Chern character and derived algebraic geometry

Marc Hoyois

January 15, 2009

Marc Hoyois Chern character and derived algebraic geometry

- 1 The classical Chern character
- 2 Derived algebraic geometry
- 3 The Chern character of a vector bundle on a derived stack

Hochschild and cyclic homology Morita invariance The Chern character

Hochschild homology

Notations

k is a commutative ring, ${\rm Alg}_k$ is the category of associative and unital $k\text{-algebras},\ A\in {\rm Alg}_k$

The Hochschild complex C(A) is the simplicial *k*-module

$$\cdots A \otimes A \otimes A \otimes A \stackrel{\Longrightarrow}{\rightrightarrows} A \otimes A \otimes A \stackrel{\Longrightarrow}{\rightrightarrows} A \otimes A \Rightarrow A \otimes A \Rightarrow A$$

with

$$d_i(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = \begin{cases} a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n & \text{if } 0 \leq i \leq n-1, \\ a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} & \text{if } i = n, \end{cases}$$
$$s_i(a_0 \otimes a_1 \otimes \cdots \otimes a_n) = a_0 \otimes a_1 \otimes \cdots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n.$$

The Hochschild homology of A is $HH_n(A) = \pi_n(C(A))$.

Hochschild and cyclic homology Morita invariance The Chern character

Cyclic modules and mixed complexes

The cyclic category $\Lambda \supset \Delta$

Objects: $[0] = \{0\}, [1] = \{0, 1\}, [2] = \{0, 1, 2\}$, etc.

Morphisms: compositions of nondecreasing maps and cyclic permutations

A cyclic *k*-module is a functor $X \colon \Lambda^{\mathrm{op}} \to \mathrm{Mod}_k$.

Equivalently: modules X_n and morphisms $d_i \colon X_n \to X_{n-1}$, $s_i \colon X_n \to X_{n+1}$, $t_n \colon X_n \to X_n$, $n \ge 0$, $0 \le i \le n$, satisfying certain relations.

 \rightsquigarrow model category ${\rm Mod}_k^{\Lambda^{\rm op}}$ with equivalences defined on the underlying simplicial sets.

A mixed complex (M, b, B) is a nonnegatively graded chain complex (M, b) and a cochain complex (M, B) with bB + Bb = 0.

 \rightsquigarrow monoidal model category Mix_k with equivalences defined on the underlying chain complexes.

 \exists a normalization functor $\mathsf{Mod}_k^{\Lambda^{\mathrm{op}}} \to \mathsf{Mix}_k$ which is a Quillen equivalence

Hochschild and cyclic homology Morita invariance The Chern character

Cyclic homology

The Hochschild complex C(A) has a structure of cyclic k-module with

$$t_n \colon A^{\otimes n+1} \to A^{\otimes n+1}, \quad t_n(a_0 \otimes \cdots \otimes a_n) = a_n \otimes a_0 \otimes \cdots \otimes a_{n-1},$$

whence also a structure of mixed complex by normalization.

Cyclic homology

 $HC_*(A) = H_*(k \otimes^{\mathsf{L}} C(A)) \text{ (homotopy orbits)}$ $HC_*^-(A) = H_*(\mathsf{R} \operatorname{Hom}(k, C(A))) \text{ (homotopy fixed points)}$ $\otimes^{\mathsf{L}}, \mathsf{R} \operatorname{Hom closed monoidal structure of Ho Mix_k}$

There are canonical natural transformations

$$HC^{-} \rightarrow HH \rightarrow HC.$$

Hochschild and cyclic homology Morita invariance The Chern character

Morita invariance I

The category Mor_k

Objects: associative and unital *k*-algebras Morphisms from *A* to *B*: group associated to the monoid of isomorphism classes of left perfect *B*-*A*-bimodules Composition: induced by the tensor product of bimodules

Mor_k is an additive category (the direct sum of A and B is $A \times B$) \exists functor Alg_k \rightarrow Mor_k:

 $f: A \rightarrow B \quad \mapsto \quad \text{bimodule } {}_BB_A \text{ with right } A \text{-action from } f.$

Example

 K_0 : Alg_k \rightarrow Ab is the composition

$$\operatorname{Alg}_k \to \operatorname{Mor}_k \xrightarrow{\operatorname{Mor}_k(k,?)} \operatorname{Ab}$$

Hochschild and cyclic homology Morita invariance The Chern character

Morita invariance II

The Hochschild complex functor $A \mapsto C(A)$ lifts to Mor_k up to simplicial homotopy: if ${}_{B}P_{A}$ is a morphism from A to B in Mor_k, the induced map of cyclic k-modules $C(A) \to C(B)$ is

$$a_0\otimes\cdots\otimes a_n\mapsto \sum_{j_0,\dots,j_n}\pi_{j_1}(p^{j_0}a_0)\otimes\pi_{j_2}(p^{j_1}a_1)\otimes\cdots\otimes\pi_{j_0}(p^{j_n}a_n)$$

where $\sum_{j} \pi_{j} \otimes p^{j} \in \text{Hom}_{B}(P, B) \otimes P$ corresponds to $id_{P} \in \text{Hom}_{B}(P, P)$.

Corollary

The functors HH, HC, and HC⁻ lift to Mor_k.

Hochschild and cyclic homology Morita invariance The Chern character

The Chern character

Construction of $ch_0: K_0(A) \to HH_0(A) = A/[A, A]$

M a perfect left A-module

- choose an idempotent $e \colon A^n \to A^n$ such that $M \cong Im(e)$
- take the trace of e, $\operatorname{tr}(e) \in A$
- its image in A/[A, A] depends only on M

Theorem

 ch_0 is Morita natural. There exists a unique Morita natural transformation ch_0^- , the Chern character, making the following diagram commute:

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

Sheaves on categories

(C, $\tau)$ a site (C a category, τ a topology on C)

Presheaves

The functor $h: C \to C^{\wedge}$ is initial among functors to cocomplete categories. $C^{\wedge} = \text{Set}^{C^{\circ P}}$ is the presheaf category and h is the Yoneda embedding.

Sheaves

The functor $a: C^{\wedge} \to C^{\sim,\tau}$ is initial among functors sending τ -local isomorphisms to isomorphisms.

Properties

- a has a fully faithful right adjoint $i: \mathbb{C}^{\sim, \tau} \to \mathbb{C}^{\wedge}$
- The essential image of *i* is characterized by the ususal descent property

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

Stacks on model categories I

(C, τ) a model site (C a model category, τ a topology on HoC)

Prestacks

The functor $h: C \to C^{\wedge}$ is homotopy initial among equivalence-preserving functors to model categories. **R***h* is the derived Yoneda embedding.

Sheaves

The functor $a: C^{\wedge} \to C^{\sim,\tau}$ is initial among left Quillen functors whose total derived functor sends τ -local equivalences to isomorphisms.

Properties

- $(a \rightleftharpoons i) \mathbf{R}i$: Ho $C^{\sim,\tau} \to$ Ho C^{\wedge} is fully faithful
- The essential image of Ri is characterized by a descent property

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

Stacks on model categories II

 $\mathsf{sSet}^{\mathsf{C}^\mathsf{OP}}$ is a simplicial model category with equivalences and fibrations defined objectwise.

 $C^{\wedge} = \text{left Bousfield localization of sSet}^{C^{\text{op}}}$ along the set of morphisms $\{h(x) \rightarrow h(y) \mid x \rightarrow y \text{ equivalence in C}\}.$

Theorem

 $Ho C^{\wedge}$ is equivalent the the full subcategory of $Ho sSet^{C^{op}}$ spanned by equivalence-preserving functors. These are called prestacks.

A τ -local equivalence is a morphism in sSet^{C^{op}} inducing τ -local isomorphisms on all presheaves of homotopy groups. C^{τ , τ} = left Bousfield localization of C^{Λ} along τ -local equivalences.

Theorem

Ho $C^{\sim,\tau}$ is equivalent the the full subcategory of HosSet^{$C^{\circ p}$} spanned by equivalence-preserving functors having τ -hyperdescent. These are called stacks.

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

Stacks on model categories III

Derived Yoneda lemma

For any $x \in C$ and $F \in C^{\wedge}$ fibrant, there is a natural isomorphism

 $F(x) \cong \mathbf{R} \operatorname{Map}(\mathbf{R}h(x), F)$

in HosSet. In particular, $\mathbf{R}h$ is fully faithful. Moreover $\mathbf{R}h$ is isomorphic to $x \mapsto \mathbf{R} \operatorname{Map}(x, ?)$.

The topology τ is subcanonical if for all $x \in C$, $\mathbf{R}h(x)$ has hyperdescent. This is equivalent to the existence of a commutative diagram

Derived stacks

Notation

 $Comm_k$ category of commutative k-algebras

The étale model site

A family $\{Y_i \to X\}_i$ of morphisms in HosComm $_k^{\mathrm{op}}$ is an étale covering if

- $\pi_*(Y_i) o \pi_*(X) imes_{\pi_0(X)} \pi_0(Y_i)$ is an isomorphism in $\operatorname{Comm}_k^{\operatorname{op}}$
- {π₀(Y_i) → π₀(X)}_i is an étale covering in Comm^{op}_k

This defines a model topology $\acute{\mathrm{et}}$ on $\mathrm{sComm}_k^{\mathrm{op}}$.

 $dSt_k = (sComm_k^{op})^{\sim, \text{\acute{e}t}}$ is the model category of derived stacks

Properties

- ét is subcanonical \rightsquigarrow **R***h*: HosComm^{op}_{*k*} \rightarrow HodSt_{*k*}
- Spec := **R***h* has a left inverse

 $\mathscr{O} : \operatorname{\mathsf{Ho}} \operatorname{\mathsf{dSt}}_k \to \operatorname{\mathsf{Ho}}\operatorname{\mathsf{sComm}}_k^{\operatorname{op}}, F \mapsto \operatorname{\mathbf{R}}\operatorname{\mathsf{Map}}(F, \operatorname{\mathsf{Spec}} k[T]).$

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

The overall picture

Quasi-coherent modules

- $A \in sComm_k \Rightarrow sMod_A$ monoidal model category
- $f: A \rightarrow B$ induces a Quillen adjunction $f_*: \mathsf{sMod}_A \rightleftharpoons \mathsf{sMod}_B : f^*$
- Quillen invariance: if f is an equivalence, this is a Quillen equivalence

Definition

The derived stack of quasi-coherent modules is

```
\operatorname{Qcoh}: \operatorname{sComm}_k \to \operatorname{sSet}, \quad A \mapsto \operatorname{nerve}(\operatorname{sMod}_A^{cw}).
```

Étale descent theorem

 Qcoh is a derived stack.

Stacks over model categories Derived stacks Quasi-coherent modules and vector bundles

Vector bundles

 $\mathsf{Vect}_{\mathcal{A}} = \mathsf{full}$ subcategory of $\mathsf{sMod}_{\mathcal{A}}$ spanned by the dualizable objects in $\mathsf{Ho}\,\mathsf{sMod}_{\mathcal{A}}$

Definition

The derived stack of vector bundles is

Vect: $sComm_k \rightarrow sSet$, $A \mapsto nerve(Vect_A^{cw})$.

Theorem

Vect is a derived stack.

The monoidal $(\infty, 1)$ -categories Qcoh_X and Vect_X

 $X \in dSt_k$. There exists a monoidal model category Mod_X of X-modules. These are stacks of modules on the ringed model site of derived stacks over X. The category Mod_X has subcategories

- Qcoh_X of quasi-coherent modules on X and
- Vect_X of vector bundles on X

that can be identified with $sMod_A$ and $Vect_A$ when X = Spec A is affine.

Theorem

 \mathbf{R} Map $(X, \operatorname{Qcoh}) \cong \operatorname{nerve}(\operatorname{Qcoh}_X^w)$ and \mathbf{R} Map $(X, \operatorname{Vect}) \cong \operatorname{nerve}(\operatorname{Vect}_X^w)$.

Proof.

If X is affine, this is the derived Yoneda lemma. An arbitrary X is a homotopy colimits of affine derived stacks, and one proves that the functors $X \mapsto \text{nerve}(\text{Qcoh}_X^w)$ and $X \mapsto \text{nerve}(\text{Vect}_X^w)$ commute with homotopy colimits.

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

Geometric interpretation of HH and HC^-

The loop space functor $L: dSt_k \rightarrow dSt_k$ is the right Quillen functor

$$X\mapsto L(X)=X^{B\mathbb{Z}}$$

Theorem

If A is cofibrant, $L(\text{Spec } A) \simeq \text{Spec } C(A)$. In particular $HH_n(A) = \pi_n(\mathcal{O}(L(\text{Spec } A)))$

The simplicial group $B\mathbb{Z}$ acts on L(X) by

$$L(X) = X^{B\mathbb{Z}} \to X^{B\mathbb{Z} \times B\mathbb{Z}} \cong (X^{B\mathbb{Z}})^{B\mathbb{Z}} = L(X)^{B\mathbb{Z}}$$

Hence it also acts on the simplicial algebra $\mathcal{O}(\mathcal{L}(X))$. Equivalently, $\mathcal{O}(\mathcal{L}(X))$ has a structure of simplicial $k[B\mathbb{Z}]$ -module.

Conjecture

If A is cofibrant,
$$HC_n^-(A) = \pi_n(\mathbf{R} \operatorname{Hom}_{k[B\mathbb{Z}]}(k, \mathcal{O}(L(\operatorname{Spec} A)))).$$

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

Definition of the Chern character I

Observation

 $X \in dSt_k$. A vector bundle on $B\mathbb{Z} \otimes^{\mathsf{L}} X$ gives rise to a vector bundle on X together with an autoequivalence.

Proof.

 $[B\mathbb{Z} \otimes^{\mathsf{L}} X, \operatorname{Vect}] \cong [B\mathbb{Z}, \mathsf{R} \operatorname{Map}(X, \operatorname{Vect})] \cong [B\mathbb{Z}, \operatorname{nerve}(\operatorname{Vect}_X^w)]$, i.e., an equivalence class of vector bundles on $B\mathbb{Z} \otimes^{\mathsf{L}} X$ is the same thing as a homotopy class of maps $B\mathbb{Z} \to \operatorname{nerve}(\operatorname{Vect}_X^w)$. It induces in particular well-defined maps

$$\pi_0(B\mathbb{Z}) = \{*\} \to [X, \text{Vect}] \quad \rightsquigarrow \quad \text{vector bundle } V \text{ on } X$$

$$\pi_1(B\mathbb{Z}, *) = \mathbb{Z} \to \pi_1(\text{nerve}(\text{Vect}^w_X), V) \cong \text{Aut}_{\text{Ho} \text{Vect}_X}(V).$$

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

Definition of the Chern character II

The trace map

 $(C,\otimes,1)$ rigid monoidal category. The (external) trace map tr: $C(x,x) \to C(1,1)$ is the composition

 $C(x,x) \cong C(1, Hom(x,x)) \cong C(1, x \otimes x^{\vee}) \rightarrow C(1,1).$

If $X \in dSt_k$, Ho Vect_X is a rigid monoidal category.

Construction of the Chern character

- V vector bundle on X
 - pull back V by the evaluation map $ev: B\mathbb{Z} \otimes^{\mathsf{L}} \mathsf{R}L(X) \to X;$
 - ev*(V) gives a vector bundle V' on RL(X) together with an autoequivalence u;
 - tr(u) is the Chern character of V.

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

Identifying the pair (V', u)

 $X \in dSt_k$ fibrant, V vector bundle on X. $PX = X^{\Delta^1}$ path space of X. There is a canonical map

$$I: LX \to PX$$

induced by $\Delta^1 \twoheadrightarrow \Delta^1/\partial \Delta^1 \cong B\mathbb{Z}$. It is a homotopy from the projection

 $p \colon LX \to X$

to itself.

Observation

 $f,g: Y \rightrightarrows X$. A homotopy $H: f \simeq g$ induces an equivalence $H^*(V): f^*(V) \simeq g^*(V)$.

Proof: Quillen invariance.

Theorem

$$V' = p^*(V)$$
 and $u = I^*(V)$.

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

The constant case

Theorem

 $A \in \text{Comm}_k$, M a perfect A-module. If A is cofibrant in sComm_k, then this construction gives the classical Chern character of M in HH₀(A).

Generalization I

Observation

The construction of the Chern character of a vector bundle on a derived stack X uses only the following properties of the category $Vect_X$:

- $X \mapsto \operatorname{Vect}_X$ is a presheaf of rigid monoidal $(\infty, 1)$ -categories;
- the functor $X \mapsto \operatorname{nerve}(\operatorname{Vect}_X^w)$ is classified by a derived stack Vect .

Let T be any presheaf defined on ${\rm sComm}_k$ with values in rigid monoidal $(\infty,1)\text{-}{\rm categories}$ such that

 $T: \operatorname{sComm}_k \to \operatorname{sSet}, \quad A \mapsto \operatorname{nerve}(\mathsf{T}(A)^w)$

is a derived stack. For any derived stack X, it is possible to define a rigid monoidal $(\infty, 1)$ -category T(X) such that

 \mathbf{R} Map $(X, T) \cong$ nerve $(\mathsf{T}(X)^w)$.

Objects of T(X) are called *T*-objects over *X*. Any *T*-object over *X* has a Chern character which is an endomorphism of the unit *T*-object over $\mathbf{R}L(X)$.

Geometric interpretation of Hochschild and cyclic homology Definition of the Chern character Generalizations

Generalization II

The model category sComm_k can be replaced by the category of monoids in any monoidal $(\infty, 1)$ -category C:

- C = Mod_k gives classical algebraic geometry;
- $\mathsf{C}=\mathsf{Mod}_{\mathscr{O}},$ where \mathscr{O} is a ringed site, gives relative algebraic geometry;
- C = sMod_k gives derived algebraic geometry;
- C = dgMod_k gives complicial algebraic geometry;
- $C = Sp^{\Sigma}$ gives brave new algebraic geometry;
- C = Cat gives 2-algebraic geometry;
- etc.

The construction of the Chern character of rigid objects makes sense in any of these geometries.