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Notations

k is a commutative ring, Algk is the category of associative and unital
k-algebras, A ∈ Algk

The Hochschild complex C(A) is the simplicial k-module

· · · A ⊗ A ⊗ A ⊗ A A ⊗ A ⊗ A A ⊗ A A

with

di(a0 ⊗ a1 ⊗ · · · ⊗ an) =

{

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if 0 ≤ i ≤ n − 1,

ana0 ⊗ a1 ⊗ · · · ⊗ an−1 if i = n,

si(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ a1 ⊗ · · · ⊗ ai ⊗ 1 ⊗ ai+1 ⊗ · · · ⊗ an.

The Hochschild homology of A is HHn(A) = πn(C(A)).
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Cyclic modules and mixed complexes

The cyclic category Λ ⊃ ∆

Objects: [0] = {0}, [1] = {0, 1}, [2] = {0, 1, 2}, etc.
Morphisms: compositions of nondecreasing maps and cyclic permutations

A cyclic k-module is a functor X : Λop → Modk .
Equivalently: modules Xn and morphisms di : Xn → Xn−1, si : Xn → Xn+1,
tn : Xn → Xn, n ≥ 0, 0 ≤ i ≤ n, satisfying certain relations.
 model category ModΛop

k with equivalences defined on the underlying
simplicial sets.
A mixed complex (M, b, B) is a nonnegatively graded chain complex
(M, b) and a cochain complex (M, B) with bB + Bb = 0.
 monoidal model category Mixk with equivalences defined on the
underlying chain complexes.

∃ a normalization functor ModΛop

k → Mixk which is a Quillen equivalence
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The Hochschild complex C(A) has a structure of cyclic k-module with

tn : A⊗n+1 → A⊗n+1, tn(a0 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1,

whence also a structure of mixed complex by normalization.

Cyclic homology

HC∗(A) = H∗(k ⊗L C(A)) (homotopy orbits)
HC−

∗ (A) = H∗(R Hom(k, C(A))) (homotopy fixed points)
⊗L, R Hom closed monoidal structure of Ho Mixk

There are canonical natural transformations

HC− → HH → HC .
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Morita invariance I

The category Mork

Objects: associative and unital k-algebras
Morphisms from A to B: group associated to the monoid of isomorphism
classes of left perfect B-A-bimodules
Composition: induced by the tensor product of bimodules

Mork is an additive category (the direct sum of A and B is A × B)
∃ functor Algk → Mork :

f : A → B 7→ bimodule BBA with right A-action from f .

Example

K0 : Algk → Ab is the composition

Algk Mork

Mork (k,?)
Ab
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Morita invariance II

The Hochschild complex functor A 7→ C(A) lifts to Mork up to simplicial
homotopy: if BPA is a morphism from A to B in Mork , the induced map
of cyclic k-modules C(A) → C(B) is

a0 ⊗ · · · ⊗ an 7→
∑

j0,...,jn

πj1(p
j0a0) ⊗ πj2(p

j1a1) ⊗ · · · ⊗ πj0(p
jn an)

where
∑

j πj ⊗ pj ∈ HomB(P, B) ⊗ P corresponds to idP ∈ HomB(P, P).

Corollary

The functors HH, HC, and HC− lift to Mork .
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Construction of ch0 : K0(A) → HH0(A) = A/[A, A]

M a perfect left A-module

choose an idempotent e : An → An such that M ∼= Im(e)

take the trace of e, tr(e) ∈ A

its image in A/[A, A] depends only on M

Theorem

ch0 is Morita natural. There exists a unique Morita natural

transformation ch−

0 , the Chern character, making the following diagram

commute:

K0
ch0

ch−

0

HH0

HC−

0 .
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Derived stacks

Quasi-coherent modules and vector bundles

Sheaves on categories

(C, τ) a site (C a category, τ a topology on C)

Presheaves

The functor h : C → C∧ is initial among functors to cocomplete
categories.
C∧ = SetCop

is the presheaf category and h is the Yoneda embedding.

Sheaves

The functor a : C∧ → C∼,τ is initial among functors sending τ -local
isomorphisms to isomorphisms.

Properties

a has a fully faithful right adjoint i : C∼,τ → C∧

The essential image of i is characterized by the ususal descent
property
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Stacks on model categories I

(C, τ) a model site (C a model category, τ a topology on Ho C)

Prestacks

The functor h : C → C∧ is homotopy initial among equivalence-preserving
functors to model categories.
Rh is the derived Yoneda embedding.

Sheaves

The functor a : C∧ → C∼,τ is initial among left Quillen functors whose
total derived functor sends τ -local equivalences to isomorphisms.

Properties

(a⇄ i) Ri : Ho C∼,τ → Ho C∧ is fully faithful

The essential image of Ri is characterized by a descent property
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Stacks on model categories II

sSetCop

is a simplicial model category with equivalences and fibrations
defined objectwise.
C∧ = left Bousfield localization of sSetCop

along the set of morphisms
{h(x) → h(y) | x → y equivalence in C}.

Theorem

Ho C∧ is equivalent the the full subcategory of Ho sSetCop

spanned by

equivalence-preserving functors. These are called prestacks.

A τ -local equivalence is a morphism in sSetCop

inducing τ -local
isomorphisms on all presheaves of homotopy groups.
C∼,τ = left Bousfield localization of C∧ along τ -local equivalences.

Theorem

Ho C∼,τ is equivalent the the full subcategory of Ho sSetCop

spanned by

equivalence-preserving functors having τ -hyperdescent. These are called

stacks.
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Stacks on model categories III

Derived Yoneda lemma

For any x ∈ C and F ∈ C∧ fibrant, there is a natural isomorphism

F (x) ∼= R Map(Rh(x), F )

in Ho sSet. In particular, Rh is fully faithful. Moreover Rh is isomorphic
to x 7→ R Map(x , ?).

The topology τ is subcanonical if for all x ∈ C, Rh(x) has hyperdescent.
This is equivalent to the existence of a commutative diagram

Ho C Rh Ho C∧

Ho C∼,τ .

Rid
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Derived stacks

Notation

Commk category of commutative k-algebras

The étale model site

A family {Yi → X}i of morphisms in Ho sCommop

k is an étale covering if

π∗(Yi) → π∗(X ) ×π0(X) π0(Yi) is an isomorphism in Commop

k

{π0(Yi) → π0(X )}i is an étale covering in Commop

k

This defines a model topology ét on sCommop

k .

dStk = (sCommop

k )∼,ét is the model category of derived stacks

Properties

ét is subcanonical  Rh : Ho sCommop

k → Ho dStk

Spec := Rh has a left inverse

O : Ho dStk → Ho sCommop

k , F 7→ R Map(F , Spec k[T ]).
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The overall picture

Commk
sheaves

stacks

∞-stacks

Set

(Groupoïdes)

π0

nerve

sCommk

truncation

derived stacks
sSet.

Π1
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Quasi-coherent modules

A ∈ sCommk ⇒ sModA monoidal model category

f : A → B induces a Quillen adjunction f∗ : sModA ⇄ sModB : f ∗

Quillen invariance: if f is an equivalence, this is a Quillen equivalence

Definition

The derived stack of quasi-coherent modules is

Qcoh : sCommk → sSet, A 7→ nerve(sModcw
A ).

Étale descent theorem

Qcoh is a derived stack.
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Vector bundles

VectA = full subcategory of sModA spanned by the dualizable objects in
Ho sModA

Definition

The derived stack of vector bundles is

Vect : sCommk → sSet, A 7→ nerve(Vectcw
A ).

Theorem

Vect is a derived stack.
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The monoidal (∞, 1)-categories QcohX and VectX

X ∈ dStk . There exists a monoidal model category ModX of X -modules.
These are stacks of modules on the ringed model site of derived stacks
over X . The category ModX has subcategories

QcohX of quasi-coherent modules on X and

VectX of vector bundles on X

that can be identified with sModA and VectA when X = Spec A is affine.

Theorem

R Map(X , Qcoh) ∼= nerve(Qcohw
X ) and R Map(X , Vect) ∼= nerve(Vectw

X ).

Proof.

If X is affine, this is the derived Yoneda lemma. An arbitrary X is a
homotopy colimits of affine derived stacks, and one proves that the
functors X 7→ nerve(Qcohw

X ) and X 7→ nerve(Vectw
X ) commute with

homotopy colimits.
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Definition of the Chern character

Generalizations

Geometric interpretation of HH and HC
−

The loop space functor L : dStk → dStk is the right Quillen functor

X 7→ L(X ) = XBZ.

Theorem

If A is cofibrant, L(Spec A) ≃ Spec C(A).
In particular HHn(A) = πn(O (L(Spec A)))

The simplicial group BZ acts on L(X ) by

L(X ) = XBZ → XBZ×BZ ∼= (XBZ)BZ = L(X )BZ.

Hence it also acts on the simplicial algebra O (L(X )). Equivalently,
O (L(X )) has a structure of simplicial k[BZ]-module.

Conjecture

If A is cofibrant, HC−
n (A) = πn(R Homk[BZ](k, O (L(Spec A)))).
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Generalizations

Definition of the Chern character I

Observation

X ∈ dStk . A vector bundle on BZ ⊗L X gives rise to a vector bundle on
X together with an autoequivalence.

Proof.

[BZ ⊗L X , Vect] ∼= [BZ, R Map(X , Vect)] ∼= [BZ, nerve(Vectw
X )], i.e., an

equivalence class of vector bundles on BZ ⊗L X is the same thing as a
homotopy class of maps BZ → nerve(Vectw

X ). It induces in particular
well-defined maps

π0(BZ) = {∗} → [X , Vect]  vector bundle V on X

π1(BZ, ∗) = Z → π1(nerve(Vectw
X ), V ) ∼= AutHo VectX

(V ).
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Generalizations

Definition of the Chern character II

The trace map

(C, ⊗, 1) rigid monoidal category. The (external) trace map
tr : C(x , x) → C(1, 1) is the composition

C(x , x) ∼= C(1, Hom(x , x)) ∼= C(1, x ⊗ x∨) → C(1, 1).

If X ∈ dStk , Ho VectX is a rigid monoidal category.

Construction of the Chern character

V vector bundle on X

pull back V by the evaluation map ev : BZ ⊗L RL(X ) → X ;

ev∗(V ) gives a vector bundle V ′ on RL(X ) together with an
autoequivalence u;

tr(u) is the Chern character of V .
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Generalizations

Identifying the pair (V ′
, u)

X ∈ dStk fibrant, V vector bundle on X . PX = X∆1

path space of X .
There is a canonical map

I : LX → PX

induced by ∆1 ։ ∆1/∂∆1 ∼→ BZ. It is a homotopy from the projection

p : LX → X

to itself.

Observation

f , g : Y ⇒ X . A homotopy H : f ≃ g induces an equivalence
H∗(V ) : f ∗(V ) ≃ g∗(V ).

Proof: Quillen invariance.

Theorem

V ′ = p∗(V ) and u = I∗(V ).
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Definition of the Chern character

Generalizations

The constant case

Theorem

A ∈ Commk , M a perfect A-module. If A is cofibrant in sCommk , then

this construction gives the classical Chern character of M in HH0(A).
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Generalization I

Observation

The construction of the Chern character of a vector bundle on a derived
stack X uses only the following properties of the category VectX :

X 7→ VectX is a presheaf of rigid monoidal (∞, 1)-categories;

the functor X 7→ nerve(Vectw
X ) is classified by a derived stack Vect.

Let T be any presheaf defined on sCommk with values in rigid monoidal
(∞, 1)-categories such that

T : sCommk → sSet, A 7→ nerve(T(A)w )

is a derived stack. For any derived stack X , it is possible to define a rigid
monoidal (∞, 1)-category T(X ) such that

R Map(X , T ) ∼= nerve(T(X )w ).

Objects of T(X ) are called T -objects over X . Any T -object over X has a
Chern character which is an endomorphism of the unit T -object over
RL(X ).
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Definition of the Chern character

Generalizations

Generalization II

The model category sCommk can be replaced by the category of monoids
in any monoidal (∞, 1)-category C:

C = Modk gives classical algebraic geometry;

C = ModO , where O is a ringed site, gives relative algebraic
geometry;

C = sModk gives derived algebraic geometry;

C = dgModk gives complicial algebraic geometry;

C = SpΣ gives brave new algebraic geometry;

C = Cat gives 2-algebraic geometry;

etc.

The construction of the Chern character of rigid objects makes sense in
any of these geometries.
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