K-THEORY OF DUALIZABLE CATEGORIES (AFTER A. EFIMOV)

MARC HOYOIS

We explain the definition of the K-theory of "large" stable ∞ -categories, due to Alexander Efimov. These notes are based on a talk given by Efimov at the CATS5 conference in Lisbon in October 2018.

We start by fixing some terminology. We shall refer to ∞ -categories as categories. We write \Pr_{St} for the category of stable presentable categories and colimit-preserving functors, $\Pr_{St}^{dual} \subset \Pr_{St}$ for the subcategory of dualizable objects and right-adjointable morphisms (with respect to the symmetric monoidal and 2-categorical stuctures of \Pr_{St}), and $\Pr_{St}^{cg} \subset \Pr_{St}$ for the subcategory of compactly generated categories and compact functors (i.e., functors whose right adjoints preserve filtered colimits). A *localization sequence* in any such category will mean a cofiber sequence $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ where $\mathcal{A} \to \mathcal{B}$ is fully faithful.

It is well known that \Pr_{St}^{cg} is a full subcategory of \Pr_{St}^{dual} . In fact:

Theorem 1 (Lurie). For C a stable presentable category, the following are equivalent:

- (1) \mathcal{C} is dualizable in $\mathcal{P}r_{St}$.
- (2) C is a retract in Pr_{St} of a compactly generated category.
- (3) The colimit functor colim: $\operatorname{Ind}(\mathcal{C}) \to \mathcal{C}$ admits a left adjoint $\hat{y} \colon \mathcal{C} \to \operatorname{Ind}(\mathcal{C})$.

Note that the colimit functor colim: $\operatorname{Ind}(\mathcal{C}) \to \mathcal{C}$ is left adjoint to the Yoneda embedding $y: \mathcal{C} \hookrightarrow \operatorname{Ind}(\mathcal{C})$, which is fully faithful. Hence, the functor \hat{y} is also fully faithful. When \mathcal{C} is compactly generated, \hat{y} is the Ind-extension of the inclusion $\mathcal{C}^{\omega} \subset \mathcal{C}$.

Definition 2. Let \mathcal{C} be a presentable stable category. The *Calkin category* $Calk(\mathcal{C}) \subset Ind(\mathcal{C})$ is the kernel of the colimit functor colim: $Ind(\mathcal{C}) \to \mathcal{C}$.

Proposition 3. Suppose $\mathcal{C} \in \mathfrak{Pr}_{St}$ is dualizable. Then:

- (1) $\operatorname{Calk}(\mathcal{C}) = \operatorname{Ind}(\operatorname{Calk}(\mathcal{C})^{\omega}).$
- (2) The inclusion $\operatorname{Calk}(\mathcal{C}) \subset \operatorname{Ind}(\mathcal{C})$ admits a left adjoint

$$\Phi \colon \operatorname{Ind}(\mathcal{C}) \to \operatorname{Calk}(\mathcal{C})$$

that preserves compact objects.

(3) There is a localization sequence of cocomplete stable categories

$$\mathcal{C} \xleftarrow{\hat{y}}_{\text{colim}} \text{Ind}(\mathcal{C}) \xleftarrow{\Phi} \text{Calk}(\mathcal{C}).$$

Proof. The left adjoint Φ is the cofiber of the counit transformation $\hat{y} \circ \text{colim} \to \text{id.}$ It preserves compact objects because its right adjoint preserves colimits. Since Φ is essentially surjective, $\text{Calk}(\mathcal{C})$ is generated under colimits by $\Phi(\mathcal{C}) \subset \text{Calk}(\mathcal{C})^{\omega}$, and the first assertion follows.

Note that $\operatorname{Calk}(\mathcal{C})^{\omega}$ is a locally small but *large* category, so that $\operatorname{Calk}(\mathcal{C})$ is not presentable (unless $\mathcal{C} = 0$).

Definition 4. Let $\mathcal{C} \in \mathfrak{Pr}_{St}$ be dualizable. The *continuous K-theory* of \mathcal{C} is the space

$$K_{cont}(\mathcal{C}) = \Omega K(Calk(\mathcal{C})^{\omega}).$$

Lemma 5. If \mathcal{C} is compactly generated, then $K_{cont}(\mathcal{C}) = K(\mathcal{C}^{\omega})$.

Proof. In this case, the localization sequence of Proposition 3 is Ind of the sequence

$$\mathcal{C}^{\omega} \hookrightarrow \mathcal{C} \to \operatorname{Calk}(\mathcal{C})^{\omega}.$$

Since $K(\mathcal{C}) = 0$, the result follows from the localization theorem in K-theory.

Date: November 4, 2018.

More generally, we can define a continuous version of any localizing invariant. In the case of K-theory, we made use of the fact that K-theory is defined on the large category $\operatorname{Calk}(\mathcal{C})^{\omega}$, but this is not the case for an abstract localizing invariant. Thus, we will need to use a presentable version of the Calkin category, which depends on the choice of a large enough regular cardinal.

Definition 6. Let \mathcal{C} be a presentable stable category and κ a regular cardinal. The κ -Calkin category $\operatorname{Calk}_{\kappa}(\mathcal{C}) \subset \operatorname{Ind}(\mathcal{C}^{\kappa})$ is the kernel of the colimit functor colim: $\operatorname{Ind}(\mathcal{C}^{\kappa}) \to \mathcal{C}$.

If $\mathcal{C} \in \mathfrak{Pr}_{\mathrm{St}}$ is dualizable, there exists a regular cardinal κ such that the fully faithful functor $\hat{y} \colon \mathcal{C} \hookrightarrow \mathrm{Ind}(\mathcal{C})$ lands in $\mathrm{Ind}(\mathcal{C}^{\kappa})$. We shall then say that \mathcal{C} is κ -dualizable, and we let $\mathfrak{Pr}_{\mathrm{St}}^{\kappa-\mathrm{dual}} \subset \mathfrak{Pr}_{\mathrm{St}}^{\mathrm{dual}}$ be the full subcategory spanned by the κ -dualizable categories. We have

$$\mathfrak{Pr}^{\mathrm{dual}}_{\mathrm{St}} = \bigcup_{\kappa} \mathfrak{Pr}^{\kappa\text{-dual}}_{\mathrm{St}} \quad \mathrm{and} \quad \mathfrak{Pr}^{\kappa\text{-dual}}_{\mathrm{St}} \subset \mathfrak{Pr}^{\kappa\text{-cg}}_{\mathrm{St}}.$$

For example, a stable presentable category is ω -dualizable if and only if it is compactly generated. Given $\mathcal{C} \in \mathfrak{Pr}_{St}^{\kappa-dual}$, we have a localization sequence

(7)
$$\mathcal{C} \xleftarrow{\hat{y}} \operatorname{Ind}(\mathcal{C}^{\kappa}) \xleftarrow{\Phi_{\kappa}} \operatorname{Calk}_{\kappa}(\mathcal{C})$$

in \Pr_{St} , where Φ_{κ} is the restriction of Φ , and this diagram is functorial in \mathcal{C} . Moreover, it is easy to check that $\operatorname{Calk}_{\kappa}: \Pr_{St}^{\kappa-\operatorname{dual}} \to \Pr_{St}^{\operatorname{cg}}$ preserves localization sequences.

Let $\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}}$ be the category of small stable idempotent complete categories and exact functors. Recall that Ind-completion induces an isomorphism $\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \simeq \operatorname{Pr}_{\operatorname{St}}^{\operatorname{cg}}$. If \mathcal{T} is a category, we shall say that a functor $F: \operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \mathcal{T}$ is a *localizing invariant* if it preserves final objects and sends localization sequences to fiber sequences.

Lemma 8. Let \mathfrak{T} be a category and $F: \operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \mathfrak{T}$ a localizing invariant. Let $\mathfrak{C} \in \operatorname{Pr}_{\operatorname{St}}$ be dualizable and let $\kappa \leq \lambda$ be uncountable regular cardinals such that $\hat{y}(\mathfrak{C}) \subset \operatorname{Ind}(\mathfrak{C}^{\kappa})$. Then the inclusion $\operatorname{Calk}_{\kappa}(\mathfrak{C}) \subset \operatorname{Calk}_{\lambda}(\mathfrak{C})$ induces an isomorphism

$$F(\operatorname{Calk}_{\kappa}(\mathcal{C})^{\omega}) \simeq F(\operatorname{Calk}_{\lambda}(\mathcal{C})^{\omega})$$

Proof. Applying Calk_{κ} to the localization sequence (7) for λ gives a localization sequence

$$\operatorname{Calk}_{\kappa}(\mathcal{C}) \to \operatorname{Calk}_{\kappa}(\operatorname{Ind}(\mathcal{C}^{\lambda})) \to \operatorname{Calk}_{\kappa}(\operatorname{Calk}_{\lambda}(\mathcal{C})).$$

On the other hand, applying (7) to $\operatorname{Calk}_{\lambda}(\mathcal{C})$ gives a localization sequence

 $\operatorname{Calk}_{\lambda}(\mathcal{C}) \to \operatorname{Ind}(\operatorname{Calk}_{\lambda}(\mathcal{C})^{\kappa}) \to \operatorname{Calk}_{\kappa}(\operatorname{Calk}_{\lambda}(\mathcal{C})).$

Hence, we obtain isomorphisms

$$F(\operatorname{Calk}_{\kappa}(\mathcal{C})^{\omega}) \simeq \Omega F(\operatorname{Calk}_{\kappa}(\operatorname{Calk}_{\lambda}(\mathcal{C}))^{\omega}) \simeq F(\operatorname{Calk}_{\lambda}(\mathcal{C})^{\omega}),$$

natural in λ . This proves the claim.

Given Lemma 8, the following definition makes sense:

Definition 9. Let \mathcal{T} be a category and $F: \operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \mathcal{T}$ a localizing invariant. The *continuous extension* of F is the functor $F_{\operatorname{cont}}: \operatorname{Pr}_{\operatorname{St}}^{\operatorname{dual}} \to \mathcal{T}$ defined by

$$F_{\text{cont}}(\mathfrak{C}) = \Omega F(\text{Calk}_{\kappa}(\mathfrak{C})^{\omega}),$$

where κ is any uncountable regular cardinal such that $\hat{y}(\mathcal{C}) \subset \operatorname{Ind}(\mathcal{C}^{\kappa})$.

More formally, we can consider $(Calk_{\kappa})_{\kappa}$ as a functor

$$\mathfrak{Pr}_{\mathrm{St}}^{\mathrm{dual}} \to \widehat{\mathrm{Ind}}(\mathfrak{Pr}_{\mathrm{St}}^{\mathrm{cg}}) \simeq \widehat{\mathrm{Ind}}(\mathfrak{Cat}_{\mathrm{St}}^{\mathrm{idem}})$$

and compose it with the Ind-extension of ΩF , the result landing in the subcategory $\mathfrak{T} \subset \operatorname{Ind}(\mathfrak{T})$ by Lemma 8. In the case of K-theory, Definition 9 agrees with Definition 4 since $\operatorname{Calk}(\mathfrak{C})^{\omega} = \operatorname{colim}_{\kappa} \operatorname{Calk}_{\kappa}(\mathfrak{C})^{\omega}$ and K-theory commutes with filtered colimits.

We shall say that a functor $F: \operatorname{Pr}_{\operatorname{St}}^{\operatorname{dual}} \to \mathfrak{T}$ is a *localizing invariant* if it preserves final objects and sends localization sequences to fiber sequences.

Theorem 10 (Efimov). Let \mathcal{T} be a category. The functor

$$\operatorname{Fun}(\operatorname{Pr}_{\operatorname{St}}^{\operatorname{dual}}, \mathfrak{T}) \to \operatorname{Fun}(\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}}, \mathfrak{T}), \quad F \mapsto F \circ \operatorname{Ind},$$

restricts to an isomorphism between the full subcategories of localizing invariants, with inverse $F \mapsto F_{\text{cont}}$. In particular, if $\mathcal{C} \in \mathfrak{Pr}_{\text{St}}^{\text{cg}}$, then $F_{\text{cont}}(\mathcal{C}) = F(\mathcal{C}^{\omega})$.

Proof. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ be a localization sequence in $\mathfrak{Pr}^{dual}_{St}$. Then for large enough κ we have an induced localization sequence

$$\operatorname{Calk}_{\kappa}(\mathcal{A}) \to \operatorname{Calk}_{\kappa}(\mathcal{B}) \to \operatorname{Calk}_{\kappa}(\mathcal{C})$$

It follows that F_{cont} is a localizing invariant. The proof of Lemma 5 shows that $F_{\text{cont}} \circ \text{Ind} \simeq F$, functorially in F. To $\mathcal{C} \in \mathfrak{Pr}_{\text{St}}^{\text{dual}}$ we can associate the filtered diagram of localization sequences

$$\mathcal{C} \to \operatorname{Ind}(\mathcal{C}^{\kappa}) \to \operatorname{Calk}_{\kappa}(\mathcal{C}), \quad \kappa \gg 0$$

which immediately gives a functorial isomorphism $F \simeq (F \circ \operatorname{Ind})_{\operatorname{cont}}$.

Example 11. An example of a localizing invariant $\Pr_{St}^{dual} \to Sp$ is the functor sending a dualizable category to its Euler characteristic. In fact, this functor is the continuous extension of THH: $\operatorname{Cat}_{St}^{idem} \to Sp$, since THH(\mathcal{C}) is the Euler characteristic of Ind(\mathcal{C}) in Pr_{St} .

Example 12. Theorem 10 implies the following:

- $\text{THH}_{\text{cont}} \colon \mathfrak{Pr}_{\text{St}}^{\text{dual}} \to \text{Sp}$ factors through the stable category CycSp of cyclotomic spectra;
- $\operatorname{TP}_{\operatorname{cont}}(\mathcal{C}) \simeq \operatorname{THH}_{\operatorname{cont}}(\mathcal{C})^{t\mathbb{T}}$ and $\operatorname{TC}_{\operatorname{cont}}(\mathcal{C})$ is the mapping spectrum $\operatorname{Map}_{\operatorname{CycSp}}(\mathbf{1}, \operatorname{THH}_{\operatorname{cont}}(\mathcal{C}));$
- $\Omega^{\infty}(\mathbb{K}_{cont}) \simeq K_{cont}$, where \mathbb{K} is nonconnective K-theory;
- the cyclotomic trace $\mathbb{K} \to \mathrm{TC}$ extends uniquely to a transformation $\mathbb{K}_{\mathrm{cont}} \to \mathrm{TC}_{\mathrm{cont}}$.

One immediately recovers the following excision theorem of Tamme:

Corollary 13 (Tamme). Let

be a commutative square in $\operatorname{Pr}_{\operatorname{St}}^{\operatorname{cg}}$, cartesian in Cat, such that the right adjoint of g is fully faithful. For any stable category \mathfrak{T} and any localizing invariant $F: \operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \mathfrak{T}$, the induced square

is cartesian.

Proof. Note that the right adjoint of f is also fully faithful. The kernels of f and g are dualizable and isomorphic. Since \mathcal{T} is stable, F_{cont} takes the given square to a cartesian square.

For the next lemma, note that each subcategory $\Pr_{St}^{\kappa-dual} \subset \Pr_{St}$ is closed under small colimits, hence $\Pr_{St}^{dual} \subset \Pr_{St}$ is closed under small colimits.

Lemma 14. Let \mathcal{T} be a category, $F: \operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \mathcal{T}$ a localizing invariant, and \mathcal{K} a small category. Then F preserves \mathcal{K} -indexed colimits if and only if F_{cont} preserves \mathcal{K} -indexed colimits.

Proof. This follows easily from (7) and the fact that Ind: $\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}} \to \operatorname{Pr}_{\operatorname{St}}$ preserves colimits.

Theorem 15. Let X be a locally compact Hausdorff topological space and C a dualizable stable presentable category.

(1) (Lurie) $Shv(X, \mathcal{C})$ is dualizable in \Pr_{St} .

(2) (Efimov) Suppose that Shv(X) is hypercomplete (for example, X is a topological manifold). Let \mathfrak{T} be a stable compactly generated category and $F: \operatorname{Cat}_{St}^{\operatorname{idem}} \to \mathfrak{T}$ a localizing invariant that preserves filtered colimits. Then

$$F_{\text{cont}}(\text{Shv}(X, \mathcal{C})) \simeq \Gamma_{\text{c}}(X, F_{\text{cont}}(\mathcal{C})).$$

In particular,

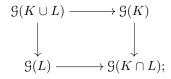
$$F_{\text{cont}}(\operatorname{Shv}(\mathbb{R}^n, \mathcal{C})) \simeq \Omega^n F_{\text{cont}}(\mathcal{C}).$$

Proof. Let $\mathcal{K}(X)$ denote the poset of compact subsets of X. We write $K \subseteq L$ if $K \subset U \subset L$ for some open subset $U \subset X$. Since filtered colimits in \mathcal{T} are left exact, there is a fully faithful embedding

$$e\colon \mathrm{Shv}(X, \mathfrak{T}) \hookrightarrow \mathrm{Fun}(\mathcal{K}(X)^{\mathrm{op}}, \mathfrak{T}), \quad e(\mathfrak{F})(K) = \operatornamewithlimits{colim}_{K \subset U} \mathcal{F}(U),$$

identifying $\operatorname{Shv}(X, \mathfrak{T})$ with the subcategory of functors $\mathfrak{G} \colon \mathfrak{K}(X)^{\operatorname{op}} \to \mathfrak{T}$ such that

- (a) $\mathcal{G}(\emptyset) = *;$
- (b) for every $K, L \in \mathcal{K}(X)$, the following square is cartesian:



(c) for every $K \in \mathcal{K}(X)$, the canonical map $\mathcal{G}(K) \to \operatorname{colim}_{K \in L} \mathcal{G}(L)$ is an isomorphism.

Since \mathcal{T} is stable, *e* preserves colimits. Let $\mathcal{E} \subset \operatorname{Fun}(\mathcal{K}(X)^{\operatorname{op}}, \mathcal{T})$ be the full subcategory of functors satisfying conditions (a) and (b). Define the endofunctor $\mathcal{G} \mapsto \mathcal{G}^{\dagger}$ of $\operatorname{Fun}(\mathcal{K}(X)^{\operatorname{op}}, \mathcal{T})$ by the formula

$$\mathcal{G}^{\dagger}(K) = \operatorname{colim}_{K \in L} \mathcal{G}(L)$$

One can easily show that the functor $\mathcal{G} \mapsto \mathcal{G}^{\dagger}$ sends \mathcal{E} to itself. It follows that the inclusion $e(\operatorname{Shv}(X, \mathcal{T})) \subset \mathcal{E}$ has a right adjoint given by $\mathcal{G} \mapsto \mathcal{G}^{\dagger}$, which exhibits $\operatorname{Shv}(X, \mathcal{T})$ as a retract of \mathcal{E} in Pr_{St} . Since \mathcal{E} is clearly compactly generated, this shows that $\operatorname{Shv}(X, \mathcal{T})$ is dualizable. In particular, $\operatorname{Shv}(X, \operatorname{Sp})$ and hence also $\operatorname{Shv}(X, \mathcal{C}) = \operatorname{Shv}(X, \operatorname{Sp}) \otimes \mathcal{C}$ are dualizable.

Consider the functor $\tilde{\mathfrak{C}} \colon \mathfrak{K}(X)^{\mathrm{op}} \to \mathfrak{Pr}^{\mathrm{dual}}_{\mathrm{St}}$ defined by

$$\hat{\mathcal{C}}(K) = \operatorname{Shv}(K, \mathcal{C}).$$

Since F_{cont} is a stable localizing invariant that preserves filtered colimits (by Lemma 14), $F_{\text{cont}} \circ \tilde{\mathbb{C}}$ satisfies conditions (a)–(c). Hence, $F_{\text{cont}} \circ \tilde{\mathbb{C}} = e(\mathcal{F})$ for some $\mathcal{F} \in \text{Shv}(X, \mathcal{T})$. Let $\underline{\mathcal{C}}$ be the constant presheaf on X with value \mathcal{C} . Then the obvious map

$$F_{\text{cont}} \circ \underline{\mathcal{C}} \to \mathcal{F}$$

induces isomorphisms on stalks. Since Shv(X) is hypercomplete and \mathcal{T} is compactly generated, it exhibits \mathcal{F} as the sheafification of $F_{\text{cont}} \circ \underline{\mathcal{C}}$. It remains to show that

(16)
$$\Gamma_{\rm c}(X,\mathcal{F}) \simeq F_{\rm cont}({\rm Shv}(X,\mathcal{C})).$$

This is obvious if X is compact. In general, choose a compactification $j: X \hookrightarrow \overline{X}$ with closed complement $i: X_{\infty} \hookrightarrow \overline{X}$. Let $\overline{\mathcal{F}}$ be the sheaf on \overline{X} such that $e(\overline{\mathcal{F}}) = F_{\text{cont}} \circ \widetilde{\mathbb{C}}$. Then $j^*(\overline{\mathcal{F}}) \simeq \mathcal{F}$ and hence there is a fiber sequence

$$\Gamma_{\rm c}(X,\mathcal{F}) \to \Gamma(\overline{X},\mathcal{F}) \to \Gamma(X_{\infty},i^*\mathcal{F}).$$

On the other hand, the sequence

 $\operatorname{Shv}(X, \mathcal{C}) \xrightarrow{j_!} \operatorname{Shv}(\bar{X}, \mathcal{C}) \xrightarrow{i^*} \operatorname{Shv}(X_{\infty}, \mathcal{C})$

is a localization sequence in $\Pr_{\rm St}^{\rm dual}.$ Applying $F_{\rm cont}$ proves (16).

Remark 17. Let \mathcal{E} be a small stable rigid symmetric monoidal category, for example Perf_k for some $\operatorname{E}_{\infty}$ -ring spectrum k. Then Theorem 10 remains true if we replace $\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}}$ by $\operatorname{Mod}_{\mathcal{E}}(\operatorname{Cat}_{\operatorname{St}}^{\operatorname{idem}})$ and $\operatorname{Pr}_{\operatorname{St}}^{\operatorname{dual}}$ by $\operatorname{Mod}_{\operatorname{Ind}(\mathcal{E})}(\operatorname{Pr}_{\operatorname{St}}^{\operatorname{dual}})$. The rigidity of \mathcal{E} ensures that \hat{y} and Φ are \mathcal{E} -linear functors. A similar generalization of Theorem 15 holds.