y) = Rhgpeci(apep): While i(X) Xt i(Y) = Rhgpec(i(a)ok ., i(B))-

3.4 Quasi-coherent modules and vector bundles

A map f: A — B between simplicial commutative k-algebras induces a functor f,: sModg4 —
sModp by extension of scalars, and if g: B — C is another morphism in sCommy, there is an
isomorphism of functors (¢f).« = g.f«. We can make this isomorphism into an equality using
the following well-known trick. We define a new category Qcoh 4 as follows: an object (M, ) of
Qcoh 4 is the data of a simplicial B-module Mg for any B € (sCommy, | A) and of isomorphisms
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ay: Mp ®@p C — M¢ for any morphism u: B — C in (sCommy, | A), subject to the condition
that for any composable pair
B5%C3%D

in (sCommy | A) one has the equality a,, = a,(a, ®c D). A morphism ¢: (M,«) — (N, )
in Qcohy is a family of morphisms ¢p: Mg — Np, B € (sCommy | A), such that ¢ca,, =
Bu(¢op ®p C) for any morphism u: B — C over A. Then the projection (M, ) — My, ¢ ¢4,
is an equivalence of categories Qcohy — sMods. We can therefore put a model structure on
Qcoh 4 by defining a morphism to be an equivalence (resp. a fibration; a cofibration) if and only
if its image in sMod, is an equivalence (resp. a fibration; a cofibration). Let f: A — B be
a morphism in sCommy; it induces a functor fi: (sCommy | B) — (sCommy | A). We define

f*3 QCOhA — QCOhB, f*(M,Oé) = (f*(M),f*(Oé)), by
fe(M)e = My oy,  fal@)u = ap@y, and fi(@)c = by o)

Clearly there is now an equality (gf)« = g« f« for any composable pair (f,g) in sCommy. More-
over, the diagram of categories

Qcohy L) Qcohp

|

sMod 4 T) sModp

commutes up to natural isomorphism, and so we have “strictified” our original lax functor A
sMod 4. Since the bottom arrow in the above diagram is a left Quillen functor (its right adjoint
preserves equivalences and fibrations), it follows from the definition of the model structures on
Qcoh 4 and Qcohp that the top arrow f,: Qcohy — Qcohp is a left Quillen functor. In particular,
it induces a functor

f+: Qcoh%y” — Qcoh$”

between the categories of cofibrant objects and equivalences between them. Taking nerves we
obtain a functor
Qcoh: sCommy, — sSet, A +— N(Qcoh%").

Since the inclusion Qcoh%” C Qcoh'y is an equivalence of categories, it induces a homotopy
equivalence N(Qcoh4”) — N(Qcoh¥). The object Qcoh € dSty is called the derived stack
of quasi-coherent modules. It is proved in [HAGII, Thm. 1.3.7.2] that Qcoh is indeed a de-
rived stack, i.e., that it preserves equivalences and has étale hyperdescent. That it preserves
equivalences is an easy consequence of the fact that f, is a Quillen equivalence when f is a
weak equivalence. That it has hyperdescent is a direct consequence of Theorem 24, modulo a
technical result ((HAGII, Cor. B.0.8]) that we do not reproduce here.
Let A € sCommyg. A simplicial A-module M is called perfect if

e it is strong and
e 7o(M) is a finitely generated and projective my(A)-module.

Observe that perfect simplicial modules are flat. If f: A — B is a morphism of simplicial
commutative k-algebras, the derived base change functor ? ®4 B: HosMods — HosModp
preserves perfect modules. Indeed, by Lemma 17 we have

m0(M ®% B) = 7o(M) @ o) mo(B)

which is an f.g.p. mo(B)-module, and

70(M ®% B) @y () @74 (B) = m0(M) @y () T0(B) @ro(py T4 (B)
= 700 (M) @y (a) T (B) = 7 (M @ B),

so that M ®% B is strong. In particular, the base change functor f.: sMod4 — sModp preserves
cofibrant perfect modules. We denote by Vect 4 the full subcategory of Qcoh 4 consisting of those
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objects whose image in sMod 4 is perfect. Then we have a well-defined subfunctor Vect of Qcoh
given by
Vect: sCommy, — sSet, A +— N(Vecty"),

where Vect” is the intersection of Vecty and Qcoh4”. Again, N (Vect4") is homotopy equivalent
to N(VectY). It is proved in [HAGII, Cor. 1.3.7.4] that Vect is a derived stack (this follows
from the fact that a simplicial module is perfect if and only if it is perfect étale-locally, which
is readily proved by reduction to the underived case). It is called the derived stack of vector
bundles.

In a closed symmetric monoidal category, an object x will be called dualizable when the
canonical map

r®x’ — Hom(z, ),

adjoint to
(rer)erre (@ @) 2re@ezsY) sl 2,

is an isomorphism, where by definition ¥ = Hom(z, 1). If  is dualizable, then the natural map
¥ ® y — Hom(z,y) is an isomorphism for any y.

Lemma 30. In a closed symmetric monoidal category C, a retract of a dualizable object is
dualizable.

Proof. Let y be dualizable and let the composition
u, v,
Ty =T
be the identity. Then there is a commutative diagram

u®vv v®uv
z®xv—>y®yv—>x®zv

| | |

Hom(z, x) H—()) Hom(y, y) H—()) Hom(z, x)
whose rows are the identity. The lemma follows. [l

Lemma 31. Let A € sCommy. Let M and N be simplicial A-modules such that N is a retract
of M in HosMod 4. If M is a strong (resp. perfect), then N is strong (resp. perfect).

Proof. This is clear. O

Lemma 32. Let A € sCommy. Let M and N be simplicial A-modules such that M is a retract
of A™ in HosMod 4 for some n > 0. Then Lmg: [M, N] — [1o(M),mo(N)] is a bijection.

Proof. Since my commutes with colimits, we may assume M = A. Note that sMod4 (A4, N) is
in bijection with Ny, an element x € Ny corresponding to the map f, which in degree n is
a > as(z) where s(z) is the degeneracy of z in degree n. Since A is cofibrant in sMod 4, [4, N]
is a set of homotopy classes. We claim that z and y become equal in 7o(N) if and only if f,
and f, are homotopic, i.e., if and only if there exists g in the diagram

A A A'®

g
fzhv

N.

Here A' ® A is defined using the sSet-module structure of sMod 4: in degree n it is a direct sum
of n+ 2 copies of A,,. If g exists, let z = ¢1(0,1,0). Then dy(z) =« and d;(z) = y. Conversely,
suppose that there exists z € Ny such that do(z) = x and di(z) = y. Let s1, ..., s, be the n
degeneracy maps N1 — N, s; being induced by the surjective map n — 1 with ¢ zeros. Setting

gnl(ao, ... any1) = s(x)ag + s1(2)ar + - -+ + sp(2)an + s(y)ant+1
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gives the required homotopy g. Thus, we obtain a bijection [A, N] = mo(N), [f] + [fo(1)]; there
is also a bijection [mo(A), wo(N)] = 7TO(N), g+ g([1]). Since Lmo(f)([1]) = [fo(1)], the map of
the lemma is the composition of these two bijections. O

We recall some properties of Postnikov towers. If M € sMod 4, a Postnikov tower for M is
any tower of simplicial A-modules under M

'HMSkﬁMgkflﬁ"'ﬁMglﬁMSO

such that

(M) ifn<k
n M =
T (Msk) {0 otherwise.

If ~}, is the equivalence relation on M such that, for z,y: A? — M two i-simplices of M, z ~p, y
if and only if the restriction of x and y to sk, A’ are equal, then the simplicial A-modules
M/~ form a Postnikov tower. Any two Postnikov towers are pointwise equivalent. In fact, the
simplicial A-module M<y, is determined, up to equivalence, by the following universal property:
it is k-truncated, i.e., m,(M<i) = 0 if n > k, and for any k-truncated simplicial A-module N,
the map

R Map(M<g, N) = RMap(M, N)

is an isomorphism in HosSet. This is true for all kK > —1 if we set M<_; = 0. For any Postnikov
tower, the homotopy fiber of the morphism M« — M<j_1 is an Eilenberg-Mac Lane simplicial
A-module which has homotopy i (M) concentrated in degree k. In other words, it is equivalent
to X*i(m),(M)) where ¥: HosMod4 — HosMody is the suspension functor.

Lemma 33. Let A € sCommy and M, N € sMod,. For 0 <n <k,
Tn(M % Nop) 22 m, (M @Y% N).

Proof. Let P be a k-truncated object in sMod4. We claim that R Hom4 (N, P) is k-truncated.
As a simplicial set, RHom 4 (N, P) = RMap(N, P), so by [Hov99, Lem. 6.1.2],

mn(RHomy (N, P)) = m,(RMap(N, P)) = [N, Q"(P)].
But if n > k, Q"(P) =0, so m,(RHoma (N, P)) = 0. Thus, if P is k-truncated,
R Map(M @ Ney, P) = R Map(N<y, R Hom (M, P))
=~ R Map(N,RHom (M, P)) = RMap(M &% N, P).
This proves that (M ®% N<y)<p = (M @Y% N)<. O

Lemma 34. Let | be a filtered index category. Then the functor lim: sMod', — sMod4 sends
pointwise equivalences to equivalences.

Proof. This follows from [Hov99, Lem. 7.4.1] and the fact the all objects in sMod4 are fibrant.
O

The following lemma is Sous-lemme 3 in [To€06a] and a detailed proof can be found there.
The proof of Lemma 36 is also adapted from a similar result in [To€06a].

Lemma 35. Let C be a model category and let N be the poset of natural numbers. The canonical
functor
Ho(CY) — Ho(C)N

is full, where the equivalences in CN are the pointwise equivalences.

Lemma 36. Let M be a retract of A™ in HosMod 4 for some n > 0. Then any idempotent
p: M — M in HosMod 4 splits.
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Proof. We may assume that M is cofibrant. Then p is represented by a morphism ¢: M — M
in sMody. Let N = holimY where Y is the diagram

q q q

M > M > M >

Let also X be the constant N-diagram at M, so that M = holim X. Define maps u: X — Y
and v: Y — X in (HosMod4)N by u, = v, = p, for all n € N (here we use that p?> = p). By
Lemma 35, v and v lift to maps u’ and v’ in Ho(sMod"). Define s = holim ' and j = holim v'.
— —
Fix n > 0. The functor 7% : sl\/lodﬁ — sl\/lodﬁo( ) breserves pointwise equivalences and therefore

there is a well-defined functor Ho(sMod"}) — sl\/lodﬁ0 (4)» Which clearly factors as

Ho(sMod'}) — ModEO(A).

|

(Ho sMod 4)N

By Lemma 34 and the fact that m, commutes with filtered colimits, all faces in the diagram

li

sMod'} . — » sMod 4

Mod} (4 —— Mod,., ()

Ho(sMod"} ) —————— HosMod 4
holim

are commutative up to natural isomorphism, except possibly the bottom parallelogram. But
its commutativity follows from the commutativity of the other faces and the universality of
sMod} — Ho(sMod%). It follows that 7, (js) = lim 7, (vu) = 7o (p): 7 (M) — 7, (M) since
7 (vu) is m, (p) in each degree. Hence js = p by Lemma 32. Similarly, 7, (sj): mp(N) — mp(N)
is the result of applying the functor h_H}l to the morphism

7n(q) ﬂ'n(M) 7n(q) 7Tn(M) 7n(q)

J{ﬂ'n (9) an(q) J{WH(Q)

(M) —— 7 (M) —— 7, (M)

.
7n(q) 7n(q) 7n(q)

in Mod" .., and this is clearly the identity, so 7, (sj) = id. In particular, sj is an automorphism
mo(A)

of N in HosMod 4. Setting t = (sj)~'s yields tj = id and 7o (jt) = 7o(j)m0(s5) " tmo(s) = mo(js),

so that, again by Lemma 32, jt = js = p. Thus, j and t form a splitting of p. O

Theorem 37. Let A € sCommy, and let M € sMod 4. The following are equivalent:
1. M is dualizable in HosMod 4;
2. M s perfect;
3. M 1is a retract of A™ in HosMod 4 for some n > 0.

Proof. 1 = 2. Let M be dualizable in HosMod 4. We must prove that M is strong and that
mo(M) is an f.g.p. mo(A)-module, or equivalently, that it is flat and finitely presented. Let
N — P be an injective morphism of 7y(A)-modules. Since a map between constant simplicial
k-modules is always a fibration,

0—i(N)—i(P)
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is a fiber sequence in HosMod 4. The functor Hom4(Q(MV),?) is a right Quillen functor and
hence its total derived functor R Hom4 (MY, ?) preserves fiber sequences. Thus

0 — RHoma(M",i(N)) — RHomux(M",i(P))
is a fiber sequence. Since M is dualizable, this sequence is isomorphic to
0— MY i(N)— Mekip),
and so we obtain a long exact sequence
o T (M @Y i(N)) = 1 (M @%i(P)) = 0= - = 0= mo(M &Y% i(N)) = mo(M % i(P)).

In view of (16), the last three terms are isomorphic to 0 — mo(M) @4y N — mo(M) @ry(a) P
and this shows that 7o (M) is a flat mo(A)-module. For N = 0, the long exact sequence says that
7, (M ®% i(P)) = 0 if n > 1. Thus the unit

M % i(P) = i(m0(M) ®ry(a) P)

is an isomorphism in HosMod 4. Since the functor M ® 4 7 is left Quillen its total derived functor
commutes with the suspension, and we obtain

M ®% $Fi(P) =2 $¥i(1g(M) @ro(a) P) (25)

for every k > 0. Now let @ be any simplicial A-module and let & > 0. The Postnikov tower of
Q@ gives us a fiber sequence

YRi(m(Q) = Qer — Q<ii,

and since M is dualizable we find as above that
M &% Thi(mi(Q)) — M @% Qi — M @4 Q<1
is again a fiber sequence. By (25), the associated long exact sequence looks like
RN 7Tn+1(M ®£ ng—l) — ank’i(ﬂ'o(M) ®7T0(A) Fk(Q))
— (M % Qi) = 1 (M % Qi) — -+ -

We prove by induction on k > —1 that m,(M ®% Q<) =0 for all n > k + 1. If k = —1, this is
clear since Q<_1 = 0. Suppose k£ > 0. By induction hypothesis, the long exact sequence gives
an isomorphism

Tn 3F i (0 (M) @y (a) Th(Q)) = T (M @ Q<)

for allm > k. If n > k + 1, the left-hand side vanishes, so our claim is proved. For n = k, we
obtain by Lemma 33 an isomorphism

7TO(]\4) ®770(A) 7Tn(Cg) = 7r71(]\4 ®i Q)

If we take @Q = A, this proves that M is strong.

It remains to prove that mo(M) is finitely presented. Let | be a filtered index category
and d: | — Mod,,(4) a diagram. By Lemma 34 there is an isomorphism @id = holim¢d in
HosMod4. Then there is a sequence of isomorphisms

R Map(mo (M), lim d) = R Map(M, lim id) = R Map(M, holim id) = M" @Y% holim id
> holim(M" ®% id) = holim R Map(M, id) = holim R Map(mo (M), d)

whose composition is clearly the canonical map

MOdﬂ.O(A)(Tro(M),h_H}d) — h_II}l MOdﬂ.O(A)(Tro(M), d)
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Since any module is a filtered colimit of finitely presented modules, 7o(M) itself is finitely
presented.
2 = 3. We suppose that M is a perfect simplicial A-module. Choose a diagram

7o(M) 5 mo(A™) L mo (M)

such that pi = id. By Lemma 32, p (resp. i¢p) is the image of a unique morphism ¢: A™ — M
(resp. r: A" — A™) in HosMod 4. Since ipip = ip and pip = p, we have r? = r and ¢r = q. By
Lemma 36, the idempotent r splits: there exists a simplicial A-module N and maps s: A" — N
and j: N — A" in the homotopy category such that sj = id and js = r. In particular N
is a retract of A” in HosMods. Then we have mo(qj)mo(s)i = mo(qr)i = mo(q)i = pi = id
and mo(s)imo(qj) = mo(s)ipmo(j) = mo(srj) = mo(sjsj) = id, so that mo(qj): mo(N) — mo(M)
is invertible. But N is strong by Lemma 31 (since A™ is clearly strong), and M is strong by
hypothesis, so 7.(gj) is an isomorphism, i.e., gj: N — M is an isomorphism. In particular M
is also a retract of A™ in HosMod 4.

3 = 1. It is clear that, in a general setting, a biproduct of dualizable objects is dualizable.
This implies that A™ is dualizable, and Lemma 30 completes the proof. |

Corollary 38. Let A € sCommy. The restriction of the functor Lmg: HosModa — Modr ()
to the full subcategory of dualizable objects is fully faithful.

Proof. This follows from Lemma 32 and Theorem 37. |

We end this section with a very informal discussion of the categories of quasi-coherent mod-
ules and vector bundles on a derived stack. A quasi-coherent module on an affine derived stack
should be the same thing as a simplicial module on the corresponding simplicial k-algebra, while
a quasi-coherent module on an arbitrary derived stack X should be an object that restricts to
a simplicial module on every affine derived stack over X. If we write X as a homotopy colimit
MiXi of affine derived stacks, this means that a quasi-coherent module on X is constructed
by glueing quasi-coherent modules over each X;:

{quasi-coherent modules on X} = lim{quasi-coherent modules on X;}.

By the derived Yoneda lemma, a quasi-coherent module on X is the same thing as a morphism
X; = Qcoh in HodSty:

{quasi-coherent modules on X;} = [X;, Qcoh],
and so
{quasi-coherent modules on X} = lim[X;, Qcoh] = [holim X, Qcoh] = [X, Qcoh].

Thus, whatever a quasi-coherent module on X really is, it should be the same thing as a map
X — Qcoh in HodSt,. Similarly, vector bundles on derived stacks should be classified by Vect.
It turns out that model categories of quasi-coherent modules and vector bundles can be defined
(in essentially the same was as they are defined for underived stacks) and that they satisfy these
requirements. Since we will not have this construction at out disposal in the sequel, we define
an equivalence class of quasi-coherent modules (resp. of vector bundles) on an object X € dSty,
to be an element of [X, Qcoh] (resp. [X, Vect]).



4 Loop spaces

4.1 Alternative descriptions of Hochschild and cyclic homology

In Chapter 1 have defined HH, HC', HC?®", and HC~ for cyclic k-modules, but we can define
more generally these functors on the category of mized complexes. A mixed complex (M,b, B)
over k is at the same time a (Z-graded) chain complex (M,b) and a cochain complex (M, B)
whose differentials satisfy the relation bB + Bb = 0. Equivalently, a mixed complex is a differ-
ential graded (dg) module over the dg k-algebra k[e] which is by definition

---%O%kgk’%o—)---,

where the two k’s are in degrees 1 and 0. We write € for the 1 in degree 1. If M is a dg
kle]-module, then it is a mixed complex where the map b is the differential and the map B
corresponds to the action of €. There is a functor l\/Ionop — dgModyq sending a cyclic k-
module E to the (nonnegatively graded) mixed complex (M, b, B) where (M,b) is the complex
associated to the underlying simplicial k-module of F and B = (1 —t)s_1N. We will prove that
HH, HC, and HC™ all factor through dgMody, ;. This point of view presents the advantage that
both cyclic homology and negative cyclic homology arise naturally as simple derived functors.
Before proving this we recall that for any dg algebra A over k, the category of left dg A-modules
has a model structure in which a map is an equivalence (resp. a fibration) if the underlying
map of (unbounded) complexes of k-modules is. In other words, an equivalence is a map that
induces an isomorphism on homology, while a fibration is a map that is surjective in each degree.
The shift automorphism N +— N[1] of dgMod4 is defined by N[1], = Nyi1, dyp) = —dn,
apyn = (—1)9°8%an where the left-hand side is the scalar multiplication in N[1] and the right-
hand side is the scalar multiplication in N, and f[1],, = fn+1. To simplify we now assume that
A is graded commutative. Then there are bifunctors

®a4: dgMod4 x dgMods — dgMods and Homy: dgMod? x dgMod 4 — dgMod 4

defined as follows. For (M,dys) and (N,dy) two dg A-modules, their tensor product over A is
as a graded k-module the usual tensor product of M and N over A (the identification is simply
am®n =m® an), and its dg A-module structure is defined by

dm®n)=dymen+ (-1)%"m®dyn and a(m®@n)=amn.

In degree n, Hom 4 (M, N) has the k-module of all A-module maps M — N|n], and for such a
map f,
d(f)=dnf—(=1)"fdy and (af)(m)=af(m)

(observe that we wrote dy and a, not dyp,) or ap,). These sign conventions make dgMod
into a closed symmetric monoidal category. In fact, dgMod, is a symmetric monoidal model
category. In particular, the bifunctors ® 4 and Hom4 have total derived functors ®% and
R Homy,. Moreover, the tensor product is left balanced in the sense that M ®4 ? preserves
equivalences whenever M is cofibrant.

Lemma 39. The mized complex
€ 0 €
RQk= -+ SkeSkSkeSksS05s -
0 € 0

is cofibrant.

Proof. Consider a lifting problem

A
g 7
-
.

Qk:/T>N

where h is a trivial fibration in dgModyg. We construct a lift g inductively. Put g, = 0 for
n < 0. Let n > 0. Suppose that we have defined g; for all i < n such that

44
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1. dg; = gi—1d;

2. egi—1(z) = gi(ex) for all z € (Qk);—_1;
3. higi = fi; and

4. if n is even, €g,—1(€) = 0.

We consider two cases. Suppose that n is even (if n = 0, we write € for 0 € (Qk)_1). Since
fn—1(e) = dfn(1), the class of f,_1(€) is zero in H,,_1(N). But fr_1(€) = hn—1gn-1(c), and
since h induces an isomorphism in homology, the class of g,_1(€) is zero in H,,_1 (M), i.e., there
exists © € M, such that de = g,—1(¢). Then dh,(z) = hp—1(dx) = hp_1gn-1(€c) = fn_1(e) =
fn—1(dl) = dfn(1), and so the difference hy(z) — fn(1) is in the kernel of d. Since h is an
isomorphism in homology, there exists y € M, such that dy = 0 and h,,(y) — hn(x) + fo(1) is
zero in Hy, (N ); then there exists z € Ny, 11 such that dz = h,(y) — hn(z) + frn(1), and since hp41
is surjective, there exists w € M,y such that h,41(w) = z. Put

gn(1) =2 — y + dw.
We must check that this satisfies 1-4:
1. dgn(1) =dz —dy = dz = gp—1(€) = gn-1(d1);
2. egn-1(€) = 0= ga(0) = gn(e?);
3. hngn(1) = hp(z) — hn(y) + hp(dw) = hp(x) — hp(y) + dz = f,,(1); and
4. does not apply.
If n is odd, define gy (€) = €gn—1(1). We check 1-4:
L. dgn(e) = —€dgn-1(1) = —egn—2(dl) = gn—1(—€dl) = gn_1(de);
2. by definition;
3. hngn(€) = €hn_19n-1(1) = €fn-1(1) = fn(e); and
1 egule) = g0 1(1) = 0. o
The “HC” part of the next theorem was proved in [Kas87].

Theorem 40. If M is a nonnegatively graded mized complex, then HC(M) = H(k ®i‘[6] M) and

HC™ (M) = H(RHomy(k, M)), where k is viewed as a dg k[e]-module concentrated in degree
0.

Proof. Tt is clear that the map Qk — k which is the identity in degree 0 is an equivalence, so
that, by the lemma, Qk is a cofibrant replacement of k in dgMody. Now,

(Qk ®k[6] M)n = Mn 2 Mn72 S Mnf4 D

because e@m = 1®em, and the differential is given by d(1@m) = d1l@m+1®@dm = 1@em+1Qdm.
Thus there is an isomorphism between Qk ®yq M and Tot Z(M). Any map of k[e]-modules
f: Qk — M]|n] is entirely determined by its components fo) that can be chosen arbitrarily, so
we have

Homk[e] (ka M)n = M, x Mn+2 X Mn+4 Xoeee,

and the definition of the differential reduces to d(mg,,mpt+2, Mpya,...) = (dmy,dmy o —
€My, dMiyp 4 — €Mpyo,...). We find that Homyq(QF, M) is isomorphic to the total complex
of the bicomplex obtained from %~ (M) by changing the sign of the horizontal differentals; but
this bicomplex is isomorphic to #~ (M), and so Homyq(Qk, M) = Tot #~(M). We conclude
by noting that Qk ®j[ 7 preserves equivalences, so that k ®i‘[€] M = Qk ®yq M, and that all
dg modules are fibrant, so that R Homy (k, M) = Homy, (Qk, M). O
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We will now explain how this theorem can be interpreted in a simplicial setting. We first show
that the above theorem remains true if one replaces the category of unbounded dg k[e]-modules
by that of nonnegatively differential graded k[e]-modules. Of course one can only hope to recover
in this way the nonnegative part of negative cyclic homology, but this is the most interesting part
since the negative part has period 2 and coincides with periodic cyclic homology. For a general
nonnegatively differential graded k-algebra A, which we assume to be graded commutative, we
denote by dgl\/lodflO the category of nonnegatively differential graded A-modules. The inclusion

i: dgMod3° — dgMod 4
has a right adjoint 7>¢ given by

Zo(M) ifn=0,
M, otherwise.

TEO(M)n = {

Observe that both 7 and 7> preserve equivalences as they commute with the homology functors
H,, for all n > 0. Since 7>( also preserves fibrations, this is a Quillen adjunction. The result
that we have in mind is a formal consequence of this adjunction, but we first explore a more
general situation since we shall use it again in the sequel.

Suppose that (F,G) is an adjunction between closed symmetric monoidal categories C and
D together with a natural morphism

V:GX)eGY)—=>GXRY).
From it we deduce by adjunction a natural morphism
FX®Y)=> FX)® F(Y), (26)
namely the adjoint to V(nx ® ny). There is also a natural map
GHom(F(X),Y)) —» Hom(X,G(Y)) (27)
adjoint to the composition

G(Hom(F(X),Y)) ® X “2% G(Hom(F(X),Y)) @ GF(X)

—Y 5 G(Hom(F(X),Y) ® F(X)) = G(Y).

Lemma 41. (26) is an isomorphism if and only if (27) is an isomorphism.
Proof. Suppose that (26) is an isomorphism. Then postcomposition by (27) is always an isomor-
phism as it is the composition
C(Z,G(Hom(F(X),Y))) = D(F(Z), Hom(F(X),Y)) = D(F(Z) ® F(X),Y)
“DF(Z®X),Y)2CZ®X,G(Y)) = C(Z Hom(X,G(Y))).

The converse is proved in a similar way. O

Under the equivalent conditions of the lemma, if moreover the counit FG(X) — X is an
isomorphism, we obtain that the natural map

GHom(X,Y)) = Hom(G(X),G(Y))

is an isomorphism, while if the unit ¥ — GF(Y) is an isomorphism, there is a natural isomor-
phism
G(Hom(F(X),F(Y))) 2 Hom(X,Y)

In particular, if (F,G) is an equivalence of categories, then each of F' and G' commutes with
both tensor products and internal hom’s.
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The adjunction (i,7>¢) is a Quillen adjunction between closed monoidal model categories
whose unit is an isomorphism and whose left adjoint is a monoidal functor. Applying Lemma 41
to the derived adjunction (Li, R7>(), we obtain a natural isomorphism

Rr>oRHomu (Li(X),Li(Y)) 2 RHomu (X, Y) (28)
in Ho dgModiO. In particular, for all n > 0 we have
H,(RHomu4(Li(X),Li(Y))) =2 H,(RHomx (X,Y)),
and hence we obtain the following bounded version of theorem 40.
Corollary 42. If M € dgMod3° and if n > 0, then HC,,(M) = H,(k®% . M) and HC;; (M) =

kle]
Hy, (R Homy(k, M)), where k is viewed as a dg k[e]-module concentrated in degree 0.

To obtain a simplicial version of theorem 40, we will now prove that the model category
dgModf[S] is Quillen equivalent, through the normalization functor, to some model category of
equivariant simplicial k-modules, and moreover that the derived equivalence preserves tensor
products and internal hom’s. For this we need some general results about monoid actions in
enriched categories.

Let V be any of the following closed symmetric monoidal category: sModa, dgMod4, or
dgl\/lodio. Let C be a V-module. For G a monoid in V and x an object of C, an action of G on
2 is a map of V-monoids G — Map(x,x). By adjunction, a morphism G — Map(z,x) in V is
the same thing as either a map ¢: * — 2% or a map 1: G ® © — x. Then the property that
G — Map(z, x) is a monoid map translates to the commutativity of either one of the diagrams

¢ — (x

I“‘

—a¢ CoGor) 2L ceu

Gd), ®l (29)

)G GRr —z,

where p: G ® G — G is the monoid structure of G and the associativity isomorphisms of the
V-module structure have been used implicitely. Let z and y be two objects with an action of G.
Then one defines the object Map(x, y) of G-equivariant maps from x to y as the equalizer

Mapg(z,y) — Map(z,y) = Map(z,y),

where the two parallel maps come from the two possible ways to go from z to y“, namely
z —y =y and z — 2% — y©. Dually, one defines the G-equivariant tensor product z ®¢ y
by the coequalizer diagram

GRERY)ZIxRYy—>rRcy

where the two maps correspond to the action of G on either x or y. It can be seen that the
objects Mapg(x,y) define a V-enriched category structure on the set of G-equivariant objects
in C; it is denoted by CE (and it can of course be identified with the category of V-enriched
functors from G to C). The above equalizer diagram also defines a V-enriched forgetful functor
C% — C (which is actually the right adjoint of a monoidal adjunction, but we will not use this).
We deduce directly from the definitions that C¢ becomes a V-module with tensor and cotensor
functors compatible with the forgetful functor C¥ — C (i.e., K ® 2 and 2 are defined as in C
and endowed with the obvious G-actions).

Suppose now that G comes with an augmentation, i.e., a morphism of monoids G — 1 where
1 is the unit in V. Then one can define the fized point functor fixg: C¢ — C by the equalizer
diagram

fixg(x) = =3 2@
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where the two maps are adjoint to the action G — Map(z, ) and to the composition G —
1 — Map(z, z) pointing at the identity, respectively. Dually, the orbit functor orbg: C¢ — C is
defined by the coequalizer diagram

G ® x = & — orbg(x).

Since Map(z,?): C — V preserves limits, we see that fixg is a V-enriched right adjoint to the
“endow with the trivial action” functor C — C%. Dually, orb¢ is a V-enriched left adjoint to this
functor.

If G is a simplicial monoid, we put a simplicial model structure on sl\/lode by declaring a
map to be an equivalence (resp. a fibration) if the underlying map of simplicial k-modules is
an equivalence (resp. a fibration). That this is a simplicial model structure follows from the
following lemma.

Lemma 43. There is an isomorphism of sSet-modules sl\/lode = sMody(q) where k[G] is the
simplicial monoid algebra of G. This isomorphism induces a bijection between equivalences and
fibrations on both sides.

Proof. We simply define the isomorphism on objects. The category sMody, is enriched over itself
in such a way the the underlying simplicial set of the internal hom Hom(X,Y") is Map(X,Y).
Therefore a map of simplicial sets G — Map(X, X) is equivalent to a map of simplicial k-modules
k]G] — Hom(X, X), which is in turn equivalent to a map of simplicial k-modules k[G]®; X — X.
Moreover, G — Map(X, X) is a monoid map if and only if k[G] ®; X — X is an action of the
simplicial k-algebra k[G] on X. O

Through this isomorphism we have fixg = Homy,¢)(k, ?) (resp. orbg = k®yg?), because the
two functors are defined as the equalizers (resp. coequalizers) of isomorphic diagrams. Similarly,
if C = dgMody, enriched over itself and A — k an augmented commutative dg k-algebra, the
category dgMod,‘? is isomorphic to dgMod4, and through this isomorphism we have fixq =
Homy (k,?) (resp. orby = k ®4 7). A similar conclusion holds for C = dgl\/lod,%o. In any
of these situations, we define the homotopy fized point functor Rfixg: HoC® — HoC to be
R Homg (k, ?), and dually the homotopy orbit functor Lorbg is by definition k ®F ?. Since k is
cofibrant in C, the natural transformations

fixg¢ = U — orbg,

where U: C& — C is the equivalence-preserving forgetful functor, induce natural transformations
Rfixqg - RU = LU — Lorbg

derived from Homg(z,y) — Hom(z,y) and 2 ® y — = ®¢ y. When A = k[e] we have

Proposition 44. Let n > 0. The diagram of natural transformations

HC; — HH, — HC,

between functors Ho dgl\/lod,f[g] — Mody, described in §1.1 is isomorphic to the diagram

Hy(Rfixg) = Hn — Hp(Lorby).

Proof. Actually these two diagrams are already isomorphic at the level of the chain complexes
before taking homology. With the notation of Lemma 39, the inclusion & — QFk is inverse
to the projection Qk — k in the homotopy category. Comparing the proof of Theorem 40
and the definitions of §1.1, it is clear that the map Tot #°(M) — Tot (M) corresponds to
the map k ®x M — Qk @ M — Qk ®p;q M which is M — Lorby(M), while the map
Tot #~ (M) — Tot #°(M) corresponds to Homyq(Qk, M) — Homy(Qk, M) — Homy(k, M)
which is RﬁXk[E] (M) — M. [l
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Let A be a simplicial commutative k-algebra. By [SS03, Thm. 1.1 (2)], the normalization
functor N: sMody — dgl\/lodf,(gA) is the right adjoint of a Quillen equivalence. Let I' be its left
adjoint. Note that N actually preserves and reflects equivalences and fibrations, as these are
defined on the underlying k-module objects. The model categories on both sides are monoidal
categories, and this adjunction is a weak monoidal adjunction for the shuffle map V (which
also defines the algebra structure on N(A)). Moreover, it is proved in [SS03, §4.4] that the
morphism

LI(X @} 4 Y) = LT(X) @5 LI(Y)

derived from the monoidal structure is an isomorphism in HosMod 4. Using Lemma 41, it follows
that (LT, RN) is an equivalence of nonunital closed monoidal categories (actually the units are
preserved as well). In particular there is a natural isomorphism

RN (R Hom(X,Y)) — RHomy 1) (RN(X), RN(Y)).

If A =k[G] and X =k, since RN (k) = k, we obtain that the normalization functor preserves
homotopy fixed points, i.e., that there is a canonical isomorphism

RNRﬁXG = RﬁXN(k[G]) RN.

(Dually, if the canonical map LI'(k) — & is an isomorphism in HosModyg), the left adjoint LT’
preserves homotopy orbits; but I do not know if this is true in general.)

Let S' = Al/OA! be the simplicial set obtained from A' by identifying the two endpoints
at each level, and let BZ be the nerve of the abelian group Z, which is a simplicial abelian
group. It is well-known that the inclusion S' — BZ sending OA! to 0 and the other points
of (S1), to the generators of (BZ), = Z" is an equivalence of simplicial sets. Applying the
equivalence-preserving functor N(k[?]) to this inclusion (here k[?] = ? ® k is the left adjoint
to the forgetful functor Map(k,?): sMod;, — sSet), we obtain an equivalence of simplicial k-
modules N (k[S']) — N(k[BZ]). The normalization of k[S'] can be identified, as a dg k-module,
to k[e], by sending € to (—1,1) € N(k[S1])2 C k[S]a = k2. The equivalence

f: k] — N(k[BZ))

is actually a morphism of dg k-algebras. This implies that the Quillen adjunction (f., f*),
where f: dgl\/lodf[g] — dgl\/lod%?k[BZ]) is the extension of scalars, is a Quillen equivalence. Since
extension of scalars is a comonoidal functor, it follows from Lemma 41 that (Lf., Rf*) is an
equivalence of nonunital closed monoidal categories (again, the units are in fact clearly preserved

as well). In particular, the natural map
Rf* (R Homy (xpz)) (X, Y)) = R Homyg (Rf*(X), Rf*(Y)) (30)

is an isomorphism. Since Rf*(k) = k, Rf* also commutes with homotopy fixed points. We
summarize what we proved in the next proposition.

Proposition 45. There are two Quillen equivalences

I': dgMod(, ) & sMod” : N

[
fo dgMod,f[S] z dgMod%?k[BZ]) fF

whose derived equivalences preserve the closed monoidal structure. Moreover the derived right
adjoints preserve homotopy fized points.

4.2 The loop space

In Proposition 45 we have seen that the model categories sModkBZ of BZ-equivariant simplicial
k-modules and dgl\/lod,f[g] of nonnegatively graded mixed complex are Quillen equivalent. The

goal of this section is to prove that the Hochschild complex of an algebra is naturally an object
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in sl\/lodkBZ and that negative cyclic homology identifies with the homotopy fixed points of this
object. We formulate these results from the geometric point of view of derived stacks.

The loop space functor L: dSty, — dSty is the functor ?5% coming from the sSet-module
structure of dStg. This is a right Quillen functor (with left adjoint BZ ® 7), and we have

RL = 7RBZ

in the notation of §2.1 (because simplicial sets are always cofibrant). In particular, the isomor-
phism S! 2 BZ in HosSet induces an isomorphism RL =2 7RS"

Suppose that X = Rhg,.. 4 is an affine derived stack (A being a simplicial commutative
k-algebra). Since Rh underlies a morphism of right HosSet-modules, there is a canonical iso-
morphism

RL(X) = Rlygpec ayrst = Rligpee(siara)

in HodSty. In particular, RL(X) is an affine derived stack. This is closely related to Hochschild
homology as follows. First note that when A is a commutative k-algebra, its Hochschild complex
is endowed with a structure of simplicial commutative k-algebra. In this context the Hochschild
complex is a functor Commy, — sCommy,, where Commy, is the category of commutative k-algebra.
Recall from (15) that for K a simplicial set, K ® A is just the diagonal of the bisimplicial
commutative k-algebra which in degree (p, ¢) is the coproduct

&) A,

zeK)

Theorem 46. The Hochschild complex functor Commy — sCommy, is isomorphic to the restric-
tion of the functor S ® ?: sComm;, — sCommy.

Proof. We must explicit the simplicial structure of S'. In degree n, (S!), has n + 1 elements
Ty Yt ..., Yy x, is the O-dimensional point and y), ..., y” are the images of y; (the loop) by
the n surjective maps n — 1 in A. In particular,

(Sl ®A)n — A®n+1,

so it remains to see that the face maps and degeneracy maps of S* induce those of the Hochschild
complex. This is easy because they are induced by those in Al: s; misses 3%, an internal d;
collapses 3 and y**! to ¢, do collapses ,, and ¥y} to x,_1, and d,, collapses ™ and z,, to x,_1.
This is exactly as required. O

We define the topological Hochschild homology of an arbitrary simplicial commutative k-
algebra A to be the simplicial commutative k-algebra S' @Y A. This defines an endofunctor
of HosCommy. When A is a k-algebra, also viewed as a constant simplicial k-algebra, this
definition thus yields, up to equivalence, the classical Hochschild complex whenever A is cofibrant
in sCommy,, for instance when A is free. More generally, since S! is the homotopy pushout of
AY and A along OA!, for any A € sComm;, we have

SteY A2 AR L, A,

and we know that the coproducts on the right are also derived tensor products of the underlying
simplicial k-modules; using this formula it is easy to prove that S'®@% A and S'® A are equivalent
whenever A is a flat commutative k-algebra (see [Lod92, Prop. 1.1.13]).

We have proved above that for X = Rhg,.. 4 an affine derived stack, RL(X) is the affine
derived stack associated to the topological Hochschild homology of A. More generally, since L&
commutes with the left Ho sSet-module structures, we have:

Theorem 47. Let X € dSty. Then LORL(X) is naturally isomorphic to the topological
Hochschild homology of LO(X).
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Thus, Hochschild homology has a geometric interpretation as functions on the loop space.
The next step is to relate negative cyclic homology to S'-equivariant functions on the loop space.

The loop space LX is endowed with an action of the simplicial group BZ, that is, a map of
simplicial monoids BZ — Map(LX, LX). It is defined as the adjoint to the composition

LX — XBZ N X(BZXBZ) [a] (XBZ)BZ — LXBZ

where the first map is restriction along the multiplication BZ x BZ — BZ and the isomorphism
is the associativity isomorphism of the sSet-module structure of dStx. The commutativity of the
first diagram of (29) then follows from the associativity of the multiplication on BZ. Composing
with the monoid map ¢: Map(LX, LX) — Map(0(LX),0(LX)), we obtain a group action of
BZ on the simplicial k-algebra J(LX).

Let us denote by U: sAlgr — sModj, the forgetful functor. If K is a simplicial set, U does
not commute with K ® ?, but it does commute with its right adjoint ?*. This is a trivial
consequence of the fact that U has a left adjoint which commutes with colimits and hence with
K ®?. (The same argument applied to the forgetful functor to sSet shows that in both categories
AK is Mapgg, (K, A) with the algebraic structure coming from the target.) It follows that U has
a structure of simplicial functor given by

Map(A, B),, = sCommy, (A4, B2") = sMody(UA, UB*") = Map(U A, UB),,.

Therefore we also obtain a group action of BZ on the simplicial k-module U((LX)). This
action is readily made explicit. For € Z™ a generator of k[BZ],, and ®@yczna, is an element of
O(LX), = (BZ ® 0(X))y, then

T(Ryeznty) = Qyeznty—q.

The main observation is that this structure corresponds to the cyclic structure of the Hochschild
complex.

Theorem 48. Let X € dSt; and let n > 0. Then there is a natural isomorphism of k-modules
HC, (LO(X)) = 7, (Rfixpz LORL(X)).

It fits into a commutative square

HC(LO(?)) — HH,(LO(7))

:l lz

(R fixpz LORL(?)) — mn (LORL(?))

of functors HodSty — Mody in which: the top arrow is the canonical map of §1.1; the right
arrow s the isomorphism of Theorem 47; and the bottom arrow is induced by inclusion of fixed
points.

4.3 The Chern character revisited

In this section we shall explain how to define the Chern character of a vector bundle on a derived
stack, as sketched in [TVO08, §3], and we shall prove that this new construction coincides through
the identifications of the previous section with that of Chapter 1 when applied to a commutative
k-algebra that is cofibrant as a constant simplicial commutative k-algebra (or more generally
whose underlying k-module is flat). We shall only make the construction precise for affine
derived stacks, but the same construction will define the Chern character of a vector bundle on
an arbitrary derived stack X once we know the existence of a monoidal model category of vector
bundles Vectx that

o the canonical map N(Vecty) — RMap(X, Vect) is an isomorphism in Ho sSet;

e every object of Ho Vectx is dualizable.
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The idea of the construction is the following. Start with a vector bundle V on a derived stack X,
and pull back V' through the evaluation at zero p: RL(X) — X. Then the vector bundle p* (V)
comes equipped with a canonical “monodromy” automorphism, and its trace is by definition the
Chern character of V.

Let X € dStg. The natural adjunction map

BZ@“RL(X) —» X
induces
Ry, Map(X, Vect) — Re; Map(BZ @ RL(X), Vect) = R Map(BZ, Rg Map(RL(X), Vect)).
Taking connected components we obtain a map of sets
[X, Vect] — [BZ, R Map(RL(X), Vect)] (31)

natural for X € HodSty (the square brackets on the left are the hom sets of HodSty). From
now on we assume that X = Rhg,e. 4 is an affine derived stack. Let A = BZ @" A be the
topological Hochschild homology of A. Although it is not necessary, we will assume throughout
that A is cofibrant so that we need not worry about taking cofibrant replacements to compute
A. Thus A = BZ® A. By the derived Yoneda lemma, R¢ Map(X, Vect) is naturally equivalent
to (Ret Vect)(A). Recall that Vect is a derived stack and hence that ReVect is just a pointwise
fibrant replacement; we simply write RVect(A) for (Rg; Vect)(A). In particular, m, (RVect(A4)) =
7n(Vect(A)). Therefore (31) becomes a natural map

mo(Vect(A)) — [BZ, RVect(A)].

An element on the left is an isomorphism class in HosMod 4 of some perfect A-module M. Tts

image on the right is a homotopy class of maps of simplicial sets BZ — RVect(A). In particular
it induces a well-defined map of sets

mo(BZ) = {x} — mo(Vect(A)), (32)

pointing to the isomorphism class in HosMod ; of some perfect A-module M, and a well-defined
map of groups
m1(BZ, %) 2 7 — m; (Vect(A), M). (33)
We are going to identify (32) and (33).
The inclusion * — BZ induces for any X a map RL(X) — BZ @Y RL(X) in HodSt;, and
therefore a map RL(X) — X. For X = Rhg,. 4 this is the map

e:A— BZL® A (34)

which in level n is the inclusion of A,, into the tensor component of ) A, indexed by 0.

yeLr
Lemma 49. M is obtained from M by extension of scalars along (84).
Proof. Consider the diagram

7o(Vect(A)) — [BZ @ RL(X), Vect] = [BZ, RVect(A)]

e ]

7o(Vect(A)) ——— [x, RVect(A)].

Here e, = mp(Vect(e)) and the vertical maps are induced by * — BZ. The triangle is obtained
from a commutative triangle by applying the functor [?, Vect] and so it is commutative. The
square is also commutative by naturality of the horizontal adjunction isomorphisms. Travelling
along the bottom path, the connected component of M goes to the homotopy class of maps

* — RVect(A) pointing to the connected component of e.(M). The commutativity of the

diagram says that the homotopy class of * — RVect(A) factors through the homotopy class of

BZ — RVect(A) and so the mo of the latter also points to the connected component of e. (M),
Le., M = e, (M). O
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Thus M = M @4 (BZ ® A). This tensor product is formed by replacing in (BZ ® A),, the
factor A,, indexed by 0 by M,:

Mn =M, ® ® An
yezZ"—{0}

The identification of (33) requires more work. We begin with a description of the first
homotopy group of Vect(A) (that applies to the nerve of any category). It is proved in [DK80,
5.5 (ii)] that Qas Vect(A) is equivalent to the subsimplicial set Aut(M) of R Map(M, M) spanned
by the connected components corresponding to isomorphisms in HosMod 4. In particular, we
have

71 (Vect(A), M) = 7o (Qpr Vect(A)) = mo(Aut(M)) = Authosmod 4 (M).

This bijection is induced by sending a self-equivalence of M to its image in the homotopy category.
Thus, (33) becomes a map of groups

7 — 1 (Vect([l), M) = AutHo sMod 4 (M); (35)

i.e., an action of Z on M in the homotopy category. Consider now the functor Vect’: sCommj, —
sSet defined as Vect except that we apply the groupoid completion functor to Vecty” be-
fore taking the nerve. There is a canonical natural transformation v: Vect — Vect’. The
same result from [DK8O0] tells us that 2y Vect’(A) is equivalent to the constant simplicial set
Autposmod, (M), and it follows that the map Vect(A4) — Vect’(A) induces an isomorphism on
m for every choice of base point (and it is of course the identity in degree 0). Being the nerve
of a groupoid, Vect’(A) is a fibrant simplicial set. Since Rg;Vect is just a pointwise fibrant
replacement of Vect, we can choose Rg Vect by applying a functorial factorization in sSet to the
natural transformation ~, i.e., v factors as

Vect — Rg; Vect — Vect’

where the first map is a pointwise trivial cofibration and the second map is a pointwise fibration.

Let us now fix a cofibrant and perfect simplicial A-module M representing an element of
mo(Vect(A)) (always assuming that A itself is cofibrant). It corresponds by the simplicial Yoneda
lemma to a map f: hspec 4 — Vect. We will prove below that f has a lift g: hg,e. 4 — Vect' as
in the diagram

hSpec A L) Vect

Once g has been defined we can work explicitly at the level of representatives: a representative

of the homotopy class of maps BZ — RVect(A) — Vect’(A) corresponding to M will be the
image of g through the composition

dSty (hspec 45 Vect') — dSty(BZ @ hg. 5, Vect') = sSet(BZ, Map(hg,,. 4, Vect')),
where the first map is precomposition by

BZ®h CAﬁBZ@hSpeCAgBZ@hSBpZecA%ﬁSpecA'

Spe

A computation yields the following formula. An element z € Z will be sent to the equivalence

class in 7 (Vect/(A), M) = 7y (Vect(A), M) of the 1-simplex

94,1 (w(2)) € Vect'(A) (36)

where w(z): A'® A — A is the morphism in sComm;, induced by the classifying map A' — BZ
of z. Note that w(z) is a homotopy from (34) to itself.
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Lemma 50. Let K be a simplicial set and C a category. Then the map
sSet(K, NC) — sySet(i] (K), 7 (NC))

is injective and its image consists of those morphisms g: i (K) — i5(NC) satisfying g1(dix) =
g1(dox) o g1(daz) for all x € Ks.

Proof. The map sSet(K, NC) — soSet(i5(K), i5(NC)) is a bijection because nerves of categories
are 2-coskeletons. Let g: i5(K) — i5(NC). Clearly g2 is determined by gy since a 2-simplex
in NC is determined by its two external faces. This proves injectivity. Explicitly one has
g2(x) = (91(dax), g1(dox)). Tt is then easy to check that if go and g are given forming a map
in s;Set and if go is defined by this formula, then gss; = s;g1 for i = 0,1 and ¢1d; = d;g2 for
i = 0,2, so a necessary and sufficient condition for gy and ¢; to extend to a map in soSet is
g1dy = d1g2. This is precisely the condition of the lemma. [l

We now define the lift g. Since hgpec 4 takes values in constant simplicial sets, for g to extend
f it is necessary and sufficient that go = vofo = fo, so it remains to define g; such that gy and
g1 form a map in s;Set and to check the additional condition of Lemma 50. Let B € sCommy,
and H € hgpe. 4(B)1, i-e., H is a homotopy A' @ A — B between its two faces f: A — B and
g: A — B. We consider the commutative diagram in sCommy

in which all maps are weak equivalences. It induces a diagram of functors

HosMod 4
id Ol L.
Ld?

Lp. *
HosMod 4 < Ho sModat1g i) HosModpg

Ld!
id Lg..

HosMod 4

which is commutative up to natural isomorphism and in which Lp,, Ld?, and Ld! are equiva-
lences of categories. It shows that the functors Lf,, LH,Rp*, and Lg, are all naturally isomor-
phic, explicit isomorphisms being given by

¢o: Lf. = LH,Ld? = LH,Ld’R(d°)*Rp* — LH.Rp*,

e1: Lg, = LH,Ld! = LH,Ld:R(d")*Rp* — LH,Rp*,
where the nonidentity maps are induced by the counits of the equivalences (Ld2, R(d®)*) and
(Ld}, R(d")*). We define g1(H) to be €] jeon: M @ B — M ©g B. Then g and g1 are

compatible with dy, di, and sy by construction. It remains to prove that for ©: A2® A — B a
2-simplex of hg,c. 4(B), we have g1(K) = g1(J) o g1(H ), where
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Let €y and €1 be the natural isomorphisms induced by H as above, and let {p and (3 (resp. ng
and 71 ) be the ones induced by J (resp. by K). Then we must check that

1 1 ~1
G101 C0, M€Y pr€0,M = 11 pg70,M -

The proof proceeds by observing that each of these natural isomorphisms factors through
LO.Rg* where q: A2® A - A is the projection: there is a diagram of natural isomorphisms

LA,

/

¢1
LK,.Rp* LJ.Rp*
~ I’
LO.Rg"

Tlo T
Lf.——— LHRp" +————Lg.

in which all three squares are commutative. ~
Applying the formula (36), we find that the automorphism of M image of z € Z by (35) is
the composition

M=M®5. 0 A= Rp*(M)®5,) A MQF 0 A= M. (37)

Everything we have done so far would work as well with Qcoh in place of Vect, and only
now do we use that M is perfect. Recall that perfect simplicial A-modules are the dualizable
objects in the closed symmetric monoidal category HosMod 4. Therefore we can consider for
any M € sMod4 the trace map

tr: [M, M] — [A, A]

which is the composition
[M, M] = [A®% M, M] = [A, RHom(M, M)] = [A, M @% RHom (M, A)] — [A, A].

Let upr: M — M denote the image of 1 € Z by (35). The Chern character of M is
tr(unr) € [A, A]. We must prove that it does not depend on the choice of the representative M.

If f: M — M’ is an equivalence between cofibrant objects in sMod 4, i.e. a 1-simplex of Vect(A),
and u),;: M’ — M’ is the image of 1 € Z by (35), the isomorphism
71 (Vect(A), M) — m1(Vect(A), M)
induced by f corresponds to the isomorphism
fo?0 f_l : Auty, sMod ; (M) — AU-tHosModA (MI)

and so there is a commutative diagram

which implies that tr(uas) = tr(uy,).
Recall that for A € sCommy, there is a Quillen adjunction

mo: sSModa & Mod(4) :i.

By definition of perfect simplicial modules, M perfect implies mo(M) finitely generated and
projective. In other words, the total derived functor Ly preserves dualizable objects.
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Proposition 51. Let A € sCommy, and let M € sMod s be perfect. Then the square

M, M] —%— [A, A]

LWUJ(: ZJVLﬂ'o

[mo (M), mo(M)] —— [mo(A), mo (A)]

18 commutative.

Proof. Recall that the (nonunital) monoidal structure gives us a canonical map
mo(M @5 N) = mo(M) @ry(a) mo(N)

that coincides with the edge morphism of the Kiinneth spectral sequence. It follows from
Lemma 17 that this map is an isomorphism if M is perfect. By adjunction, we obtain a canonical
map

mo(RHom (M, N)) = Homy,(a)(mo(M), m0(N)),

which on the underlying sets is the bijection of Lemma 32. We consider the diagram

(M, M] ——— [A,RHom(M, M)] +——— [A, M @ MY] —— [4, 4]

o o NJ'
< ~

o~

o (A), 70 (R Hom(M, M))] = [mo(A), mo(M &% M)] —» [ro(A), mo(A)]

1R

o

~

[m0(A), mo(M) @ mo(M")]

1R

o

v v ~

[mo (M), 70 (M)] = [m0(A), Hom (o (M), w0 (M))] & [mo(A), 70 (M) @ 7o (M)"] = [mo(A), m0(A)]

in which the top and bottom rows are the trace maps. The commutativity of the two small rect-
angles is clear by functoriality of myg. We check the commutativity of the other three rectangles on
elements, and we can assume that M is cofibrant. Let [f] € [M, M]; its image in [A, Hom(M, M)]
has a representative sending 1 € Ag to f, so its image in [mo(A), Hom(mo (M), mo(M))] sends [1]
to mo(f). This is obviously what the other image of [f] does as well. The last two rectangles
come from the diagram

7o (Hom (M, M) +———— mo(M @ MY) —— mo(A)

]

7T0(M) ® 7T0(MV)

]

Hom(mo(M), mo(M)) «—— mo(M) @ mo(M)Y —— mo(A)

IR

by applying the functor [mo(4),?]. Let [z ® £] € (M ® MV). Both images of [z ® £] in
Hom(mo (M), mo(M)) are then mo(f) where f,(y) = &n(y)s(z) € M, (s(z) is the degeneracy of
z in degree n). The commutativity of the second rectangle is equally clear. (|

Theorem 52. Let A be a flat commutative k-algebra and let M be an f.g.p. A-module. Then

the Chern character of M in HHo(A) = mo(A) = A as defined in §1.3 coincides with the Chern
character of M defined above.
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Proof. Both maps in (37) agree on mp. Therefore the automorphism u s : M — M is such that

mo(ups) = id. Since mo(M) = M, Proposition 51 implies that tr(us) is the trace of the identity
on M. This is the same thing as the trace of an idempotent representing M. |

The next step would be to prove that the Chern character is “S'-equivariant”, i.e., that it
lifts to the negative cyclic homology HCj (A). There could be many such lifts, so we would
also need a way to select a natural one. This is expected to be a nontrivial result. We have
already solved it for constant simplicial k-algebras in Chapter 1 using Morita naturality, but we
do not know if this is true for arbitrary simplicial commutative k-algebra, let alone for arbitrary
derived stacks. It is possible however that the proof of Chapter 1 can be adapted to simplicial
commutative k-algebras using a homotopical generalization of the category Mory, (defined in the
next chapter) and derived Morita theory.



5 Categorical sheaves

5.1 The homotopy theory of simplicial categories

Fix a commutative ring k. A simplicial k-category is a category enriched in the closed symmetric
monoidal category sMody, of simplicial k-modules. A morphism of simplicial k-categories is an
sModg-enriched functor. Let sCat; denote the category of (small) simplicial k-categories. Since
the monoidal category sMody, is closed, it is itself a simplicial k-category (although it is not an
object of sCaty). For a simplicial k-category C, the category of sModg-enriched functor from
C to sMod;, with sModg-enriched natural transformations as morphisms is called the category
of simplicial C-modules and is denoted by sMod¢; it is in fact an sModi-module with tensor
and cotensor defined objectwise. Observe that a simplicial k-category A with a single object is
nothing else than a simplicial k-algebra, and a simplicial A-module as just defined is the same
thing as a left simplicial A-module.

Let Catj, denote the category of small Mody-enriched categories (also called k-categories).
There is a functor mg: sCaty — Caty that sends a simplicial k-category C' to the k-category
mo(C) with the same objects as C' and with 7 (C)(z,y) = mo(C(x,y)). Composition in 7y (C) is
defined using the canonical map of k-modules 7o (C(z, y)) @k 7o (C(y, 2)) — 7o (C(x, y)@kC(y, 2)).
If f is a morphism of simplicial k-categories, mo(f) is such that mo(f)s,y = mo(fz,y). It is clear
that 7o is left adjoint to the obvious fully faithful functor Caty — sCatg. This functor also has
a right adjoint C' — Cj defined by Co(z,y) = C(x,y)o, and there is a natural transformation
?0 — mo. A morphism of Cy is a homotopy equivalence if its image in 7o (C) is invertible. We
shall occasionnaly view m(C) or Cy as mere categories using the forgetful functor Caty — Cat,
and we observe that this forgetful functor reflects equivalences (because the forgetful functor
Modj, — Set reflects isomorphisms).

Theorem 53. 1. There is a cofibrantly generated model structure on sCaty in which a map
f: C —= D of simplicial k-categories is

e an equivalence if for every objects x and y in C, f,, is an equivalence of simplicial
k-modules, and if wo(f) is an equivalence of k-categories;

o a fibration if for every objects x andy of C, fr, is a fibration and if for every x € C,
every y' € D, and every homotopy equivalence u € Do(f(x),y’), there exists y € C
and a homotopy equivalence u € Cy(x,y) such that fo(u) = v.

2. Let C be a simplicial k-category. There is a cofibrantly generated model structure on sMod¢c
in which a map f: M — N of simplicial C-modules is an equivalence (resp. a fibration)
if it is a pointwise equivalence (resp. a pointwise fibration) in sMody. With this structure,
sMod¢ is an sMody-model category.

Proof. For 1, see [Ber04] or [Tab07a]. Since sMody, is cofibrantly generated, 2 follows from an
sModg-enriched version of [Hir03, 11.6.1]. O

There is a duality automorphism C +— C°P of sCaty, defined by Ob(C°P) = Ob C, C°P(z,y) =
C(y,z) and (f°P)z,y = fy,2- It clearly preserves the model structure of the theorem.

Conjecture 54. There exists a cofibrant replacement functor @ on sCaty such that QC — C
is the identity on objects and such that Q(C°P) = (QC)°P.

Conjecture 55. If C' is a cofibrant simplicial k-category, then
1. for every objects x and y, C(x,y) is cofibrant in sMody;
2. any cofibration in sMod¢ is a pointwise cofibration.

There are several other model structures of interest on sCat with larger sets of equivalences.
For instance, there is a left Bousfield localization of the above structure in which the equivalences
are the Morita equivalences, i.e., the simplicial k-functors C' — D inducing by precomposition
(see below) an equivalence of categories HosModp — HosMode. To any simplicial k-category

o8
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one can associate a mixed complex from which one can define various homology theories, and
these turn out to be Morita invariant in the obvious sense. An interesting fact is that for any
simplicial commutative k-algebra A there is a Morita equivalence between A and the simplicial k-
category of perfect simplicial A-modules, and hence that one can define the Hochschild homology
and cyclic homologies of A using this simplicial category.

Let f: C — D be a simplicial k-functor. It induces an adjunction

f«: sModg 2 sModp : f* (38)

where f*(M) = M f and f, exists by the theory of enriched Kan extensions. Since f* clearly
preserves equivalences and fibrations, this is a Quillen adjunction.

Conjecture 56. If f: C — D is an equivalence in sCaty, then (38) is a Quillen equivalence.
The tensor product of two simplicial k-categories C' and D is defined by
e Ob(C® D) =0bC x ObD and
e (CoD)((x,y),(x",y)) = Clz,2") @ D(y,y)

with the obvious compositions. This clearly defines a symmetric monoidal structure on sCaty
whose unit is the simplicial k-algebra k. Note that (C ® D)°P = C°P @ D°P.

There is also a tensor product of bimodules defined as follows. Let C, D, and F be simplicial
k-categories. Let M be a simplicial C' ® D°P-module and N a simplicial D ® E°P-module. One
defines a simplicial C ® E°P-module M ®p N by the formula

(M ®p N)(z,z) = M(z,?) ®p N(?,2)

where the right-hand side is an sModg-enriched coend. Any simplicial k-category C' can be seen
as a simplicial C' ® C°P-module defined by its sModg-enriched hom’s.

Conjecture 57. 1. Let Q) be a cofibrant replacement functor on sCaty. Then the functor
sCaty, x sCaty — sCatg, (C,D)+—QC®D
preserves equivalences.

2. Let C, D, and E be cofibrant simplicial k-categories. The tensor product of simplicial
bimodules ®p: sModcgper X SModpgger — sModogrer has a total left derived functor.

A consequence of 1 is that the functor ®: sCaty x sCaty — sCaty has a total left derived
functor induced by any of the equivalence-preserving functors (C,D) — QC ® D, (C,D)
C®QD,and (C,D)— QC®QD.

Let C be a simplicial k-category. A simplicial C-module M is called perfect if it is homo-
topically finitely presented in the model category sMod¢, i.e., if for any filtered index category
| and any functor d: | — sMod¢, the canonical map

R Map(M, holim d) — holim R Map(M, d)

is an isomorphism in HosSet. A C' ® D°P-module M is called right perfect if for every x € C
the D°P-module M (x,?) is perfect. This notion of perfect simplicial module extends the one
encountered in §3.4.

Conjecture 58. Let C be the simplicial k-module k viewed as a simplicial k-category. Then a
simplicial C'-module is perfect if and only if it is perfect as a simplicial k-module.

Using bimodules on can enhance the category sCaty into a category sCatf. The definition of
sCat{, is completely analogous to that of the category Mor;, studied in Chapter 1. Its objects are
small simplicial k-categories, and the set of morphisms from C to D is the set of isomorphism
classes of right perfect C @Y D°P-modules in Ho sMod g pes. For definiteness we fix a cofibrant
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replacement functor Q on sCat, satisfying Conjecture 54, and C ®% D°P is short for QC @ QD°P.
Composition is given by the derived tensor product of bimodules

®5D: Ho sModggr por X HosMod pgr gor — HosModogr gor -

There is a functor I: sCaty — sCatj that is the identity on objects and sends a morphism
f: C — D to the isomorphism class of the C' @Y D°P-module I(f) defined by (I(f))(x,y) =
(QD)(y, (Qf)(x)). Tt is “fully faithful” in the following sense: if I(f) = I(g), the HosMody-
enriched Yoneda lemma implies that f and g are naturally isomorphic as HosMody-enriched
functors.f

The category sCatf has a symmetric monoidal structure ®Y defined on objects by C @Y D =
QC ® QD. On morphisms it is induced by the functor

Ho sMOdC®LDOp x Ho SMOdE®LFop — Ho SMOd(C®LE)®L(D®LF)op,
(M,N) = P, P(x,z,y,w) = M(z,y) @ N(z,w).
It is straightforward to check that I(f ® g) = I(f) ® I(g), so that I is a monoidal functor.

In the next section we shall use the following generalization of the notion of simplicial k-
category. If A is a simplicial commutative k-algebra, the category sMod 4 of simplicial modules
over A is a closed symmetric monoidal category. We define an simplicial A-category to be a
category enriched in sMody. All the definitions and results of this section extend to simplicial

categories over simplicial commutative k-algebras. In particular, we can define the category
sCat%. A morphism f: A — B in sComm,, induces an obvious adjunction

f«:sCaty 22 sCatp : f*

with f.(C)(z,y) = f«(C(z,y)) and f*(D)(z,y) = f*(D(x,y)), which is manifestly a Quillen
adjunction. This adjunction extends to an adjunction

fx: sCat & sCatg : f*

in which f, acts on bimodules by extending the scalars. More precisely, if C' and D are two
cofibrant simplicial A-categories and if M is a simplicial C' ® D°P-module, then

f«(M): f.(C)®p f«(D)°® — sModp

is defined on objects by f.(M)(z,y) = f«(M(z,y)) and on the simplicial B-module of morphisms
from (z,y) to (2',y’) by

fC(z,2") @p fD(y',y) = fu(Cl(x,2") @4 D', y))
— fe(Homa (M (z,y), M(2',y"))) — Homp(f. M(z,y), fM(z',y")).

5.2 The Chern character of a categorical sheaf
Let f: A — B be a morphism of simplicial commutative k-algebras. It induces a functor
f«: sCat$y — sCaty.

If g: B — C is another morphism in sCommy, there is a canonical isomorphism (gf). = g f«.
Using the same trick as in §3.4 we can define for every A € sCommy, a new category CQcoh 4
varying functorially with A, together with an equivalence of categories CQcohy — sCaty such
that for every f: A — B the diagram

CQcoh 4 L) CQcohp

L

sCat$ — sCat}

TThere is obviously some 2-categorical stuff going on here. In fact, sCatj, can be viewed as a (0o, 2)-category
since its categories of morphisms are connected components of simplicial categories, so the simplifications adopted
here are quite extreme.
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commutes up to a natural isomorphism. Composing with the nerve, we obtain a functor
CQcoh: sCommy, — sSet, A+ N(CQcoh%)

where CQcoh§ is the subcategory of isomorphisms in CQcoh 4.
A simplicial A-category is called saturated if it is Morita equivalent to a cofibrant simplicial
k-category C with a single object such that

e (' is perfect as a simplicial k-module and
e (C is perfect as a simplicial C' ® C°P-module.

Conjecture 59. A simplicial A-category C is saturated if and only if it is dualizable in the
monoidal category sCat$,.

The full subcategory of sCat consisting of saturated objects will be denoted by sCat.

Conjecture 60. If f: A — B is a morphism in sCommy, then f.: sCat§ — sCaty preserves
saturated objects.

Therefore CQcoh has a subfunctor
CVect: sCommy, — sSet, A+ N(CVect)

where CVecty is the full subcategory of CQcoh 4 consisting of objects whose image in sCat$ is
saturated.

Conjecture 61. CQcoh and CVect are derived stacks.

Assuming this one can proceed in exactly the same way as in §4.3. Given a simplicial k-
category C over a cofibrant simplicial commutative k-algebra A, we obtain a well-defined map
of sets

mo(BZ) = {*} — m(CVect(A)),

where A = BZ ® A, pointing to the saturated simplicial k-category C obtained from C by
extending the scalars along the inclusion A — A, and a well-defined group action

m1(BZ, %) 27 — ﬂl(CVect(fl), C‘) = Au‘csCats‘i (C‘)

The image of 1 € Z is the isomorphism class of an invertible simplicial C @ C°P-module. As a
morphism in sCatZ, it has a trace which is an element of sCatii (A, A), i.e., an isomorphism class

in HosMod ; of a perfect simplicial A-module. This perfect simplicial module on the topological

Hochschild homology of A is by definition the Chern character of the simplicial k-category C.
Finally, it is expected that CQcoh and CVect classify a notion of categorical sheaf on derived

stacks, so that the above construction extends to arbitrary derived stacks. The Chern character

of a categorical sheaf on a derived stack X is thus a vector bundle on its derived loop space
RL(X).
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