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Abstract. We relate the recognition principle for infinite P1-loop spaces to the theory of

motivic fundamental classes of Déglise, Jin, and Khan.
We first compare two kinds of transfers that are naturally defined on cohomology theories

represented by motivic spectra: the framed transfers given by the recognition principle, which

arise from Voevodsky’s computation of the Nisnevish sheaf associated with An/(An − 0),
and the Gysin transfers defined via Verdier’s deformation to the normal cone.

We then introduce the category of finite R-correspondences for R a motivic ring spectrum,

generalizing Voevodsky’s category of finite correspondences and Calmès and Fasel’s category
of finite Milnor–Witt correspondences. Using the formalism of fundamental classes, we show

that the natural functor from the category of framed correspondences to the category of
R-module spectra factors through the category of finite R-correspondences.
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1. Introduction

This paper connects two recent developments in our understanding of certain cohomology
theories for schemes, namely those that are represented in the Morel–Voevodsky category of
motivic spectra [Mor03]. On the one hand, the work of Levine [Lev17b] and Déglise, Jin, and
Khan [DJK18] develops the theory of fundamental classes in the setting of motivic homotopy
theory. This results in a vast generalization of Fulton’s operations in Chow groups [Ful98] to
these cohomology theories. On the other hand, the work of Garkusha, Panin, Ananyevskiy, and
Neshitov [GP18a, GP18b, AGP18, GNP18], building on some insights of Voevodsky [Voe01],
develops a theory of framed motives. One achievement of their work is to give explicit models
for motivic suspension spectra of smooth schemes.

Recall that if E ∈ SH(S) is a motivic spectrum over a scheme S, there is an associated
bigraded cohomology theory on smooth S-schemes:

E∗,∗(−) : Smop
S −→ Ab.

Both the theory of fundamental classes and that of framed motives imply the existence of
certain transfers, called framed transfers, in such a cohomology theory. These transfers can be
encoded by an extension of E∗,∗(−) to the category hCorrfr(SmS) of framed correspondences:

Smop
S Ab.

hCorrfr(SmS)op

E∗,∗(−)

In the first part of this paper, we show that the framed transfers produced by both theories agree.
This is nontrivial as their respective constructions are based on different geometric ideas. In the
second part of this paper, we introduce the category hCorrR(SmS) of finite R-correspondences
for R a motivic ring spectrum, and we construct a further interesting extension

Smop
S Ab

hCorrfr(SmS)op

hCorrR(SmS)op

E∗,∗(−)

when E is a module over R. The category hCorrR(SmS) recovers Voevodsky’s category of
finite correspondences when R is the motivic Eilenberg–Mac Lane spectrum HZ, and it recovers
Calmès and Fasel’s category of finite Milnor–Witt correspondences when R = HZ̃. Thus, our
construction unifies those of Voevodsky and of Calmès–Fasel, as well as their relationship with
the category of framed correspondences.

1.1. Comparison of transfers. In [EHK+19], we introduced the ∞-groupoid Corrfr
S (X,Y) of

framed correspondences between smooth S-schemes X to Y: such a correspondence is a span

Z

X Y

f g

where f is finite syntomic, together with an equivalence τ : Lf ' 0 in K(Z). Here, Lf is
the cotangent complex of f and K(Z) is the K-theory space of Z. As X and Y vary, these
∞-groupoids form the mapping spaces of an ∞-category Corrfr(SmS).
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Framed correspondences encode an essential functoriality of cohomology theories represented
by motivic spectra: if E ∈ SH(S) and α = (Z, f, g, τ) ∈ Corrfr

S (X,Y), there is an induced map

α∗ : E(Y)→ E(X)

in cohomology; here E(X) = MapsSH(S)(Σ
∞
T X+,E) is the E-cohomology space of X. In fact,

there are several different ways to construct α∗ that are not obviously equivalent:

(1) Via fundamental classes. For any finite syntomic map f : Z→ X between S-schemes, its
fundamental class induces a Gysin transfer f! : E(Z,Lf )→ E(X) in twisted cohomology
[Lev17b, DJK18]. Hence, given the framed correspondence α, we can define

α∗ : E(Y)
g∗−→ E(Z)

τ' E(Z,Lf )
f!−→ E(X).

(2) Via Voevodsky’s Lemma. Voevodsky introduced the set Correfr
S (X,Y) of equationally

framed correspondences from X to Y [Voe01] and constructed a canonical map

Correfr
S (X,Y)→ MapsSH(S)(Σ

∞
T X+,Σ

∞
T Y+).

One of the key results in [EHK+19] is that the presheaves Correfr
S (−,Y) and Corrfr

S (−,Y)
are motivically equivalent. This implies that Voevodsky’s map factors through the ∞-
groupoid Corrfr

S (X,Y). In particular, α induces a map Σ∞T X+ → Σ∞T Y+ in SH(S),
whence a map α∗ : E(Y)→ E(X) in cohomology.

(3) Via framed motivic spectra. In [EHK+19], we constructed the ∞-category SHfr(S)
of framed motivic spectra over S, in which the functoriality with respect to framed
correspondences is hard-coded. In particular, α induces a morphism

Σ∞T,fr(α) : Σ∞T,frX→ Σ∞T,frY

in SHfr(S). The reconstruction theorem of loc. cit. (generalized to arbitrary schemes in

[Hoy18]) gives an equivalence of ∞-categories SHfr(S) ' SH(S), under which Σ∞T,fr(α)

corresponds to a morphism Σ∞T X+ → Σ∞T Y+ as in (2).

In Section 3, we show that these three constructions agree.

We note that each construction has its own useful features. Construction (1) connects framed
correspondences with the powerful formalism of six operations. As we explained in the intro-
duction to [EHK+19], it was this hypothetical connection that led us to the correct formulation
of the recognition principle for infinite P1-loop spaces. Construction (2) is helpful to perform
explicit computations. For example, Bachmann and Yakerson employ the Voevodsky transfer
to show that for a strictly homotopy invariant Nisnevich sheaf of abelian groups M on Smk

the double contraction M−2 has an infinite Gm-delooping (at least when char k = 0) [BY18].
Construction (3) has the advantage that it is coherently compatible with the composition of
framed correspondences, i.e., it gives a functor

Corrfr(SmS)→ SH(S).

Our comparison theorems can therefore also be viewed as coherence theorems for the first two
types of transfers.

1.2. Finite correspondences for motivic ring spectra. In Section 4, we introduce cat-
egories of finite correspondences that encode the functoriality of R-cohomology for a given
motivic ring spectrum R ∈ SH(S). We define for X,Y ∈ SmS an ∞-groupoid CorrR

S (X,Y) of

finite R-correspondences such that CorrR
S (X,S) ' R(X). We expect that these are the mapping

spaces of an ∞-category CorrR(SmS) with the following properties:

(1) There is a functor MR : CorrR(SmS)→ModR(SH(S)) sending X to R⊗ Σ∞T X+.
(2) There is a functor ΦR : Corrfr(SmS)→ CorrR(SmS) sending X to X.
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(3) The following square of ∞-categories commutes:

Corrfr(SmS) SH(S)

CorrR(SmS) ModR(SH(S)).

ΦR R⊗−

MR

In this paper we restrict ourselves to constructing the homotopy category hCorrR(SmS), and
we establish the above properties at the level of homotopy categories (enriched in the homotopy
category of spaces). The functor MR exists essentially by design, and the functor ΦR is defined
using the formalism of fundamental classes. Property (3) is an application of the main result
of Section 3.

We then consider the cases R = HZ and R = HZ̃ for S essentially smooth over a Dedekind
domain and a field, respectively. In these two cases the mapping spaces CorrR

S (X,Y) are discrete,
so the∞-category CorrR(SmS) is defined and is a 1-category. Moreover, we prove the following
comparison results:

(4) CorrHZ(SmS) is equivalent to Voevodsky’s category of finite correspondences, and the
functor ΦHZ is the functor cyc constructed in [EHK+19, §5.3].

(5) CorrHZ̃(SmS) is equivalent to the category of finite Milnor–Witt correspondences, con-

structed by Calmès and Fasel [CF17], and the functor ΦHZ̃ refines the one defined by
Déglise and Fasel in [DF17].

If k is a field and R ∈ SH(k) is an MSL-algebra, the category hCorrR(Smk) is equivalent
to that constructed by Druzhinin and Kolderup in [DK18]. For R = KGL (resp. R = KO if
char k 6= 2), it receives a functor from Walker’s category of finite K0-correspondences [Sus03]
(resp. from Druzhinin’s category of finite GW-correspondences [Dru18]). However, a novel
feature of our category is that it is enriched in the homotopy category of spaces, hinting that it
is the homotopy category of a more fundamental ∞-category. Its mapping spaces are discrete
if and only if R is 0-truncated in the effective homotopy t-structure, a condition which implies

that R is an HZ̃-algebra. The Calmès–Fasel category CorrHZ̃(Smk) is thus in a precise sense
the most general 1-category of finite correspondences.

Assuming that the ∞-category CorrR(SmS) has been constructed, one can consider the

∞-category DMR(S) of T-spectra in A1-invariant Nisnevich-local presheaves on CorrR(SmS).

When S is the spectrum of a field of characteristic zero and R = HZ or R = HZ̃, it is well known
that DMR(S) 'ModR(SH(S)) [RØ08, EK19] and that the “cancellation theorem” holds for
CorrR(SmS) [Voe10, FØ17]. We will not attempt here to generalize these results. However,
we note that the conjectural properties listed above imply that SH(S) is always a retract of
DM1(S).

1.3. Conventions and notation. Our terminology and notation follows [EHK+19]. In par-
ticular:

• Spc is the ∞-category of spaces/∞-groupoids, Spt that of spectra;
• Maps(X,Y) is the space of maps from X to Y in an ∞-category;
• if C is an ∞-category, we denote by hC its homotopy category;
• Perf(X) is the ∞-category of perfect complexes over X;
• SH(S) is the stable motivic homotopy ∞-category over S;
• DM(S) is Voevodsky’s ∞-category of motives over S;
• G, T, and P denote the pointed presheaves (Gm, 1), A1/Gm, and (P1,∞); ΣG, ΣT,

and ΣP are the corresponding suspension functors, and ΩG, ΩT, and ΩP their right
adjoints.
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• If C is an ∞-category and M,N are two collections of morphisms in C that are stable
under composition and pullback along one another, we write Corr(C,M,N) for the
∞-category of spans with backward maps in M and forward maps in N; see [Bar17, §5]
for details on the construction of this ∞-category.

1.4. Acknowledgments. We would like to thank the Mittag-Leffler Institute and the organiz-
ers of the program “Algebro-Geometric and Homotopical Methods”, which hosted the authors
while part of this work was done. Elmanto and Yakerson also thank the University of Copen-
hagen and the Centre for Symmetry and Deformation for support and hospitality during an
enjoyable research visit. Hoyois would like to thank Aravind Asok, Tom Bachmann, and Marc
Levine for useful discussions about Chow–Witt groups. Yakerson would like to thank sincerely
Jean Fasel and Marc Levine for teaching her about Milnor–Witt correspondences.

2. Preliminaries

In this section, we review some aspects of the formalism of six functors in stable motivic
homotopy theory [Ayo08, CD19].

In §2.1, we discuss various (co)homology theories associated with a motivic spectrum and
their basic properties. In §2.2, we review the formalism of fundamental classes for local complete
intersection morphisms.

2.1. Cohomology theories.

2.1.1. For every morphism of schemes f : X→ Y we have an adjunction

f∗ : SH(Y)� SH(X) : f∗.

If f is smooth, there is a further left adjoint

f] : SH(X)� SH(Y) : f∗.

If f is locally of finite type1, we also have an adjunction

f! : SH(X)� SH(Y) : f !,

such that f! ' f∗ if f is proper.

The basic properties of these functors are summarized by the existence of a functor

Corr(Sch, all, lft)→ (∞, 1)-Cat, S 7→ SH(S), (U
f←− T

p−→ S) 7→ p!f
∗,

where “lft” is the class of morphisms locally of finite type (see [Kha16, Chapter 2, §5.2] or
[Hoy17, §6.2]). We will often use this implicitly when discussing the functoriality of certain
constructions.

2.1.2. Thom transformations. Let S be a scheme, E a locally free OS-module of finite rank, and
V = Spec(Sym(E)) the associated vector bundle. If p : V → S is the structure morphism and
s : S→ V the zero section, then the adjoint functors

ΣE = p]s∗ : SH(S)� SH(S) : s!p∗ = Σ−E

are SH(S)-linear equivalences of ∞-categories, called Thom transformations. In particular,
ΣE ' ΣE1S ⊗ (−), and the object ΣE1S ∈ SH(S) is invertible with inverse Σ−E1S.

1The careful reader will replace “locally of finite type” by “separated of finite type”, since the current
literature only contains the construction of f! in the latter case; it can be constructed in the general case using
Zariski descent.
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The Thom transformations ΣE are defined more generally for E a perfect complex of OS-
modules, and they assemble into a morphism of grouplike E∞-spaces

(2.1.3) K(S)→ Pic(SH(S)), ξ 7→ Σξ1S,

natural in S, called the motivic J-homomorphism (see [BH18, §16.2]). In particular, for every
cofiber sequence

E′ → E→ E′′

in Perf(S), we have canonical equivalences

(2.1.4) ΣE ' ΣE′ΣE′′ ' ΣE′′ΣE′ .

2.1.5. Purity equivalences. For f : X→ S a smooth morphism with sheaf of relative differentials
Ωf , we have canonical equivalences

(2.1.6) f ! ' ΣΩf f∗ and f! ' f]Σ−Ωf .

Suppose that s : Z ↪→ X is a closed immersion such that the composite g = f ◦ s is smooth.
Combining (2.1.4) and (2.1.6), we obtain equivalences

(2.1.7) s!f∗ ' Σ−Nsg∗ and f]s∗ ' g]ΣNs ,

where Ns is the conormal sheaf of s. The equivalences (2.1.6) and (2.1.7) are called the purity
equivalences. Note that we have equivalences of perfect complexes Ωf ' Lf and Ns[1] ' Ls, so
that we can write ΣΩf ' ΣLf and Σ−Ns ' ΣLs .

2.1.8. Twisted cohomology. A motivic spectrum E ∈ SH(S) gives rise to various (co)homology
theories for S-schemes, which can be twisted by K-theory classes. Let p : X→ S be a morphism2

and let ξ ∈ K(X). We will consider the following mapping spaces:

(1) The ξ-twisted cohomology of X with coefficients in E is

E(X, ξ) = Maps(1S, p∗Σ
ξp∗E).

(2) The ξ-twisted Borel–Moore homology of X with coefficients in E is

EBM(X/S, ξ) = Maps(1S, p∗Σ
−ξp!E).

We omit the second parameter when ξ = 0. Moreover, it is understood that an element ξ ∈ K(X)
is allowed to twist the cohomology of any X-scheme: if f : X′ → X is a morphism, we will often
write E(X′, ξ) instead of E(X′, f∗ξ), and similarly for Borel–Moore homology. There are also
twisted versions of compactly supported cohomology and of homology (see [DJK18, Definition
2.2.1]), but we shall not use these theories in this paper.

Remark 2.1.9. In what follows, we often fix a motivic spectrum E ∈ SH(S) and talk about E-
cohomology spaces in the interest of readability. However, E-cohomology spaces can generally
be replaced by the corresponding endofunctors of SH(S). In particular, the naturality in E of
all constructions and statements will be implicit.

2.1.10. Twisted motives. One can also define various twised motives in SH(S): if p : X → S is
a morphism and ξ ∈ K(X), we let

MS(X, ξ) = p!Σ
ξp!1S and MBM

S (X, ξ) = p!Σ
−ξp∗1S.

For every E ∈ SH(S), we have

EBM(X/S,−ξ) ' Maps(MBM
S (X, ξ),E)

2Whenever the functors p! or p! are used, it is implicitly assumed that p is locally of finite type.
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by adjunction. The relationship between MS(X, ξ) and cohomology is more subtle. There is a
canonical map p∗E→ Hom(p!1S, p

!E) adjoint to the composite

p!(p
∗E⊗ p!1S) ' E⊗ p!p

!1S
counit−−−−→ E⊗ 1S ' E.

Applying Maps(Σξ1X,−), we obtain a canonical map

E(X,−ξ)→ Maps(MS(X, ξ),E);

it is an equivalence when X is smooth over S by purity (2.1.6), whence when X is cdh-locally
smooth since motivic spectra satisfy cdh descent [Cis13, Proposition 3.7]. However, it is not
known to be an equivalence in general.

2.1.11. Functoriality. The cohomology space E(X, ξ) is contravariant in the pair (X, ξ). More
precisely, if (SchS)/K → SchS denotes the Cartesian fibration classified by K: Schop

S → Spc, then
(X, ξ) 7→ E(X, ξ) is a contravariant functor on (SchS)/K. In particular, for every S-morphism
f : Y → X, there is a pullback map

f∗ : E(X, ξ)→ E(Y, f∗ξ)

induced by the unit transformation id→ f∗f
∗.

On the other hand, Borel–Moore homology EBM(X/S, ξ) is covariant in (X, ξ) for proper
maps and contravariant in (X, ξ) for étale maps. This bivariance can be expressed coherently
using the ∞-category of correspondences Corr((SchS)/K,prop, ét). In addition, Borel–Moore
homology is contravariantly functorial in the base S. In particular, for a morphism f : S′ → S,
there is a base change map

f∗ : EBM(X/S, ξ)→ EBM(X×S S′/S′, π∗1ξ)

induced by the exchange transformations Ex∗∗ and Ex∗!.

2.1.12. Cohomology with support. Let X be an S-scheme, i : Y ↪→ X an immersion, and ξ ∈
K(Y). The ξ-twisted cohomology of X with support in Y is

EY(X, ξ) = Maps(1S, p∗i!Σ
ξi!p∗E).

Given a Cartesian square

Y′ X′

Y X,

j

g f

i

the unit transformation id → g∗g
∗ and the exchange transformations Ex∗! : g∗i! → j!f∗ and

Ex!∗ : i!g∗ → f∗j! define a transformation

i!Σ
ξi! → f∗j!Σ

g∗ξj!f∗,

which induces a pullback in cohomology with support

(2.1.13) f∗ : EY(X, ξ)→ EY′(X
′, g∗ξ).

If k : V ↪→ Y is another immersion, we also have a “forgetful” map

(2.1.14) EV(X, k∗ξ)→ EY(X, ξ)

induced by the counit transformation k!k
! → id.

If Y is closed in X and both are smooth over a common base, we have a purity equivalence

(2.1.15) EY(X, ξ) ' E(Y, ξ −Ni)

by (2.1.7).
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2.1.16. Localization. Suppose that we have a diagram in SchS

Z
i
↪→ X

j
←↩ U

where i is a closed immersion and j is the complementary open immersion, and let ξ ∈ K(X).
Then the localization sequence

i!i
! → id→ j∗j

∗

gives the fiber sequence

(2.1.17) EZ(X, i∗ξ)→ E(X, ξ)→ E(U, j∗ξ).

Dually, the localization sequence

j!j
! → id→ i∗i

∗

gives the fiber sequence

(2.1.18) EU(X, j∗ξ)→ E(X, ξ)→ E(Z, i∗ξ).

In Borel–Moore homology, we similarly obtain the fiber sequence

EBM(Z/S, i∗ξ)→ EBM(X/S, ξ)→ EBM(U/S, j∗ξ).

2.1.19. Descent properties. Recall that the functor

Schop
S → Fun(SH(S),SH(S)), (p : X→ S) 7→ p∗p

∗,

is an A1-invariant cdh-sheaf on SchS [Cis13, Proposition 3.7]. Consequently, cohomology is
an A1-invariant cdh-sheaf and Borel–Moore homology is a Nisnevich sheaf. In particular, if
f : X → Y is an A1-cdh-equivalence (i.e., f induces an equivalence between the associated
A1-invariant cdh sheaves) and ξ ∈ K(Y), then the induced map

f∗ : E(Y, ξ)→ E(X, ξ)

is an equivalence.

In fact, we have the following more precise excision properties. Let Y ⊂ X be a subscheme
and f : X′ → X a morphism such that f−1(Y) ' Y. For any ξ ∈ K(Y), the pullback

f∗ : EY(X, ξ)→ EY(X′, ξ)

is an equivalence under either of the following conditions:

• f is smooth and Y is closed (Nisnevich excision);
• f is proper and Y is open (excision for abstract blowups).

This follows directly from the definition of f∗ given in 2.1.12.

2.1.20. Products. Suppose that E ∈ SH(S) is equipped with a multiplication µ : E ⊗ E → E.
This induces various products in cohomology and in Borel–Moore homology:

(1) For any S-scheme X, subschemes Z,Z′ ⊂ X, and K-theory classes ξ ∈ K(Z) and ξ′ ∈
K(Z′), we have the usual cup product

µ : EZ(X, ξ)× EZ′(X, ξ
′)→ EZ∩Z′(X, ξ + ξ′), (x, y) 7→ x ∪ y.

(2) For any S-scheme X, subschemes T ⊂ Z ⊂ X, and K-theory classes ξ ∈ K(Z) and
ζ ∈ K(T), we have the refined cup product

µ : EZ(X, ξ)× ET(Z, ζ)→ ET(X, ξ + ζ).
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We refer to [Dég18b, 1.2.8] for the definition. This refines the cup product from (1) as
follows: there is a commutative square

EZ(X, ξ)× EZ′(X, ξ
′) EZ(X, ξ)× EZ∩Z′(Z, ξ

′)

EZ∩Z′(Z
′, ξ)× EZ′(X, ξ

′) EZ∩Z′(X, ξ + ξ′),

id×i∗

i′∗×id µ µ

µ

where i : Z ↪→ X and i′ : Z′ ↪→ X are the inclusions.
(3) Suppose Z → Y → X are S-morphisms locally of finite type and let ξ ∈ K(Z) and

ζ ∈ K(Y). Then we have the composition product

µBM : EBM(Z/Y, ξ)× EBM(Y/X, ζ)→ EBM(Z/X, ξ + ζ), (z, y) 7→ z · y.

We refer to [Dég18a, 1.2.8] for the definition.

Of course, the cup product and the composition product are associative or unital (up to homo-
topy) if the multiplication on E is.

2.1.21. Borel–Moore homology as cohomology with support. Let f : Z→ S be a morphism locally
of finite type. We say that f is smoothable if there exists a factorization

Z X

S

i

f
p

where i is a closed immersion and p is smooth. For example, if S has the resolution property
(i.e., every finitely generated quasi-coherent sheaf is a quotient of a locally free sheaf of finite
rank), then every quasi-projective morphism f : Z→ S is smoothable.

In the above situation, if E ∈ SH(S) and ξ ∈ K(Z), the purity equivalence (2.1.6) induces a
canonical equivalence

(2.1.22) EBM(Z/S, ξ) ' EZ(X,ΩX/S − ξ).

We record the following compatibility properties of the equivalence (2.1.22), which follow easily
from the definitions. We state them without twists for simplicity.

(1) Base change. The equivalence (2.1.22) is contravariantly functorial in S.
(2) Pushforwards. Consider a commutative diagram

T Y

Z X

S

k

h g

i

f

where f and g are smooth, h is proper, and i and k are closed immersions. Then the
following diagram commutes:

EBM(T/S) EBM(Z/S)

ET(Y,ΩY/S) EZ(X,ΩX/S).

h∗

' '

g!

Here, h∗ is the proper pushforward and g! is the Gysin map induced by the purity
equivalence for g (see 2.2.3 for the definition of g! in a more general context). As a special
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case, if t : W ↪→ Z is a closed immersion, then the proper pushforward t∗ : EBM(W/S)→
EBM(Z/S) is identified with the forgetful map EW(X,ΩX/S)→ EZ(X,ΩX/S).

(3) Products. Suppose that E is equipped with a multiplication µ : E⊗E→ E, and consider
a commutative diagram

T V Y

Z X

S

q

p

where the vertical maps are smooth, the horizontal maps are closed immersions, and
the square is Cartesian. Then the following diagram commutes:

EBM(T/Z)× EBM(Z/S) EBM(T/S)

ET(V,ΩV/Z)× EZ(X,ΩX/S)

ET(V,ΩV/Z)× EV(Y, q∗ΩX/S) ET(Y,ΩY/S).

µBM

'

'

id×q∗

µ

2.2. Fundamental classes.

2.2.1. We briefly recall the formalism of fundamental classes from [DJK18]. Let f : X→ Y be
a smoothable lci morphism. The fundamental class of f is a canonical element

ηf ∈ π01
BM(X/Y,Lf ) = π0 Maps(ΣLf1X, f

!1Y).

The associated purity transformation

pf : ΣLf f∗ → f !

is defined as the composition

ΣLf f∗(E) ' ΣLf1X ⊗ f∗(E)
ηf⊗id−−−−→ f !(1Y)⊗ f∗(E)→ f !(1Y ⊗ E) ' f !(E),

where the last morphism is the canonical one (see for example [DJK18, 2.1.10]). The following
proposition summarizes the key properties of fundamental classes:

Proposition 2.2.2.

(i) Let f : X→ Y and g : Y → Z be lci morphisms such that g, g◦f , and hence f are smoothable.
Then the following diagram commutes:

ΣLg◦f (g ◦ f)∗ (g ◦ f)!

ΣLf f∗ΣLgg∗ f !g!.

pg◦f

' '

pfpg

Here, the left vertical arrow uses the equivalence Lg◦f ' f∗(Lg) + Lf in K(X) induced by the
canonical cofiber sequence f∗(Lg)→ Lg◦f → Lf in Perf(X).

(ii) Given a tor-independent Cartesian square

X′ X

Y′ Y

g

v

f

u
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where f is lci and smoothable, the following diagrams commute:

v∗ΣLf f∗ v∗f !

ΣLgg∗u∗ g!u∗,

'

pf

Ex∗!

pg

v!ΣLf f∗ v!f !

ΣLgg∗u! g!u!.

Ex∗!

pf

'

pg

Here, the left vertical arrows use the equivalence v∗(Lf ) ' Lg in Perf(X′).

(iii) If f : X→ S is smooth, then pf : ΣLf f∗ → f ! coincides with the purity equivalence (2.1.6).

Proof. For assertions (i) and (ii), see [DJK18, Propositions 2.5.4 and 2.5.6]. Assertion (iii) holds
by construction of ηf , see [DJK18, Theorem 3.3.2(1)]. �

As a consequence of Proposition 2.2.2(i,iii), if f : X→ S is smooth and i : Z ↪→ X is a closed
immersion such that f ◦ i is smooth, the transformation

pif
∗ : ΣLii∗f∗ → i!f∗

coincides with the purity equivalence (2.1.7).

2.2.3. Gysin maps in cohomology. Consider a commutative square of S-schemes

Z X

T Y,

i

g f

k

where f is smoothable and lci, i and k are closed immersions, and g is proper.3 For every
ξ ∈ K(T), we have a pushforward morphism or Gysin map

(2.2.4) f! : EZ(X, g∗ξ + i∗Lf )→ ET(Y, ξ),

defined by the composition

f∗i!Σ
g∗ξ+i∗Lf i!f∗

pf−→ f∗i!Σ
g∗ξi!f ! ' k!g!g

!Σξk! counit−−−−→ k!Σ
ξk!.

Let us emphasize two special cases:

(1) If i : Z ↪→ X is a regular closed immersion and ξ ∈ K(Z), we have the Gysin map
i! : E(Z, ξ)→ EZ(X, ξ − Li), which generalizes the equivalence (2.1.15).

(2) If f : X → Y is smoothable, lci, and proper, and if ξ ∈ K(Y), we have the Gysin map
f! : E(X, f∗ξ + Lf )→ E(Y, ξ).

Properties (i) and (ii) of Proposition 2.2.2 imply obvious compatibilities of these Gysin maps
with composition and pullback.

2.2.5. Gysin maps in Borel–Moore homology. Let f : X → Y be a smoothable lci S-morphism.
For every ξ ∈ K(Y), there is a pullback morphism or Gysin map

f ! : EBM(Y/S, ξ)→ EBM(X/S, f∗ξ + Lf ),

defined by the composition

Σ−ξ
unit−−→ f∗f

∗Σ−ξ ' f∗Σ−f
∗ξf∗

pf−→ f∗Σ
−f∗ξ−Lf f !.

Properties (i) and (ii) of Proposition 2.2.2 imply obvious compatibilities of these Gysin maps
with composition, proper pushforward, and tor-independent base change.

3More generally, it suffices to assume that i and k are immersions and that the scheme-theoretic image of Z
in X is proper over Y, so that f∗i! ' f!i!. This makes (2.1.14) a special case of (2.2.4).
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Remark 2.2.6. We use the notation f! and f ! for Gysin maps, rather than f∗ and f∗, as a visual
reminder that these maps use the purity transformation pf . It does not indicate a particular
relation to the functors f! and f !.

2.2.7. Functoriality. If M is a collection of morphisms of schemes that is closed under tor-
independent base change, we let

Funcart,t
M (∆1,Sch) ⊂ Fun(∆1,Sch)

be the subcategory whose objects are the morphisms in M and whose morphisms are the tor-
independent Cartesian squares. By Proposition 2.2.2(ii), the assignment f 7→ ηf is a section of
the Cartesian fibration classified by the functor

Funcart,t
slci (∆1,Sch)op → τ60Spc, (f : X→ Y) 7→ τ601

BM(X/Y,Lf ),

where “slci” is the collection of smoothable lci morphisms.

We expect that the construction f 7→ ηf can be refined to a section of

Funcart,t
slci (∆1,Sch)op → Spc, (f : X→ Y) 7→ 1BM(X/Y,Lf ),

but this is a nontrivial task because the construction of ηf depends on a choice of factorization of
f . For our purposes, it will suffice to know that we do have such refinements on the subcategory
of regular immersions or that of smooth morphisms. In the case of regular closed immersions,
the construction of the fundamental class in [DJK18, §3.2] is clearly functorial, since blowing-up
commutes with tor-independent base change. The case of regular immersions follows since an
immersion factors canonically as a closed immersion followed by an open immersion. The case
of smooth morphisms can be reduced to the case of regular immersions by expressing the purity
transformation for a smooth morphism in terms of the purity transformation for its diagonal,
as in [DJK18, (2.3.4.a)].

The functoriality of the fundamental class f 7→ ηf propagates to the purity transformation
f 7→ pf and to the Gysin map f 7→ f!. For example, the Gysin map for regular closed immersions
can be viewed as a natural transformation between the two functors

Funcart,t
reg.cl.imm(∆1,SchS)op → Spc,

(i : Z ↪→ X) 7→ E(Z),

(i : Z ↪→ X) 7→ EZ(X,−Li).

2.2.8. We now discuss the functoriality of the commutative square of Proposition 2.2.2(i). Let

Funcart,t
M0,M1,M2

(∆2,Sch) ⊂ Fun(∆2,Sch)

be the subcategory whose objects are triangles

Z Y

X
f1

f2

f0

with fi ∈ Mi and whose morphisms are natural transformations composed of tor-independent
Cartesian squares. By Proposition 2.2.2(i), if f0 and f1 are lci and smoothable, the classes ηf1
and ηf2 · ηf0 in π01

BM(Z/X,Lf1) are equal, where ηf2 · ηf0 is the composite

ΣLf1 1Z ' Σf
∗
2 Lf0 ΣLf2 1Z

ηf2−−→ f !
2ΣLf0 1Y

ηf0−−→ f !
2f

!
01X ' f !

11X.

These equalities form a section of the functor

Funcart,t
slci,slci,slci(∆

2,Sch)op → τ6−1Spc, (f0, f1, f2) 7→ τ6−1 Maps1BM(Z/X,Lf1 )(ηf1 , ηf2 · ηf0),
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This can be refined to a section of the functor

Funcart,t
M0,M1,M2

(∆2,Sch)op → Spc, (f0, f1, f2) 7→ Maps1BM(Z/X,Lf1 )(ηf1 , ηf2 · ηf0),

at least if each Mi is either the class of regular immersions or that of smooth morphisms.
One can reduce as in 2.2.7 to the case of regular closed immersions, where an explicit functorial
homotopy ηf1 ' ηf2 ·ηf0 is given by a double deformation to the normal cone [DJK18, 3.2.19].

3. Comparison of transfers

In this section we show that the framed transfers in cohomology provided by the motivic
recognition principle are given by Gysin maps. In §3.1, we define the fundamental transfer
associated with a tangentially framed correspondence using Gysin maps. We then introduce
in §3.2 the Voevodsky transfer associated with an equationally framed correspondence, and we
show that the Voevodsky transfer computes the fundamental transfer. Finally, in §3.3, we show
that the transfers obtained from the recognition principle agree with the Voevodsky transfer.

Throughout this section, we fix a base scheme S and a motivic spectrum E ∈ SH(S). As
explained in Remark 2.1.9, the spectrum E is only used for readability purposes.

3.1. The fundamental transfer.

3.1.1. Recall that a tangentially framed correspondence between S-schemes X and Y is the
data of a span

Z

X Y

f h

over S, where f is finite syntomic, together with an equivalence τ : 0 ' Lf in the ∞-groupoid

K(Z). We denote by Corrfr
S (X,Y) the ∞-groupoid of tangentially framed correspondences from

X to Y, defined as

Corrfr
S (X,Y) = colim

X
f←−Z→Y

MapsK(Z)(0,Lf ),

where the colimit is taken over the groupoid of spans with f finite syntomic.

3.1.2. Note that a finite syntomic morphism f : Z→ X admits a canonical factorization

Z V(f∗OZ)

X,

f

which we use to define the fundamental class ηf ∈ 1BM(Z/X,Lf ).

Definition 3.1.3. Let X,Y ∈ SchS and let α = (Z, f, h, τ) be a tangentially framed correspon-
dence from X to Y over S. For E ∈ SH(S), the fundamental transfer trη(α) : E(Y)→ E(X) is
the composition

E(Y)
h∗−→ E(Z)

τ' E(Z,Lf )
f!−→ E(X).

Using the functoriality of f 7→ ηf described in 2.2.7, we obtain a map

trη : Corrfr
S (X,Y)→ Maps(E(Y),E(X)), α 7→ trη(α),

natural in (X,Y,E) ∈ Schop
S ×SchS×SH(S). If X and Y are smooth over S, then by the Yoneda

lemma we obtain a map

Corrfr
S (X,Y)→ Maps(Σ∞T X+,Σ

∞
T Y+),
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which we sometimes also denote by trη.

Remark 3.1.4. Dually, a framed correspondence α as above also induces a map

(3.1.5) MS(X)
f !

−→ MS(Z,−Lf )
τ' MS(Z)

h∗−→ MS(Y)

in SH(S) (see 2.1.10 for the notation MS(X, ξ)). By unpacking the definitions, it is easy to show
that the natural transformation E(−) → Maps(MS(−),E) on S-schemes is also natural with
respect to Gysin maps. In particular, if X and Y (but not necessarily Z) are cdh-locally smooth
over S, applying Maps(−,E) to (3.1.5) yields the fundamental transfer trη(α) : E(Y)→ E(X).

3.1.6. Example: the action of K-theory. The ∞-groupoid Corrfr
S (S,S) contains ΩK(S) as a full

subgroupoid. By construction, the composite

ΩK(S) ⊂ Corrfr
S (S,S)

trη−−→ End(1S)

is the action of ΩK(S) on 1S induced by the motivic J-homomorphism K(S)→ SH(S).

If S is a regular semilocal scheme over a field of characteristic not 2, π01S(S) is isomorphic to
the Grothendieck–Witt group GW(S) of nondegenerate symmetric bilinear forms over S [BH18,
Lemma 10.12]. This isomorphism is such that the J-homomorphism

O(S)× ' K1(S)→ π0 End(1S) ' GW(S)

sends a unit a to the class 〈a〉 of the bilinear form (x, y) 7→ axy.

3.1.7. Example: finite étale transfers. There is a canonical map Corrfét
S (X,Y) → Corrfr

S (X,Y),
sending a span

Z

X Y

f

with f finite étale to the same span equipped with the canonical trivialization of Lf .

If S is a regular semilocal scheme over a field of characteristic not 2 and α is the finite étale

correspondence S
f←− T

id−→ T, the transfer

trη(α) : GW(T)→ GW(S)

is the Scharlau transfer associated with the canonical trace TrT/S : O(T) → O(S). Indeed, one
is reduced to the case of a field extension using the Gersten resolution for Grothendieck–Witt
groups [Bal05, Theorem 100], and in that case the claim was proved in [Hoy14, §5].

3.1.8. The oriented case. Suppose given a retraction diagram

E
ι−→ MGL⊗ E

ρ−→ E, ρ ◦ ι ' idE,

in SH(S); such a diagram exists if E is an MGL-module in the homotopy category hSH(S), and
it is given if E is an MGL-module in SH(S). Then the fundamental transfers in E-cohomology
are independent of the tangential framings. More precisely, given X,Y ∈ SchS, there is a
canonical factorization

Corrfr
S (X,Y) Maps(E(Y),E(X)).

Corrfsyn
S (X,Y)

forget

trη

This follows at once from the fact that the MGL-linearized J-homomorphism

K(S)→ SH(S), ξ 7→ ΣξMGL

factors through the rank map rk: K→ Z [BH18, §16.2].
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3.2. The Voevodsky transfer.

3.2.1. Let X and Y be S-schemes and let α ∈ Correfr,n
S (X,Y) be an equationally framed

correspondence of level n from X to Y [EHK+19, Definition 2.1.2]. We display α as the diagram

(3.2.2)

U

An
X Z An ×Y

X Y,

(ϕ,g)u

π

i

f

i

h
0

where f is finite, u is an étale neighborhood of Z in An
X, 0 is the zero section, and the right-hand

square is Cartesian.

We will denote by P×n the n-fold product (P1)×n, regarded as a compactification of An,
and by ∂P×n ⊂ P×n the complementary reduced closed subscheme that is the union of the
“faces” P×i−1 × {∞} ×P×n−i:

An
X P×nX ∂P×nX .

X

j

π
π̂

∞

Definition 3.2.3. Let X,Y ∈ SchS and let α ∈ Correfr,n
S (X,Y) be the equationally framed

correspondence (3.2.2). For E ∈ SH(S), the Voevodsky transfer trV(α) : E(Y) → E(X) is the
composition

E(Y) ' EY(An
Y,O

n)
(ϕ,g)∗−−−−→ EZ(U,On) ' EZ(P×nX ,On)

→ EAn
X

(P×nX ,On)
'←− EX(P×nX ,On) ' E(X).

Here, the maps EZ(P×nX ,On)→ EAn
X

(P×nX ,On)← EX(P×nX ,On) are instances of (2.1.14). To
see that the latter is an equivalence, first note that it fits in the diagram

EX(P×nX ,On) E(P×nX ,On) E(P×nX − 0X,O
n)

EAn
X

(P×nX ,On) E(P×nX ,On) E(∂P×nX ,On),

id

where the rows are the fiber sequences (2.1.17) and (2.1.18). By 2.1.19, the claim then follows
from the following lemma:

Lemma 3.2.4. The inclusion ∂P×n ⊂ P×n − 0 is an A1-cdh-equivalence over Spec Z.

Proof. We consider the commutative square of inclusions in PSh(Sch):⋃n
i=1

(
P×i−1 × {∞} ×P×n−i

)
∂P×n

⋃n
i=1

(
P×i−1 × (P1 − 0)×P×n−i

)
P×n − 0.

The upper horizontal map is a covering sieve in the closed topology, the lower horizontal map is
a covering sieve in the open topology, and the left vertical map is the colimit of an n-dimensional
cube of A1-homotopy equivalences. In particular, these three maps are A1-cdh-equivalences,
hence so is the right vertical map. �
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Remark 3.2.5. In general, U is an algebraic space and not a scheme, but this does not matter.
Indeed, the inclusion of schemes into (Zariski-locally quasi-separated) algebraic spaces induces
an equivalence between the ∞-categories of Nisnevich sheaves, by [GR71, Proposition 5.7.6].
As a result, we may tacitly extend any Nisnevich sheaf, such as E(−) or SH(−), to algebraic
spaces. However, we can assume that U is a scheme in many cases [EHK+19, Lemma A.1.2(iv)].

3.2.6. By Voevodsky’s Lemma [EHK+19, Corollary A.1.7], the equationally framed correspon-
dence α is equivalently a morphism of pointed presheaves ΣnPX+ → LnisΣ

n
TY+. Explicitly, it is

given by the following zig-zag in PSh(SchS)∗:

(3.2.7) ΣnPX+ =
P×nX

∂̃P×nX

→
P×nX

P×nX − Z

u←− U

U− Z

(ϕ,g)−−−→ An
Y

An
Y − 0

← ΣnTY+.

Here, ∂̃P×n ⊂ P×n is the subpresheaf defined as the union

∂̃P×n =

n⋃
i=1

(
P×i−1 × {∞} ×P×n−i

)
,

the first map is the collapse map, and the wrong-way maps are Nisnevich-local equivalences.
The Voevodsky transfer trV(α) : E(Y) → E(X) is then equivalent to applying (the right Kan
extension of) the functor E(−,On) to the composite (3.2.7).

In particular, if X and Y are smooth over S, then (3.2.7) induces a morphism Σ∞T X+ → Σ∞T Y+

in SH(S), which gives the Voevodsky transfer upon applying Maps(−,E).

3.2.8. For every n > 0, Definition 3.2.3 gives a map

trV : Correfr,n
S (X,Y)→ Maps(E(Y),E(X)).

Using for instance (3.2.7), it is clear that this map is natural in (X,Y) ∈ Schop
S ×SchS. Moreover,

by [EHK+19, Remark 2.1.6], the triangles

Correfr,n
S (X,Y) Maps(E(Y),E(X))

Correfr,n+1
S (X,Y)

trV

σ
trV

naturally commute (here σ is the suspension morphism [EHK+19, 2.1.4]). Passing to the colimit
gives a natural map

trV : Correfr
S (X,Y)→ Maps(E(Y),E(X)).

If we let X vary, note that Maps(E(Y),E(−)) : Schop
S → Spc is an A1-invariant cdh sheaf.

If Y is smooth over S, the forgetful map Correfr
S (−,Y)→ Corrfr

S (−,Y) is a motivic equivalence
[EHK+19, Corollary 2.3.27]. In that case, therefore, the Voevodsky transfer factors through
the ∞-groupoid of tangentially framed correspondences, inducing a morphism

(3.2.9) trV : Corrfr
S (X,Y)→ Maps(E(Y),E(X)).

3.2.10. We now prove that the Voevodsky transfer agrees with the fundamental transfer of
Definition 3.1.3.

Theorem 3.2.11. Let X,Y ∈ SchS and E ∈ SH(S). Then the triangle

Correfr
S (X,Y) Maps(E(Y),E(X))

Corrfr
S (X,Y)

forget

trV

trη
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commutes, naturally in E, X, and Y. In particular, if Y is smooth over S, then the Voevodsky
transfer (3.2.9) coincides with the fundamental transfer.

Proof. Let α be an equationally framed correspondence as in (3.2.2), and let τ : 0 ' Lf be the
induced trivialization in K(Z). We must show that the following diagram commutes:

E(Y) EY(An
Y,O

n)

E(Z) EZ(U,On)

E(Z,Lf ) EZ(P×nX ,On)

EAn
X

(P×nX ,On)

E(X) EX(P×nX ,On).

'

h∗ (ϕ,g)∗

'τ

f!

'

'

'

To do so, we subdivide this diagram as follows:

(3.2.12)

E(Y) EY(An
Y,O

n)

E(Z) EZ(U,−Li) EZ(U,On)

E(Z,Lf ) EZ(P×nX ,On)

E(P×nX ,Lπ̂) EAn
X

(P×nX ,On)

E(X) EX(P×nX ,On).

0!

'

(1)h∗ (ϕ,g)∗

'τ

i! '

(3)
u!

i!

f!

i!

i!

(2) '

(4)

π̂!

0!

'

(5)
'

The rectangle (1) commutes by the base change property of Gysin maps (Proposition 2.2.2(ii))
applied to the Cartesian square

Z Y

U An ×Y,

h

i 0

(ϕ,g)

which is tor-independent since i is a regular immersion of codimension n. Thus, the unnamed
equivalence in (1) is induced by the isomorphism Ni ' h∗(N0) ' On. This isomorphism also
induces the trivialization τ , whence the commutativiy of the square (2). The triangles (3), (4),
and (5) all commute by the compatibility of Gysin maps with composition (Proposition 2.2.2(i)),
where the commutativity of (5) means that going around starting from the lower left corner
gives the identity.

To conclude the proof, we must show that the diagram (3.2.12) can be promoted to a functor
of the triple (X,Y, α). This follows from the functoriality properties of Gysin maps discussed in
2.2.7 and 2.2.8. For the triangle (4), we must recall that the fundamental class ηf was defined
using the canonical factorization Z ↪→ V(f∗OZ) → X. The commutativity of (4) can be made
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functorial using the triangles

Z

V(f∗OZ) V(f∗OZ)×P×n P×nX

X

in which the upper three maps are regular closed immersions and the other five are smooth.
This concludes the proof of the theorem. �

3.3. The transfer from the recognition principle.

3.3.1. Recall that there is an ∞-category Corrfr(SmS) whose objects are smooth S-schemes

and whose mapping spaces are the∞-groupoids Corrfr
S (X,Y), which gives rise to the∞-category

SHfr(S) of framed motivic spectra [EHK+19, §3]. The “graph” functor

γ : SmS+ → Corrfr(SmS), (f : X+ → Y+) 7→ (X←↩ f−1(Y)
f−→ Y),

induces an adjunction

γ∗ : SH(S)� SHfr(S) : γ∗

such that the following square commutes:

SmS+ Corrfr(SmS)

SH(S) SHfr(S).

γ

Σ∞T Σ∞T,fr

γ∗

By the reconstruction theorem [Hoy18, Theorem 16], the functor γ∗ : SH(S) → SHfr(S) is
an equivalence of ∞-categories. It follows that E-cohomology of smooth S-schemes acquires
canonical framed transfers:

Smop
S Spc.

Corrfr(SmS)op

E(−)

γ

The goal of this section is to show that these transfers coincide with the Voevodsky transfers,
hence with the fundamental transfers.

3.3.2. We need a technical preliminary result, which we formulate in a more general context.

Let C be a presentably symmetric monoidal ∞-category and let T ∈ C be an object. For
any presentable C-module M, we have an adjunction

ΣT : M� M : ΩT

where ΣT = T⊗ (−). We can then form the diagram

N×N→ Fun(M,M), (m,n) 7→ ΩnTΩmTΣmTΣnT,

where the transition maps use the unit transformation id → ΩTΣT and (in one direction) the
cyclic permutations ΣTΣmT ' ΣmTΣT and ΩmTΩT ' ΩTΩmT .

We denote by SptT(M) the ∞-category of T-spectra in M, defined as the limit

SptT(M) = lim
(
· · · → M

ΩT−−→ M
ΩT−−→ M

)
.
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We have an adjunction

Σ∞T : M� SptT(M) : Ω∞T ,

where Ω∞T is the projection to the last copy of M. If ΩT preserves sequential colimits, then

Ω∞T Σ∞T ' colim
n

ΩnTΣnT.

Lemma 3.3.3. With the above notation, suppose that ΩT : M→ M preserves sequential colimits
and that the cyclic permutation of T⊗n is homotopic to the identity for some n > 2. Then the
natural transformations

Ω∞T Σ∞T ' colim
p

ΩpTΣpT → colim
p,q

ΩpTΩqTΣqTΣpT,

Ω∞T Σ∞T ' colim
q

ΩqTΣqT → colim
p,q

ΩpTΩqTΣqTΣpT

between endofunctors of M are homotopic equivalences.

Proof. We have a commutative diagram

M SptT(M) SptT(SptT(M)),
Σ∞T F0

F1

where F0 = Σ∞T and F1 = SptT(Σ∞T ). Let Gi be the right adjoint to Fi and ui : id→ GiFi the
unit transformation. Then the given natural transformations are Ω∞T uiΣ

∞
T for i = 0, 1.

By the assumption on T, the functor SptT(−) is a left localization of the ∞-category of
presentable C-modules [Rob15, Corollary 2.22]. This implies that F0 and F1 are equivalences
and moreover that there is a natural equivalence α : F0 ' F1 such that αΣ∞T is the identity. In
particular, the unit transformations ui are equivalences, and α and its mate G0 ' G1 give the
desired homotopy. �

3.3.4. We now prove that the Voevodsky transfer coincides with the transfer coming from the
reconstruction theorem. For X,Y ∈ SmS, we can regard the Voevodsky transfer as a map

(3.3.5) trV : Correfr
S (X,Y)→ MapsSH(S)(Σ

∞
T X+,Σ

∞
T Y+),

sending the equationally framed correspondence (3.2.2) to the composite (3.2.7). Since Y is

smooth, this map factors through the ∞-groupoid Corrfr
S (X,Y).

Theorem 3.3.6. For X,Y ∈ SmS, the following diagram commutes, naturally in X and Y:

Corrfr
S (X,Y) Maps(Σ∞T X+,Σ

∞
T Y+)

Maps(γ∗Σ∞T X+, γ
∗Σ∞T Y+).

trV

Σ∞T,fr
γ∗'

Proof. Recall the endofunctors hefr,n
S and hefr

S of PShΣ(SmS)∗ defined in [EHK+19, 2.1.10]. By
Voevodsky’s Lemma, there is a canonical transformation

hefr,n
S → ΩnPLnisΣ

n
T : PShΣ(SmS)∗ → PShΣ(SmS)∗,

extending an equivalence on representables. Composing with Lnis → Lmot and taking the
colimit over n, we obtain a transformation

hefr
S → Ω∞T Σ∞T Lmot,
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which extends (3.3.5) to pointed presheaves. We will prove more generally that the following
diagram of endofunctors of PShΣ(SmS)∗ commutes:

(3.3.7)

hefr
S Ω∞T Σ∞T Lmot

hfr
S Ω∞T γ∗γ

∗Σ∞T Lmot

γ∗γ
∗Lmot γ∗Ω

∞
T,frΣ

∞
T,frγ

∗Lmot.

unit

'

unit

Since hefr
S is by definition the left Kan extension of its restriction to SmS+, it suffices to show

that the diagram commutes on SmS+. Recall that the unit map id→ γ∗γ
∗ ' hfr

S factors as

id→ hefr
S → hfr

S ,

where the second map is a motivic equivalence [EHK+19, Corollary 2.3.27].

Consider the two commuting squares

colimn hefr,n
S colimp,q ΩpPLmoth

efr,q
S ΣpT

colimn ΩnPLmotΣ
n
T colimp,q ΩpPΩqPLmotΣ

q
TΣpT,

q=0

p=0

q=0

p=0

where the vertical maps are induced by (3.3.5). The two upper horizontal maps can be identified
with the two composites in the diagram (3.3.7). On the other hand, the two lower horizontal
maps are equivalent by Lemma 3.3.3. It therefore suffices to show that the right vertical map
is an equivalence.

We have a commuting triangle

colimp ΩpPLmotΣ
p
T

colimp,q ΩpPLmoth
efr,q
S ΣpT colimp,q ΩpPΩqPLmotΣ

q
TΣpT.

The diagonal map is an equivalence by Lemma 3.3.3. The vertical map is the unit map
Ω∞T Σ∞T → Ω∞T γ∗γ

∗Σ∞T , which is an equivalence since γ∗ : SH(S) → SHfr(S) is fully faithful.
Hence, the bottom horizontal map is an equivalence, as desired. �

Corollary 3.3.8. Let k be a perfect field and let F ∈ PShΣ(Smk)∗. Then the map (3.3.5)
induces an equivalence

Lzar(LA1hefr
k (F))gp ' Ω∞T Σ∞T F : Smop

k → CMongp(Spc).

Note that we already have such an equivalence by [EHK+19, Corollary 3.5.16]. The point of
this corollary is that this equivalence is induced by Voevodsky’s Lemma, as one would expect.

Proof. If we plug F in the diagram (3.3.7), we obtain a commutative square of Fin∗-objects, all
of which are E∞-objects except the top left corner. The upper left vertical map is a motivic
equivalence by [EHK+19, Corollary 2.3.27], and so is the lower left vertical map since γ∗γ

∗

preserves motivic equivalences [EHK+19, Proposition 3.2.14]. The right vertical map is an
equivalence by [EHK+19, Theorem 3.5.12], and the lower horizontal map is group completion
by [EHK+19, Corollary 3.5.10]. The commutativity of the diagram shows that (3.3.5) induces
an equivalence

(Lmoth
efr
k (F))gp ' MapsSH(k)(Σ

∞
T (−)+,Σ

∞
T F).
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On the other hand, the canonical map

Lzar(LA1hefr
k (F))gp → (Lmoth

efr
k (F))gp

is an equivalence since the left-hand side is already Nisnevich-local and A1-invariant [EHK+19,
Corollary 3.5.16]. �

3.3.9. Combining Theorems 3.2.11 and 3.3.6 we obtain:

Theorem 3.3.10. For X,Y ∈ SmS, the following diagram commutes, naturally in X and Y:

Corrfr
S (X,Y) Maps(Σ∞T X+,Σ

∞
T Y+)

Maps(γ∗Σ∞T X+, γ
∗Σ∞T Y+).

trη

Σ∞T,fr
γ∗'

Corollary 3.3.11. Let X be a smooth S-scheme. Then the motivic J-homomorphism ΩK(X)→
End(Σ∞T X+) coincides with the composition

ΩK(X) ⊂ Corrfr
S (X,X)

Σ∞T,fr−−−→ End(Σ∞T,frX) ' End(Σ∞T X+).

Proof. This follows immediately from Theorem 3.3.10. �

4. Finite correspondences for motivic ring spectra

In this section we introduce finite R-correspondences for a motivic ring spectrum R, gen-
eralizing the finite correspondences of Voevodsky and the finite Milnor–Witt correspondences
of Calmès and Fasel. In §4.1, we construct the homotopy category hCorrR(SmS) of finite R-
correspondences between smooth S-schemes, together with a functor to the homotopy category
of R-modules. In §4.2, we construct a functor from the category of (tangentially) framed corre-
spondences to that of finite R-correspondences and compare it with the free R-module functor.
Finally, in §4.3, we compare our constructions with those of Voevodsky and of Calmès–Fasel.

Throughout this section, S is a fixed base scheme. All S-schemes are assumed to be separated.

4.1. The category of finite R-correspondences. Given an associative ring spectrum R ∈
SH(S), we will construct an hSpc-enriched category hCorrR(SmS) of finite R-correspondences
between smooth S-schemes.

To motivate our construction, recall that a morphism from X to Y in Voevodsky’s category of
finite correspondences over a regular scheme S is an element of the free abelian group generated
by integral closed subschemes Z ⊂ X ×S Y that are finite and surjective over a component of
X. Alternatively, we can think of a morphism in this category as a reduced closed subscheme
Z ⊂ X×S Y, each of whose irreducible components is finite and surjective over a component of
X and labeled by an integer. The category hCorrR(SmS) will admit a similar description, but
with integers replaced by Borel–Moore R-homology classes of Z over X.

4.1.1. Let S be a scheme and R ∈ SH(S). For separated S-schemes X,Y ∈ SchS, define

CorrR
S (X,Y) = colim

Z⊂X×SY
RBM(Z/X),

where the colimit is taken over the filtered poset of reduced subschemes Z ⊂ X ×S Y that are
finite and universally open4 over X. To form this colimit, we use the covariant functoriality of
Borel–Moore homology with respect to proper morphisms (see 2.1.11).

4equivalently, when X is Noetherian, universally equidimensional [SV00, Proposition 2.1.7]
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4.1.2. Suppose now that R ∈ SH(S) is a homotopy associative ring spectrum, i.e., R is an
associative algebra in the homotopy category hSH(S). There is a map

ΓR : MapsS(X,Y)→ CorrR
S (X,Y)

sending an S-morphism f : X → Y to its graph Γf ⊂ X ×S Y labeled by the unit element
1 ∈ RBM(Γf/X) ' Maps(1X,RX).

4.1.3. For X,Y,T ∈ SchS, we define a composition law

(4.1.4) ◦ : CorrR
S (X,Y)× CorrR

S (Y,T)→ CorrR
S (X,T)

as follows. For any closed subschemes Z ⊂ X×S Y and Z′ ⊂ Y×S T, finite and universally open
over X and Y respectively, we consider the 2-span

Z′′

Z Z′

X Y T.

g′h′

gf h k

Let p : Z′′ → X ×S T be the induced map and let Z′ ◦ Z ⊂ X ×S T be its reduced image. It is
clear that Z′ ◦ Z is finite and universally open over X. We define the pairing

θBM : RBM(Z/X)× RBM(Z′/Y)→ RBM(Z′ ◦ Z/X)

as the composition

RBM(Z/X)× RBM(Z′/Y)
id×g∗−−−−→ RBM(Z/X)× RBM(Z′′/Z)

µBM

−−−→ RBM(Z′′/X)
p∗−→ RBM(Z′ ◦ Z/X).

Here, µBM is the composition product (which uses the ring structure on R, see 2.1.20(3)), and
p∗ is the proper pushforward in Borel–Moore homology. More succinctly,

θBM(x, y) = p∗(g
∗(y) · x).

The map (4.1.4) is then the filtered colimit over Z and Z′ of the maps θBM.

Lemma 4.1.5. The composition law (4.1.4) is unital and associative up to homotopy, with

identity ΓR(idS) ∈ CorrR
S (X,X).

Proof. Let X1, X2, X3 and X4 be smooth S-schemes, and let Zi,i+1 ⊂ Xi×S Xi+1 be reduced
subschemes, finite and universally open over Xi. Let xi ∈ RBM(Zi,i+1/Xi) for each 1 6 i 6 3.
Consider the diagram

Z1234

Z123 Z234

Z12 Z23 Z34

X1 X2 X3 X4

where the squares are Cartesian. It suffices to note that the two possible ways of composing
the xi’s are both equal to

p∗(h
∗(x3) · g∗(x2) · x1),
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where g : Z12 → X2, h : Z123 → X3, and p : Z1234 → Z34 ◦ Z23 ◦ Z12. This follows directly from
the properties of the composition product listed in [Dég18a, 1.2.8]. The fact that ΓR(idX) is
the identity is trivial. �

4.1.6. The category of finite R-correspondences. In view of Lemma 4.1.5, we can define a cate-
gory hCorrR(SchS) as follows:

• The objects of hCorrR(SchS) are separated S-schemes.

• The set of morphisms from X to Y is π0CorrR
S (X,Y).

• The identity morphism at X is [ΓR(idX)] ∈ π0CorrR
S (X,X).

• The composition law is given by π0 of the composition law (4.1.4).

It is moreover easy to show that the morphisms ΓR defined in 4.1.2 assemble into a functor

ΓR : SchS → hCorrR(SchS).

For any full subcategory C ⊂ SchS, we denote by hCorrR(C) the corresponding full subcat-
egory of hCorrR(SchS).

Remark 4.1.7. By construction, hCorrR(C) is enriched in the homotopy category hSpc. If R
is an A∞-ring spectrum, we expect that with more effort one can construct an ∞-category
CorrR(C) with mapping spaces CorrR

S (X,Y), whose homotopy category is hCorrR(C); this
explains our notation for the latter category. In our two main examples, when C is the category
of smooth schemes over a field and R = HZ or R = HZ̃, we will see that the spaces CorrR

S (X,Y)
are always discrete, so that CorrR(C) = hCorrR(C).

4.1.8. We note that the category hCorrR(SchS) is semiadditive, with the sum given by the
disjoint union of schemes. In fact, we have canonical equivalences of spaces

CorrR
S (X, ∅) ' ∗ ' CorrR

S (∅,Y),

CorrR
S (X,Y1 tY2) ' CorrR

S (X,Y1)× CorrR
S (X,Y2),

CorrR
S (X1 tX2,Y) ' CorrR

S (X1,Y)× CorrR
S (X2,Y).

Remark 4.1.9. In general, CorrR
S (−,Y) is not a Nisnevich sheaf. Indeed, Calmès and Fasel show

in [CF17, Example 5.12] that CorrHZ̃
k (−,A1

k − {0, 1}) is not a Nisnevich sheaf.

4.1.10. The functor to R-modules. For R ∈ SH(S) a homotopy associative ring spectrum, we
define a functor

MR : hCorrR(SmS)→ModR(hSH(S)), X 7→ R⊗ Σ∞T X+.

We shall use the fact that the four functors f∗, f∗, f!, and f ! preserve R-modules, in the sense
that they lift canonically from hSH(−) to ModR(hSH(−)).

Let Z ⊂ X×S Y and α ∈ RBM(Z/X) define a finite R-correspondence from X to Y. Consider
the diagram

Z

X Y

S.

f g

p q

As in 2.2.1, α gives rise to a natural transformation

α : f∗ → f ! : ModR(hSH(X))→ModR(hSH(Z)).
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The functor MR then sends (Z, α) to the composition

R⊗ Σ∞T X+ ' p!p
!R

unit−−→ p!f∗f
∗p!R

α−→ p!f!f
!p!R ' q!g!g

!q!R
counit−−−−→ q!q

!R ' R⊗ Σ∞T Y+.

Compatibility with composition is a straightforward verification.

Remark 4.1.11. If R is an A∞-ring spectrum, then the four functors f∗, f∗, f!, and f ! lift
canonically from SH(−) to ModR(SH(−)), and the above construction actually defines an
hSpc-enriched functor

MR : hCorrR(SmS)→ hModR(SH(S)).

Following Remark 4.1.7, we expect that it can be refined to a functor of ∞-categories

MR : CorrR(SmS)→ModR(SH(S)).

4.1.12. The symmetric monoidal structure. Let R ∈ SH(S) be a homotopy commutative ring
spectrum. Then the category hCorrR(SchS) acquires a symmetric monoidal structure given on
objects by X⊗Y = X×S Y. On morphisms, one uses the external pairing

RBM(Z/X)× RBM(Z′/X′)→ RBM(Z×S Z′/X×S X′).

The compatibility between this pairing and composition of finite R-correspondences uses the
commutativity of R. Furthermore, the functor MR : hCorrR(SmS) →ModR(hSH(S)) admits
a canonical symmetric monoidal structure. We omit the somewhat tedious details.

Remark 4.1.13. If R is an En+1-ring spectrum (1 6 n 6∞), we expect an En-monoidal structure
on the ∞-category CorrR(SmS) and on the functor MR : CorrR(SmS) →ModR(SH(S)) (see
Remark 4.1.11).

4.1.14. We can express finite R-correspondences in terms of twisted cohomology with support.
Let Z ⊂ X×S Y be a reduced subscheme that is finite and universally open over X, and assume
that Y is smooth over S. As explained in 2.1.21, there is a canonical equivalence

(4.1.15) RBM(Z/X) ' RZ(X×S Y, π∗YΩY/S),

where πY : X×S Y → Y is the projection. This equivalence is moreover natural in Z by 2.1.21(2),
so that

CorrR
S (X,Y) ' colim

Z⊂X×SY
RZ(X×S Y, π∗YΩY/S).

Example 4.1.16. Suppose that S is regular Noetherian and let X,Y ∈ SmS. Then KGLBM(Z/X)
is the G-theory space G(Z), and hence

CorrKGL
S (X,Y) = colim

Z⊂X×SY
G(Z).

Alternatively, by (4.1.15) and the continuity of K-theory, CorrKGL
S (X,Y) is the K-theory space

of the stable ∞-category of perfect complexes on X×S Y supported on a subscheme finite and
equidimensional over X.

4.1.17. We observe that the notion of finite R-correspondence between smooth S-schemes
depends only on the very effective cover of R (in the sense of Spitzweck–Østvær [SØ12]).

Proposition 4.1.18. Let S0 be a Noetherian scheme of finite Krull dimension with perfect
residue fields and let R ∈ SH(S0). Then the very effective cover f̃0R→ R induces an equivalence

Corrf̃0R
S (X,Y) ' CorrR

S (X,Y)

for every essentially smooth S0-scheme S and every X,Y ∈ SmS.
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Proof. It will suffice to show that the map

(f̃0R)BM(Z/X)→ RBM(Z/X)

is an equivalence for every X ∈ SmS and every finite smoothable morphism Z→ X. By standard
limit arguments, we can reduce to the case S = S0. By (2.1.22), it is enough to show that the

map (f̃0R)Z(V, ξ) → RZ(V, ξ) is an equivalence for every V ∈ SmS, ξ ∈ K(V) of rank r, and
Z ⊂ V fiberwise of codimension > r. Since the question is local on V, we can assume that ξ is
pulled back from S, so that

RZ(V, ξ) = MapsSH(S)(Σ
∞
T (V/V − Z),ΣξR)

and similarly for f̃0R. Since f̃rΣ
ξR ' Σξ f̃0R, it remains to show that Σ∞T (V/V − Z) is very

r-effective. By [BH18, Proposition B.3] and the assumptions on S, we may assume that S is
the spectrum of a perfect field. In this case, Z admits a finite stratification by smooth schemes
and the result is easily proved by induction using the purity isomorphism. �

4.1.19. In case k is a field and R = HZ or R = HZ̃, the hypothetical ∞-category CorrR(Smk)
happens to be a 1-category, i.e., it is equivalent to its homotopy category hCorrR(Smk). This
is a special case of the following proposition. We refer to [Bac17, Section 3] for the definition
of the effective homotopy t-structure.

Proposition 4.1.20. Let k be a perfect field and let R ∈ SH(k) be a motivic spectrum in
the heart of the effective homotopy t-structure. For any essentially smooth k-scheme S and
X,Y ∈ SmS, the ∞-groupoid CorrR

S (X,Y) is discrete.

Proof. Using the description of CorrR
S (X,Y) given in 4.1.14, it suffices to show that the ∞-

groupoid

RZ(X×S Y, π∗YΩY/S)

is discrete for any Z ⊂ X ×S Y finite over X. By a standard limit argument, we can assume
that S is smooth over k. The result then follows from Lemma 4.1.21 below. �

Lemma 4.1.21. Let k be a perfect field, V a smooth k-scheme, ξ ∈ K(V), and Z ⊂ V a closed
subscheme of codimension > rk ξ. Let R ∈ SH(k) be a motivic spectrum in the heart of the
effective homotopy t-structure. Then the ∞-groupoid RZ(V, ξ) is discrete.

Proof. Suppose first that Z is smooth. We then have the purity equivalence (2.1.15)

RZ(V, ξ) ' R(Z, ξ −NZ/X).

Let ζ = ξ − NZ/X. By the assumption on ξ, we have rk ζ 6 0. The assumption on R means

that R is right orthogonal to SHeff
>1(k). Since Z is smooth, RZ ∈ SH(Z) is right orthogonal

to SHeff
>1(Z), hence so is ΣζRZ, because Σ−ζ is a right t-exact endomorphism of SHeff(Z). It

follows at once that R(Z, ζ) = MapsSH(Z)(1Z,Σ
ζRZ) is discrete.

If Z is an arbitrary closed subscheme, we can assume that it is reduced since cohomology
with support only depends on Zred. We will prove the claim by induction on the dimension of
Z. If Z is empty, then RZ(V, ξ) is contractible. Otherwise, since k is perfect, Z is generically
smooth, so there is a reduced closed subscheme Z1 ⊂ Z of strictly smaller dimension such that
Z− Z1 is smooth. By (2.1.17), we have a fiber sequence (of grouplike E∞-spaces)

RZ1(V, ξ)→ RZ(V, ξ)→ RZ−Z1(V − Z1, ξ).

By the induction hypothesis, RZ1
(V, ξ) is discrete since rk ξ 6 codim(Z,V) 6 codim(Z1,V).

Since Z − Z1 is smooth, we have already proven that RZ−Z1
(V − Z1, ξ) is discrete. It follows

that RZ(V, ξ) is also discrete. �
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Remark 4.1.22. The converse of Proposition 4.1.20 also holds trivially: if CorrR
k (X,Y) is discrete

for all X,Y ∈ Smk, then in particular R(X) ' CorrR
k (X,Spec k) is discrete for all X ∈ Smk,

i.e., f̃0R belongs to the heart of the effective homotopy t-structure. Thus, the hypothetical
∞-category CorrR(Smk) is a 1-category if and only if f̃0R ∈ SHeff(k)♥, in which case R is

necessarily an algebra over πeff
0 (1) ' HZ̃. In particular, for more general R, there is no hope to

recover R-modules from the 1-category hCorrR(Smk).

4.1.23. It will be useful to have a description of the composition in hCorrR(SmS) in terms
of cohomology with support. Suppose that X,Y,T are smooth S-schemes and Z ⊂ X ×S Y
and Z′ ⊂ Y ×S T are reduced subschemes that are finite and universally open over X and Y
respectively. We will refer to the diagram

X×S T T

X×S Y ×S T Y ×S T

X X×S Y Y.

qX

qT

pXT

pXY

pYT

sY

sT

rYrX

Recall from 4.1.3 that Z′ ◦ Z ⊂ X ×S T is the reduced subscheme pXT(Z′′) ⊂ X ×S T where
Z′′ = Z×Y Z′ ⊂ X×S Y ×S T. We define the pairing

θ : RZ(X×S Y, r∗YΩY/S)× RZ′(Y ×S T, s∗TΩT/S)→ RZ′◦Z(X×S T, q∗TΩT/S)

as the composition

RZ(X×S Y, r∗YΩY/S)× RZ′(Y ×S T, s∗TΩT/S)

RZ×ST(X×S Y ×S T, p∗XYr
∗
YΩY/S)× RX×SZ′(X×S Y ×S T, p∗YTs

∗
TΩT/S)

RZ′′(X×S Y ×S T, p∗XYr
∗
YΩY/S + p∗YTs

∗
TΩT/S)

RZ′◦Z(X×S T, q∗TΩT/S),

p∗XY×p
∗
YT

µ

pXT!

where µ is the cup product and pXT! is the Gysin map (2.2.4). More succinctly,

θ(x, y) = pXT!(p
∗
XYx ∪ p∗YTy).

We have the following comparison with the pairing θBM defined in 4.1.3:

Lemma 4.1.24. The following diagram commutes, where the horizontal equivalences are in-
stances of (4.1.15):

RZ(X×Y,ΩY)× RZ′(Y × T,ΩT) RBM(Z/X)× RBM(Z′/Y)

RZ◦Z′(X× T,ΩT) RBM(Z ◦ Z′/X).

'

θ θBM

'

Proof. Recall from 2.1.21 that we can factor the cup product as follows:

RZ×T(X×Y × T,ΩY)× RX×Z′(X×Y × T,ΩT)

RZ×T(X×Y × T,ΩY)× RZ′′(Z× T,ΩT) RZ′′(X×Y × T,ΩY×T),

id×i∗
µ

µ
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where i : Z × T ↪→ X × Y × T. In the following diagram, the left column is θ and the right
column is θBM:

RZ(X×Y,ΩY)× RZ′(Y × T,ΩT) RBM(Z/X)× RBM(Z′/Y)

RZ(X×Y,ΩY)× RZ′′(Z× T,ΩT) RBM(Z/X)× RBM(Z′′/Z)

RZ×T(X×Y × T,ΩY)× RZ′′(Z× T,ΩT)

RZ′′(X×Y × T,ΩY×T) RBM(Z′′/X)

RZ◦Z′(X× T,ΩT) RBM(Z ◦ Z′/X).

'

id×i∗p∗YT id×g∗

'

p∗XY×id

µBM

µ

'

pXT! p∗

'

The three rectangles commute by 2.1.21 (1), (3), and (2), respectively. �

4.2. From framed correspondences to finite R-correspondences. Let R be a homotopy
associative ring spectrum. We will construct a canonical functor

ΦR : hCorrfr(SchS) −→ hCorrR(SchS),

where Corrfr(SchS) is the ∞-category of framed correspondences constructed in [EHK+19].

4.2.1. For S-schemes X and Y, we define a map

(4.2.2) ΦR : Corrfr
S (X,Y)→ CorrR

S (X,Y)

as follows. A framed correspondence from X to Y is given by a span

Z

X Y

f g

where f is finite syntomic, together with a trivialization τ ∈ MapsK(Z)(0,Lf ).

Since the morphism f is finite syntomic, it has a fundamental class

ηf ∈ 1BM(Z/X,Lf )

(defined using the canonical factorization Z ↪→ V(f∗OZ) → X, see 3.1.2). We will also denote
by

ηf ∈ RBM(Z/X,Lf )

its image by the map 1BM(Z/X,Lf )→ RBM(Z/X,Lf ) induced by the unit 1S → R. Applying
the trivialization τ , we get an element τ∗(ηf ) ∈ RBM(Z/X).

The map (f, g) : Z → X ×S Y is finite; we denote by V ⊂ X ×S Y its reduced image. Note
that V is finite and universally open over X. Using the proper pushforward in Borel–Moore
homology, we obtain (f, g)∗(τ∗(ηf )) ∈ RBM(V/X). This construction defines a map

MapsK(Z)(0,Lf )→ RBM(V/X), τ 7→ (f, g)∗(τ∗(ηf )).

Taking the colimit over the groupoid of finite syntomic spans from X to Y, we obtain the desired
map (4.2.2).
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Proposition 4.2.3. The maps (4.2.2) define an hSpc-enriched functor

ΦR : hCorrfr(SchS) −→ hCorrR(SchS)

such that the following triangle commutes:

SchS hCorrR(SchS).

hCorrfr(SchS)

ΓR

γ
ΦR

Proof. It is clear that ΦR(γ(f)) = ΓR(f) for any S-morphism f , and in particular ΦR preserves

identity morphisms. Let α = (Z, f, g, τ) ∈ Corrfr
S (X,Y) and β = (Z′, h, s, τ ′) ∈ Corrfr

S (Y,T) be
framed correspondences, where τ ∈ MapsK(Z)(0,Lf ) and τ ′ ∈ MapsK(Z′)(0,Lh), and form the
composite 2-span

Z′′

Z Z′

X Y T.

g′h′

gf h k

The composition β ◦ α is then given by

β ◦ α = (Z′′, f ◦ h′, k ◦ g′, σ) ∈ Corrfr
S (X,T),

where σ ∈ MapsK(Z′′)(0,Lf◦h′) is the composite

0
τ⊕τ ′−−−→ h′∗Lf ⊕ g′∗Lh ' Lf◦h′ .

We want to compare ΦR(β) ◦ ΦR(α) and ΦR(β ◦ α). We first note the following equations
between fundamental classes:

g∗(τ ′∗ηh) · τ∗ηf = g′∗(τ ′)∗ηh′ · τ∗ηf = σ∗(ηh′ · ηf ) = σ∗ηf◦h′ .

Here the first equality is the stability of fundamental classes under tor-independent base change,
the second holds by definition of σ, and the last is the associativity of fundamental classes
[DJK18, Definition 2.3.6]. Let V ⊂ X×S Y be the image of Z and V′ ⊂ Y×S T the image of Z′.
We now consider the following diagram in which all parallelograms are Cartesian:

Z′′

W

Z V′′ Z′

V V′

X Y T.

r

q

p

g

p′

v
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For any z ∈ RBM(Z/X) and z′ ∈ RBM(Z′/Y), we have the following equivalences in RBM(V′′/X),
where the parenthetical justifications refer to [Dég18a, 1.2.8]:

v∗p′∗(z
′) · p∗(z) = q∗(p

∗v∗p′∗(z
′) · z) (projection formula)

= q∗(g
∗p′∗(z

′) · z) (composition)

= q∗(r∗g
∗(z′) · z) (base change)

= q∗r∗(g
∗(z′) · z) (compatibility with pushforwards)

= (q ◦ r)∗(g∗(z′) · z). (composition)

Plugging in z = τ∗ηf and z′ = τ ′∗ηh and pushing forward the result to RBM(V′ ◦V/X) gives the
desired equivalence

ΦR(β) ◦ ΦR(α) ' ΦR(β ◦ α).

To see that ΦR is indeed an hSpc-enriched functor, we must show that this equivalence is
natural in the pair (α, β) ∈ Corrfr

S (X,Y) × Corrfr
S (Y,Z). This is essentially obvious from the

construction, using the functoriality of fundamental classes discussed in 2.2.7 and 2.2.8. �

The following corollary is a variant of [DK18, Theorem 10.1].

Corollary 4.2.4. Let k be a perfect field and R ∈ SH(k) a homotopy associative ring spectrum.
Let F be an A1-invariant presheaf of abelian groups on hCorrR(Smk) that preserves finite
products. Then the Nisnevich sheaf LnisF on Smk is strictly A1-invariant and the canonical
map Hi

zar(−,LzarF)→ Hi
nis(−,LnisF) is an isomorphism for all i > 0.

Proof. This follows from the existence of the functor ΦR : Corrfr(Smk) → hCorrR(Smk) and
[EHK+19, Theorem 3.4.11]. �

4.2.5. Suppose that R is homotopy commutative. As explained in 4.1.12, hCorrR(SmS) is
then a symmetric monoidal category. Recall that Corrfr(SmS) is also a symmetric monoidal
∞-category. One can easily check that the functor

ΦR : hCorrfr(SmS)→ hCorrR(SmS)

can be uniquely promoted to a symmetric monoidal functor in such a way that the natural
equivalence ΦR ◦ γ ' ΓR is monoidal.

4.2.6. We now relate the functor ΦR to the free R-module functor:

Proposition 4.2.7. Let R ∈ SH(S) be a homotopy associative ring spectrum. Then the fol-
lowing diagram of hSpc-enriched categories commutes:

hCorrfr(SmS) hSH(S)

hCorrR(SmS) ModR(hSH(S)).

γ∗Σ
∞
T,fr

ΦR R⊗−

MR

Furthermore, if R is homotopy commutative, this square commutes in the 2-category of sym-
metric monoidal hSpc-enriched categories.

Proof. By definition of these functors, we have given isomorphisms MRΦR(X) ' R⊗Σ∞T X+ '
R ⊗ γ∗Σ∞T,frX for every X ∈ SmS. Moreover, when R is homotopy commutative, these isomor-
phisms trivially intertwine the monoidal structures of these functors. It thus remains to show
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that the following square commutes for every X,Y ∈ SmS:

(4.2.8)

Corrfr
S (X,Y) MapsSH(S)(Σ

∞
T X+,Σ

∞
T Y+)

CorrR
S (X,Y) MapsSH(S)(R⊗ Σ∞T X+,R⊗ Σ∞T Y+).

By Theorem 3.3.10, the top horizontal map in (4.2.8) is the fundamental transfer trη. Let
ϕ = (Z, f, g, τ) be a framed correspondence from X to Y, and let V ⊂ X ×S Y be the reduced
image of Z:

Z

X V Y

S.

f g
r

p

u v

q

Then ΦR(ϕ) = (V, α) for some α ∈ RBM(V/X), inducing a natural transformation α : u∗ →
u! in R-modules. In the following diagram, the top row is trη(ϕ) (in the form described in
Remark 3.1.4), while the bottom row is MRΦR(ϕ):

p!p
!1S p!f∗f

∗p!1S p!f!f
!p!1S q!g!g

!q!1S q!q
!1S

p!p
!R p!f∗f

∗p!R p!f!f
!p!R p!g!g

!p!R q!q
!R

p!p
!R p!u∗u

∗p!R p!u!u
!p!R p!v!v

!p!R q!q
!R.

unit τ◦pf ' counit

unit τ◦pf

counit

'

counit

counit

unit α

unit

' counit

The square involving α commutes by definition of α. The commutativity of the boundary of
this diagram witnesses the commutativity of the square (4.2.8). �

Remark 4.2.9. If R is A∞, we can replace the lower right corner in Proposition 4.2.7 by
hModR(SH(S)). Continuing Remarks 4.1.7, 4.1.11, and 4.1.13, we moreover expect that
this square can be promoted to a commuting square of ∞-categories, and of En-monoidal
∞-categories if R is En+1.

4.3. Voevodsky correspondences and Milnor–Witt correspondences. We show that
the ∞-category of finite HZ-correspondences (resp. of finite HZ̃-correspondences) recovers Vo-
evodsky’s category of finite correspondences [MVW06, Lecture 1] (resp. Calmès and Fasel’s
category of finite Milnor–Witt correspondences [CF17]). We then show that the functor ΦHZ

(resp. ΦHZ̃) recovers the functor cyc constructed in [EHK+19, §5.3] (resp. the functor of Déglise
and Fasel [DF17, Proposition 2.1.12]).

4.3.1. Reminders on motivic cohomology. Over a Dedekind domain D, we will consider the mo-
tivic cohomology spectrum HZ ∈ SH(D) constructed by Spitzweck [Spi18, Definition 4.27]. It is
an oriented E∞-ring spectrum that represents Bloch–Levine motivic cohomology. In particular,
for an essentially smooth D-scheme X and ξ ∈ K(X) of rank r, we have

(4.3.2) HZ(X, ξ) ' zrzar(X, ∗),

where zrzar(X, ∗) denotes the sheafification of Bloch’s cycle complex zr(X, ∗) with respect to
the Zariski topology on Spec D. This identification is natural in X, where the functoriality
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of Bloch’s cycle complex comes from Levine’s moving lemma [Lev06]. If Z ⊂ X is a closed
subscheme of codimension c, the localization theorem [Lev01, Theorem 1.7] implies that

(4.3.3) HZZ(X, ξ) ' zr−czar (Z, ∗).

Recall that HZ belongs to the heart of the effective homotopy t-structure on SH(D) [BH18,
Lemma 13.6]. Being the zeroth slice of the sphere spectrum [BH18, Theorem B.4], the spectrum
HZ admits in fact a unique E∞-ring structure with given unit.

When D is a field, HZ coincides with Voevodsky’s motivic cohomology spectrum, but this is
not known in general. In this case, Bloch’s cycle complex admits an E∞-ring structure compat-
ible with the intersection of cycles [Blo86, §5], and the equivalence (4.3.2) is multiplicative.

4.3.4. HZ-correspondences vs. Voevodsky correspondences. We let CorS denote Voevodsky’s cat-
egory of finite correspondences between smooth separated S-schemes, as defined in [MVW06,
Appendix 1A].

Lemma 4.3.5. Let S be the spectrum of a Dedekind domain, f : X → Y a morphism between
essentially smooth S-schemes, Z ⊂ X a closed subscheme flat over S such that the restriction of
f to Z is finite, and ξ ∈ K(Y) of rank codim(f(Z),Y). Then the Gysin map

f! : HZZ(X, f∗ξ + Lf )→ HZf(Z)(Y, ξ)

agrees with the pushforward of codimension 0 cycles f∗ : z0(Z)→ z0(f(Z)) under the identifica-
tion (4.3.3).

Proof. Let η ∈ S be the generic point. Since f(Z) is flat over S, the pullback z0(f(Z)) →
z0(f(Z)×S η) is an isomorphism, so we may assume that S is the spectrum of a field k. By limit
arguments, we can assume k perfect and Y smooth over k. Replacing Y by an open subscheme,
we can further assume that Z and f(Z) are smooth over k. Since the Gysin map is compatible
with purity isomorphisms, we are reduced to the following claim: if L/K is a finite extension
of finitely generated fields over k, the Gysin map Z ' HZ(Spec L,LL/K)→ HZ(Spec K) ' Z is
multiplication by [L : K]. This is a special case of [Dég18b, Example 3.2.9(1)]. �

Proposition 4.3.6. Let S be essentially smooth over a Dedekind domain. Then the symmetric
monoidal ∞-category CorrHZ(SmS) is a 1-category and is equivalent to CorS.

Proof. For smooth S-schemes X and Y, we have

CorrHZ
S (X,Y) ' colim

Z⊂X×SY
HZZ(X×S Y, π∗YΩY/S),

by 4.1.14. It follows from (4.3.3) that

HZZ(X×S Y, π∗YΩY/S) ' z0(Z, ∗) '
⊕
Z(0)

Z.

Hence,

CorrHZ
S (X,Y) '

⊕
Z⊂X×SY

Z,

where the sum is taken over all integral closed subschemes of X×SY that are finite and surjective
over a component of X. In particular, CorrHZ(SmS) is a 1-category, and its mapping spaces
are the same as in Voevodsky’s category.

To compare the composition laws, we use the description of the composition in CorrHZ(SmS)
via the pairing θ (Lemma 4.1.24). The composition in CorS is defined in exactly the same
way, except that it uses the intersection product and the pushforward of cycles instead of
the cup product and the Gysin map in HZ-cohomology. We must therefore show that these
constructions yield cycles with the same multiplicities. Since the generic points of the cycles
involved lie over generic points of S, we can replace S by its generic points and hence assume
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that S is a field. In this case, the intersection product and the cup product agree because
the isomorphism (4.3.2) is compatible with the multiplicative structures. The fact that the
pushforwards agree is a special case of Lemma 4.3.5. Finally, the fact that the symmetric
monoidal structures agree also follows from the multiplicativity of the isomorphism (4.3.2). �

4.3.7. In [EHK+19, §5.3], we defined a symmetric monoidal functor

cyc: Corrfr(SmS)→ CorS

sending a framed correspondence

Z

X Y

f g

to the cycle (f, g)∗[Z] on X×S Y, where [Z] ∈ z0(Z) is the fundamental cycle of Z. By Proposi-
tion 4.3.6, we also have the symmetric monoidal functor

ΦHZ : Corrfr(SmS)→ CorrHZ(SmS) ' CorS

defined in §4.2.

Proposition 4.3.8. For S essentially smooth over a Dedekind domain, there is an isomorphism
of symmetric monoidal functors

ΦHZ ' cyc: Corrfr(SmS)→ CorS.

Proof. Note that ΦHZ and cyc send a framed correspondence to finite correspondences with
the same support, so it suffices to compare their multiplicities. Since the generic points of
their support lie over generic points of S and both functors are natural in S, this can be done
assuming that S = Spec k for some field k, which can moreover be assumed perfect by passing
to its perfection. In this situation, we prove the following more general uniqueness statement:
if

ϕ1, ϕ2 : Corrfr(Smk)→ CorrHZ(Smk)

are symmetric monoidal functors that satisfy ϕ1|Smk ' ΓHZ ' ϕ2|Smk and send every framed
correspondence (Z, f, g, τ) to a finite correspondence with support (f, g)(Z), then ϕ1 ' ϕ2. We
have induced symmetric monoidal functors

ϕ∗1, ϕ
∗
2 : SHfr(k)→ DM(k)

such that ϕ∗1|SH(k) ' ϕ∗2|SH(k). By the reconstruction theorem [EHK+19, Theorem 3.5.12]
it follows that ϕ∗1 ' ϕ∗2. To check that ϕ1 ' ϕ2, it suffices to compare their effect on a framed

correspondence α ∈ Corrfr
k (η,Y) with connected support, where η is the generic point of a

smooth k-scheme. Since ϕ1(α) and ϕ2(α) are supported on a single point, their equality can
be checked modulo rational equivalence, i.e., in hDM(k), so we are done. �

4.3.9. Reminders on Milnor–Witt motivic cohomology. Over a field k, we will consider the
Milnor–Witt motivic cohomology spectrum HZ̃ ∈ SH(k). We adopt the definition

HZ̃ = πeff
0 (1),

where πeff
∗ are the homotopy groups in the effective homotopy t-structure. This definition is

due to Bachmann [Bac17], and it is known to be equivalent to that of Calmès and Fasel when

k is infinite perfect of characteristic not 2 [BF18]. By definition, HZ̃ is an E∞-ring spectrum
in the heart of the effective homotopy t-structure. Moreover, since the unit map 1 → MSL is
a πeff

0 -isomorphism [BH18, Example 16.34], HZ̃ is uniquely SL-oriented. In particular, we have
Thom isomorphisms

ΣξHZ̃X ' Σrk ξ
T Σdet ξ−OHZ̃X

for any X ∈ SmX and ξ ∈ K(X) (apply [BH18, Example 16.29] to ξ − det ξ).
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Since the effective cover functor f0 : SH(k)→ SHeff(k) is t-exact for the respective homotopy
t-structures [Bac17, Proposition 4(3)], we have

HZ̃ ' f0π0(1)∗.

Recall Morel’s computation π0(1)∗ ' KMW
∗ [Mor04]. More generally, for X a smooth k-scheme

and L an invertible sheaf on X, we have an equivalence in SH(X)♥

ΣL−Oπ0(1X)∗ ' KMW
∗ (L) = KMW

∗ ⊗Z[O×] Z[L×]

by [Ana18, Lemma 2.9]. Therefore the canonical map HZ̃ → KMW
∗ and the SL-orientation of

HZ̃ induce maps of abelian groups

(4.3.10) πiHZ̃(X, ξ)→ Hn−i
nis (X,KMW

n (det ξ)),

natural in X ∈ Smk and ξ ∈ K(X), where n = rk ξ. If k is perfect, we can analyze the Postnikov

filtration of f0KMW
∗ using Rost–Schmid complexes (see 4.3.12 below), and we easily deduce

that (4.3.10) is an isomorphism for i = 0, 1. In particular, if Z ⊂ X is a closed subset, then

(4.3.11) π0HZ̃Z(X, ξ) ' C̃Hn
Z(X,det ξ) = Hn

nis,Z(X,KMW
n (det ξ)).

By continuity, these computations remain valid over arbitrary fields. Moreover, the isomor-
phism (4.3.11) is compatible with the multiplicative structures, since the product in Milnor–Witt
K-theory (which induces the intersection product on Chow–Witt groups) is induced by the ring
structure of the sphere spectrum.

4.3.12. Rost–Schmid complexes. Let k be a perfect field, X a smooth k-scheme, L an invertible
sheaf on X, and Z ⊂ X a closed subset. The Nisnevich cohomology of X with coefficients in
the sheaf KMW

n (L) and with support in Z can be computed using the Rost–Schmid complex

C∗Z(X,KMW
n (L)), given in degree i by

CiZ(X,KMW
n (L)) =

⊕
x∈X(i)∩Z

KMW
n−i (κ(x),L⊗ ωx),

where ωx = ωκ(x)/OX,x
[Mor12, Chapter 5]. In particular,

(4.3.13) C̃Hn
Z(X,L) ' Hn(C∗Z(X,KMW

n (L))).

The Rost–Schmid complex is functorial for flat morphisms in Smk: if f : Y → X is flat, there
is an induced map of complexes

f∗ : C∗Z(X,KMW
n (L))→ C∗f−1(Z)(Y,K

MW
n (f∗L)),

defined in [Fas08, Corollaire 10.4.3]. On the other hand, for any f , there is a sheaf-theoretic
pullback

f∗ : C̃Hn
Z(X,L)→ C̃Hn

f−1(Z)(Y, f
∗L),

which agrees with the pullback in HZ̃-cohomology (by the naturality of (4.3.11)).

Lemma 4.3.14. The isomorphism (4.3.13) is natural with respect to flat morphisms in Smk.

Proof. It suffices to show that the canonical inclusion

KMW
n (X,L) ↪→ C0(X,KMW

n (L)) =
⊕
x∈X(0)

KMW
n (κ(x),L)

is natural with respect to flat morphisms. This is obvious because the flat pullback on C0 is by
definition the sum of the pullbacks in Milnor–Witt K-theory. �
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If Z ⊂ X is smooth of codimension c, comparing Rost–Schmid complexes yields an isomor-
phism

Π: C̃Hn
Z(X,L) ' C̃Hn−c(Z,L⊗ det(NZ/X)−1),

called the purity isomorphism.

Lemma 4.3.15. Under the identification (4.3.11), the purity isomorphism Π coincides with
the Morel–Voevodsky purity isomorphism (2.1.15).

Proof. We can reduce to the case of the zero section of a vector bundle using the functoriality
of the Rost–Schmid complex for smooth morphisms (Lemma 4.3.14), Jouanolou devices, and
étale neighborhoods (cf. [Hoy17, Lemma 3.22]). Thus let V = V(E) be a vector bundle over
X ∈ Smk. We must show that the following square commutes:

π0HZ̃X(V, ξ) π0HZ̃(X, ξ − E)

C̃Hn
X(V,det ξ) C̃Hn−c(X,det(ξ)⊗ det(E)−1).

(2.1.15)

' '

Π

The top horizontal map is now the identity map by [Voe03, Lemma 2.2]. Each vertical map

is the composition of the Thom isomorphism for HZ̃ and the canonical map HZ̃ → KMW
∗ .

Levine shows in [Lev17a, Proposition 3.7] that the purity isomorphism Π above is the Thom
isomorphism of an SL-orientation on the cohomology theory represented by the motivic spec-
trum KMW

∗ . By [PW10, Theorem 5.9], such an orientation is classified by a unital morphism

of spectra MSL → KMW
∗ . But since the unit map 1 → MSL is a π0-isomorphism, there is

a unique such morphism. Therefore the map HZ̃ → KMW
∗ intertwines the respective Thom

isomorphisms, which implies the commutativity of the above square. �

4.3.16. Comparison of pushforwards in Chow–Witt theory. Let k be a perfect field, f : X→ Y
a morphism between smooth k-schemes, Z ⊂ X a closed subscheme such that the restriction of
f to Z is finite, and L an invertible sheaf on Y. We recall the definition of the Calmès–Fasel
pushforward

f∗ : C̃Hn+d
Z (X, f∗L⊗ ωf )→ C̃Hn

f(Z)(Y,L),

where d = rk(Lf ) [CF17, page 10]. It is induced by the morphism of Rost–Schmid complexes

f∗ : C∗+dZ (X,KMW
n+d(f

∗L⊗ ωf ))→ C∗f(Z)(Y,K
MW
n (L)),

which in degree i is the sum of the absolute transfers [Mor12, Definition 5.4]⊕
x∈X(i+d)∩Z

KMW
n−i (κ(x), f∗L⊗ ωf ⊗ ωx)→

⊕
y∈Y(i)∩f(Z)

KMW
n−i (κ(y),L⊗ ωy).

Proposition 4.3.17. Let f : X → Y be a morphism between smooth k-schemes, let Z ⊂ X be
a closed subscheme such that the restriction of f to Z is finite, and let ξ ∈ K(Y) be of rank
c = codim(f(Z),Y). Then, under the identification (4.3.11), the Gysin map

f! : HZ̃Z(X, f∗ξ + Lf )→ HZ̃f(Z)(Y, ξ)

(see 2.2.3) agrees with the Calmès–Fasel pushforward

f∗ : C̃Hc+d
Z (X,det(f∗ξ)⊗ ωf )→ C̃Hc

f(Z)(Y,det(ξ)), d = rk(Lf ).

Proof. Since c+ d is the codimension of Z in X, we have an exact sequence

0→ C̃Hc+d
Z (X,L)→

⊕
x∈X(c+d)∩Z

GW(κ(x),L⊗ ωx)
∂−→

⊕
x∈X(c+d+1)∩Z

W(κ(x),L⊗ ωx),
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where ωx = ωκ(x)/OX,x
. For x ∈ X(c+d) ∩ Z, the map

C̃Hc+d
Z (X,L)→ GW(κ(x),L⊗ ωx)

is the filtered colimit of the restriction maps

C̃Hc+d
Z (X,L)→ C̃Hc+d

Z∩U(U,L)
Π' C̃H0(Z ∩U,L⊗ ωZ∩U/U),

where U ranges over the open subschemes of X containing x and such that U∩Z is smooth, and
Π is the purity isomorphism. By Lemma 4.3.15 and the fact that Gysin maps are compatible
with base change and with the purity isomorphism, we are reduced to the following claim: for
L/K a finite extension of finitely generated fields over k, the Gysin map HZ̃(Spec L,LL/K) →
HZ̃(Spec K) coincides with the absolute transfer GW(L, ωL/K) → GW(K). Without loss of
generality, we can assume that L = K(a) for some a ∈ L. Both transfers can then be computed
in terms of the factorization

Spec L
a
↪→ P1

K
p−→ Spec K.

More precisely, we use the geometric description of the absolute transfer from [Mor12, page 99].
It is the lower composition in the following diagram:

HZ̃(Spec L,LL/K) HZ̃(P1
K,LP1

K/K
) HZ̃(Spec K)

HZ̃Spec L(P1
K,LP1

K/K
) HZ̃P1

K−∞(P1
K,LP1

K/K
) HZ̃0(P1

K,LP1
K/K

),

Π'

a!

Π'

s!

'

where s : Spec K ↪→ P1
K is the zero section. The commutativity of each square is an instance

of 2.2.3(1). Since p!s! = id, it follows that the absolute transfer coincides with the Gysin map
p!a!. �

4.3.18. HZ̃-correspondences vs. Milnor–Witt correspondences. Let S be essentially smooth over

a field. By C̃orS we denote Calmès and Fasel’s category of finite Milnor–Witt correspondences
between smooth separated S-schemes, as defined in [CF17].

Proposition 4.3.19. Let S be essentially smooth over a field. Then the symmetric monoidal

∞-category CorrHZ̃(SmS) is a 1-category and is equivalent to C̃orS.

Proof. Since HZ̃ is in the heart of the effective homotopy t-structure, CorrHZ̃(SmS) is a 1-
category by Proposition 4.1.20. For smooth S-schemes X and Y, we have

CorrHZ̃
S (X,Y) ' colim

Z⊂X×SY
HZ̃Z(X×S Y, π∗YΩY/S)

by 4.1.14. It follows from (4.3.11) that

π0HZ̃Z(X×S Y, π∗YΩY/S) ' C̃Hd
Z(X×S Y, π∗YωY/S).

In particular, the mapping spaces in CorrHZ̃(SmS) are the same as in C̃orS.

To compare the composition laws, we use the description of the composition in CorrHZ̃(SmS)

via the pairing θ (Lemma 4.1.24). The composition in C̃orS is defined in the same way, except
that it uses the Calmès–Fasel pushforward instead of the Gysin map, but these are the same
by Proposition 4.3.17. Finally, the symmetric monoidal structures agree by the multiplicativity
of the isomorphisms (4.3.11). �
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4.3.20. Compatibility with the functor of Déglise–Fasel. Let k be a perfect field. In [DF17,
Proposition 2.1.12], Déglise and Fasel define a functor

α : Correfr
∗ (Smk)→ C̃ork,

where Correfr
∗ (Smk) is the category whose objects are smooth k-schemes (separated and of

finite type) and whose mapping spaces are the sets∨
n>0

Correfr,n
k (X,Y)

(see [EHK+19, 3.4.7]). The rest of this section will be devoted to the proof of the following
comparison theorem:

Theorem 4.3.21. Let λ : Correfr
∗ (Smk) → hCorrfr(Smk) be the functor defined in [EHK+19,

3.4.7]. Then the following diagram commutes:

Correfr
∗ (Smk) C̃ork.

hCorrfr(Smk)

λ

α

ΦHZ̃

4.3.22. We briefly recall the construction of the functor α. On objects one has α(X) = X.

Given an equationally framed correspondence c = (Z,U, ϕ, g) ∈ Correfr,n
k (X,Y), we construct a

finite MW-correspondence α(c) ∈ C̃ork(X,Y) as follows.

Write ϕ = (ϕ1, . . . , ϕn) and denote by |ϕi| the vanishing locus of ϕi : U → A1, so that
Z = |ϕ1| ∩ · · · ∩ |ϕn|. Since Z ⊂ U is everywhere of codimension n, |ϕi| does not contain any
generic point of U. Each ϕi can thus be seen as an element of

⊕
u∈U(0) κ(u)× and hence defines

an element [ϕi] ∈
⊕

u∈U(0) KMW
1 (κ(u)). Applying the residue map

∂ :
⊕
u∈U(0)

KMW
1 (κ(u)) −→

⊕
x∈U(1)

KMW
0 (κ(x), ωx)

we obtain an element ∂[ϕi] supported on |ϕi|, which defines a cohomology class

Z(ϕi) ∈ H1
|ϕi|(U,K

MW
1 ).

Using the product in Milnor–Witt K-theory, we get an element

Z(ϕ) = Z(ϕ1) · . . . · Z(ϕn) ∈ Hn
Z(U,KMW

n ) = C̃Hn
Z(U).

The étale morphism u : U → An
X induces a trivialization ωU/X ' u∗ωAn

X/X
' OU. Denote

by π : An
X → X the projection. Since Z is finite and equidimensional over X, the morphism

(πu, g) : U → X × Y sends Z to a closed subscheme T, which is finite and equidimensional

over X. The finite MW-correspondence α(c) ∈ C̃ork(X,Y) is then the image of Z(ϕ) by the
Calmès–Fasel pushforward

(πu, g)∗ : C̃Hn
Z(U) ' C̃Hn

Z(U, ωU/X) −→ C̃Hd
T(X×Y, ωX×Y/X), d = dim(Y).

4.3.23. The first step in the proof of Theorem 4.3.21 is to recast the construction of Z(ϕ) as a
Thom class.

We recall that for E a motivic ring spectrum, the Thom class of a locally free sheaf E on X
is the image of 1 by the purity equivalence E(X) ' EX(V(E),E). By Lemma 4.3.15, the Thom
class of E in Chow–Witt theory has an explicit representative in the Rost–Schmid complex,
namely

1 ∈
⊕
x∈X(0)

GW(κ(x)) ' CnX(V(E),KMW
n (detE)), n = rkE.
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Lemma 4.3.24. Let X,Y ∈ Smk and let c = (Z,U, ϕ, g) ∈ Correfr,n
k (X,Y). Assume that the

morphism ϕ : U→ An
k is flat. Let tn ∈ C̃Hn

0 (An
k ) be the Thom class of the trivial vector bundle

An
k → Spec k. Then Z(ϕ) = ϕ∗(tn) in C̃Hn

Z(U).

Proof. It is enough to show that Z(ϕi) = ϕ∗i (t1), because Z(ϕ) = Z(ϕ1)·. . .·Z(ϕn) and the Thom
class is multiplicative with respect to direct sum of vector bundles. By Lemma 4.3.14, since
ϕi : U→ A1

k is flat, the pullback ϕ∗i on Chow–Witt groups can be computed using Rost–Schmid
complexes. The commutative square

C0(A1
k,K

MW
1 ) C0(U,KMW

1 )

C1(A1
k,K

MW
1 ) C1(U,KMW

1 )

∂

ϕ∗i

∂

ϕ∗i

shows that ∂[ϕi] = ϕ∗i (∂[idA1 ]) in C1
|ϕi|(U,K

MW
1 ), hence that Z(ϕi) = ϕ∗i (Z(idA1)) in C̃H1

|ϕi|(U).

It remains to observe that Z(idA1) = t1, since the residue map ∂t : KMW
1 (k(t))→ GW(k) takes

[t] to 1. �

4.3.25. The following lemma shows that the flatness assumption in Lemma 4.3.24 is essentially
vacuous.

Lemma 4.3.26. Let S be a regular Noetherian scheme and X,Y ∈ SchS. Suppose that X is

flat over S. Then, for every (Z,U, ϕ, g) ∈ Correfr,n
S (X,Y), the morphism ϕ : U → An

S is flat in
an open neighborhood of Z.

Proof. It suffices to show that ϕ : U → An
S is flat at every point z ∈ Z. Let s = ϕ(z) and let

(x1, . . . , xd) ∈ OS,s be a regular system of parameters. By [EHK+19, Proposition 2.1.18], Z is flat
over S and (ϕ1, . . . , ϕn) is regular sequence in OU,z with quotient OZ,z. The flatness of Z implies
that the image of (x1, . . . , xd) in OZ,z is a regular sequence. Thus, the local homomorphism
ϕ∗ : OAn

S ,s
→ OU,z sends the regular system of parameters (t1, . . . , tn, x1, . . . , xd) to a regular

sequence. The criterion of [Stacks, Tag 07DY] now shows that ϕ is flat. �

Proof of Theorem 4.3.21. Let X,Y ∈ Smk and let c = (Z,U, ϕ, g) ∈ Correfr,n
k (X,Y) be an

equationally framed correspondence:

U

An
X Z An ×Y

X Y.

(ϕ,g)u

π

i

f h
0

Let τ ∈ MapsK(Z)(0,Lf ) be the induced trivialization of the cotangent complex and let T =

(f, h)(Z) ⊂ X × Y. By Lemma 4.3.26 we can assume that ϕ : U → An
k is flat. Combining

2.1.21(2) and Proposition 4.3.17, we have a commutative square

HZ̃BM(Z/X) HZ̃BM(T/X)

C̃Hn
Z(U) C̃Hd

T(X×Y, ωX×Y/X).

(f,h)∗

' '

(πu,g)∗
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It is thus enough to show that Z(ϕ) ∈ C̃Hn
Z(U) corresponds to τ∗(ηf ) ∈ HZ̃BM(Z/X) under the

left-hand isomorphism. We have

Z(ϕ) = ϕ∗(tn) (Lemma 4.3.24)

= ϕ∗0!(1) (definition of the Thom class)

= τ∗i!(1), (base change)

where 0! and i! are the Gysin maps defined in 2.2.3. To conclude, note that the isomorphism

HZ̃Z(U,Ni) ' HZ̃BM(Z/X,Lf )

sends i!(1) to ηf , by definition of i!. �
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motivique, I, Astérisque 315 (2008)
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